首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo administration to rats of the mixed-function oxidase modifiers 3-methylcholanthrene (MC), pregnenolone-16 alpha-carbonitrile (PCN) or beta-naphthoflavnoe (beta-f) inhibits the hepatic microsome-catalyzed in vitro binding of dimethylnitrosamine (DMN) to DNA. This parallels their effect on DMN-demethylase I, regarded to be the sole activating step in DMN carcinogenesis and fails to account for the previously observed anomaly that MC and PCN inhibit, while beta-NF enhances, the hepatocarcinogenic activity of DMN. The in vitro binding of DMN is clearly dependent on microsomes and NADPH, and is strongly enhanced by soluble cytoplasmic proteins; the presence of the latter has no effect. however, on the relative response to pretreatment by the modifiers. In mice beta-NF enhances and PCN inhibits DMN-demethylase I; beta-NF has no effect on either the cytochrome P-450 level or on the LD50, while PCN strongly increases the cytochrome P-450 level but without influencing the LD50. Neither of the two modifiers has any effect in mice on the host-mediated mutagenicity of DMN in a dose-response study, except for the highest dose of DMN (200 mg/kg) where PCN pretreatment significantly enhanced mutagenicity. To account for the anomalous observations, other potential pathways of DMN metabolism have been explored. Whole rat liver nuclei or isolated nuclear membrane fractions contain no DMN-demethylase or diethylnitrosamine-deethylase activity. In a microsomal mixed-function amine-oxidase assay system neither purified enzyme preparations nor whole microsomes catalyze NADPH oxidation in the presence of DMN as substrate. In addition, the purified enzyme does not catalyze formaldehyde production in the DMN-demethylase assay system. Benzylamine, a typical inhibitor of mitochondrial monoamine oxidase (MAO), is a potent inhibitor of DMN-demethylase activity, but microsomes are devoid of MAO activity. Furthermore, purified MAO has no DMN-demethylase activity. The differential effect of modifiers on the carcinogenicity of DMN probably involves pathways other than DMN metabolism.  相似文献   

2.
O N Pogodina 《Genetika》1978,14(12):2113-2118
An attempt to induce some forward and back mutations in two Escherichia coli strains (his- and HfrH requiring thiamine) under the action of the carcinogenic nitrosamines--dimethylnitrosamine (DMN) and diethylnitrosamine (DEN)--is described. For this purpose the cells of E. coli were treated with 5% DMN or 1% DEN for 1 hour at 37 degrees C in 0.14 M NaCl. It was shown that the sensitivity of both strains to both nitrose compounds was not the same. DEN was 5-fold as toxic as DMN for the E. coli cells. DMN and DEN induced neither mutations of resistance to 10(-3) M valine, nor reversions in histidine-dependent strain. These mutations were obtained after the cells were treated with 0.1 M NaNO2. Lethal effects of DMN increased more than in 5 times and the toxicity of DEN did not change in hydroxylating mixture, in which nitrosamines derived to active compounds. Under these conditions both carcinogenes showed a mutagenic activity. DEN proved to be about twice as strong mutagenically as DMN. Thus, in our experiments we could see that DMN and DEN could induce both forward and back mutations in E. coli.  相似文献   

3.
A set of six Drosophila strains was developed, by inducing by chemical treatment with N-ethyl-N-nitrosourea (ENU) new white and, in some strains, yellow mutations in 3 wild-type (WT) and 3 insecticide-resistant (IR) populations. These strains were previously shown to vary with regard to contents and inducibility of microsomal oxidative enzymes (Zijlstra et al., 1984). In this pilot study results from a first evaluation of these strains in somatic mutation experiments are reported, using as genotoxins an aromatic amine (2-naphthylamine, 2-NA), one substituted (9,10-dimethylanthracene, DA) and one non-substituted (benzo[a]pyrene, BP) polycyclic aromatic hydrocarbon. Developing larvae heterozygous for white were chronically exposed to three different exposure doses of each carcinogen. Adult females were inspected for the occurrence of mosaic light clones in their eyes, using the somatic mutation and recombination test (SMART).

Evidence is presented indicating strong genotype-dependent variation in both spontaneous and chemically induced mutational and recombinational events in somatic cells of Drosophila. The spontaneous frequencies varied from 3.5% (Hikone-R), 4.3% (Berlin-K), 6.3% (Oregon-K), 9.1% (91-C), 20.5% (Haag-79) to 49.1% (91-R), corresponding to a 14-fold difference in spot frequencies between the two extremes. BP, DA and 2-NA were readily detectable in both Hikone-R (IR) and Oregon-K (WT), less so in 91-C (WT) and Haag-79 (IR), whereas the performance of strain Berlin-K (WT) was rather poor. The special problem with strain 91-R was the high frequency with which mosaic light spots occur not only in female genotypes heterozygous for white, but also in homozygous condition in the original stock.

The up to 20-fold variation in induced spot frequencies between different genotypes poses questions for further investigations with respect to the genetic constitution of the various strains and the role of enzyme induction on somatic cell mutagenicity, which in this system is predominantly the result of mitotic recombination.  相似文献   


4.
C C Huang 《Mutation research》1987,187(3):133-140
When the Chinese hamster cell line V79 and the tester strain of Salmonella typhimurium TA100 were treated with the precarcinogens dimethylnitrosamine (DMN) or diethylnitrosamine (DEN) in the presence of S9 mix, a dose-dependent increase of sister-chromatid exchanges (SCE) in V79 cells and His+ revertants in TA100 resulted. DMN was a far more efficient SCE inducer than DEN, while DEN was a more efficient inducer of His+ revertants than DMN. Retinol (Rol) effectively inhibited DMN and DEN induced SCE in V79 cells and His+ revertants in TA100. Concurrent treatment of V79 cells with Rol at various doses and one dose of DMN or DEN in the presence of S9 mix caused a significant reduction of SCE as compared to SCE induced by DMN or DEN without Rol. Rol inhibition of DMN-induced SCE was dose-dependent. Rol was less efficient in inhibiting DEN-induced SCE, and no consistent dose-dependent inhibition was observed. At all doses, Rol significantly inhibited DMN and DEN induced mutation frequencies in TA100. At the highest dose of Rol (40 micrograms/plate), the inhibition of DMN and DEN induced His+ revertants reached about 90% and 60%, respectively. The possibility that Rol exerts its antimutagenic activities by inhibiting certain forms of the cytochrome P-450 isoenzymes required for activation of precarcinogens such as DMN and DEN is discussed.  相似文献   

5.
Experiments were performed to investigate the relationship between the rate of oxidative metabolism of dimethylnitrosamine (DMN) by rat liver microsomes (i.e., DMN demethylase activity, DMNd) and its genotoxicity in liver, as assessed by the in vitro and in vivo/in vitro rat hepatocyte primary culture/DNA repair (HPC/DR) assays. Pretreatment of rats with pyrazole (PYR) resulted in a 4-fold increase in DMNd and a 3-fold greater DNA repair response to in vivo administration of 5 mg DMN/kg body weight. Pretreatment with phenobarbital (PB), dichlorodiphenyltrichloroethane (DDT), 3-methylcholanthrene (3-MC), beta-naphthoflavone (beta-NF) or Aroclor 1254 (ARO) produced a variable degree of inhibition of DMNd and had no significant effects on the response to DMN in the in vivo/in vitro HPC/DR assay. DNA repair elicited by DMN in vitro was decreased in hepatocytes from rats pretreated with 3-MC, while PB, DDT, beta-NF and ARO pretreatments had little effect on the response. In contrast, PYR pretreatment produced a 4.5-6.7-fold increase in the in vitro DNA repair response to DMN, and extended detection of positive responses to lower concentrations. Most of the inducers had no effect on DNA repair elicited by the direct acting alkylator, methyl methanesulfonate (MMS). Thus, the pretreatment-related changes in DMN-induced DNA repair were probably due to alterations in DMNd rather than to effects on the DNA repair capacity of the hepatocytes.  相似文献   

6.
To examine possible effects of space radiation on living organism, we have analyzedtwo types of mutations, sex-linked recessive lethal mutations and somatic mutations, in fruit fly of the species Drosophila melanogaster. Drosophila strains used were wild type strains and a radiation-sensitive strain mei-41. Two different developmental stages of samples were sent into space; young adult males to analyze sex-linked recessive lethal mutations and about 30hr-old larvae to detect somatic mutations in wing epidermal cells. For wild type and mei-41 strains each, about 200 adult male flies and about 6,000 larvae were loaded on space shuttle Endeavour. The male flies returned from space were mated to virgin female flies of a tester strain, and the presence of the lethal mutations was analyzed at F2 generation. The frequencies of sex-linked recessive lethal mutations in flight groups were 2 and 3 times higher for wild type Canton-S and mei-4 1, respectively, than those in ground control groups. Most larvae sent to space emerged as adult flies within about 10 days after the landing. The presence of wing-hair somatic mutations, which give morphological change in hairs growing on the surface of wing epidermal cells, was analyzed under microscope. In wild type strain Muller-5, the frequency of wing hair mutant spots in flight group was about 1.5-fold higher than that in ground control, and in Canton-S-derived wild type strain the frequencies were similar between the two groups. By contrast, for mei-41 strain the mutation frequency was lower in flight group than in control group. The observed higher frequency of lethal mutations in the flight group might be due to a possibility that radiation effects on reproductive cells could be greatly enhanced under micro gravity. However, if this would be the case, we do not have appropriate explanation for the apparent absence of such synergistic effects on somatic wing-hair mutation system.  相似文献   

7.
Genotoxic activation of hydrazine (HZ), two symmetrical dialkylhydrazines, namely, 1,2dimethylhydrazine and 1,2-diethylhydrazine (SDMH and SDEH), thiourea (TU) and ethylene thiourea (ETU) has been evaluated by means of the w/w+ somatic assay of Drosophila. Both low bioactivation insecticide-susceptible (IS) and high biotransformation insecticide-resistant (IR) strains were used. The combined application of insecticide-susceptible and insecticide-resistant strains should, in principle, detect somatic cell recombinagens in the Drosophila melanogaster in vivo w/w+ assay. The IS strain was more susceptible to toxicity induced by the test chemicals than the IR stocks. Its performance in the biotransformation of the chemicals tested was rather poor. TU was inactive in all strains. With the active compounds, spot frequencies increased approximately linearly with dose for each spot type. SDEH gave a strong positive result in all three female genotypes exposed. HZ, ETU and SDMH were overall weakly positive in the IR strain Haag-79 (HG-R). Interestingly, ETU was clearly positive in the IR Hikone-R (HK-R) strain. A comparison of the recombinagenic potencies between the active and the weakly positive compounds, and among strains, showed pronounced genotype-dependent differences between the low and the high bioactivation strains. The ability of Drosophila to express several procarcinogens in relation to insecticide-resistance after activation catalyzed by CYP450 enzymes is discussed.  相似文献   

8.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

9.
Different types of mutations and DNA-damage profiles induced by near-UV radiation and the superoxide anion (O2-.) indicate separate lesions and (or) mechanisms of mutagenesis. Despite a wealth of data, it is still unclear whether variations in the activity levels of antioxidant enzymes naturally present in suboptimal concentrations are among the underlying causes of the increase of near UV radiation genotoxicity. We incorporated a low-activity allele of copper-zinc superoxide dismutase (CuZnSOD), recovered from natural populations of Drosophila melanogaster, into standard marked strains and employed a somatic mutation and recombination test (SMART) to compare paraquat and near UV radiation genotoxicity in these strains. Our results show that, although the low-activity CuZnSOD allele of D. melanogaster confers hypersensitivity to paraquat, the near UV radiation damage was not affected.  相似文献   

10.
The effect of lead nitrate, an inhibitor of the hepatic drug-metabolizing enzyme system upon the acute hepatotoxicity of dimethylnitrosamine (DMN) was studied.Lead pretreatment significantly prevented polysomal disaggregation induced by the nitrosamine. Cell necrosis, evaluated morphologically and by the release of serum glutamic-pyruvic transaminase (GPT), was also diminised.The metabolism of DMN in rats pretreated with lead nitrate was investigated by following its clearance from blood and by determining, in vitro the demethylation of the nitrosamine. Lead increased, although not significantly, the clearance of DMN from blood, but it lowered the activity of DMN-demethylase 24 h after its administration.Finally, lead lowered the lethal effects of DMN. The mechanism by which lead influenced DMN toxicity is discussed.  相似文献   

11.
Naturally derived volatile insecticides from the heterobicyclic and formate ester classes were investigated using a combination of volatility and synergist bioassays. In these studies, Drosophila melanogaster (Meigen) was used as a model for other medically important dipterans. In addition to a susceptible strain (Canton-S), three mutant strains were tested that included a strain resistant by P450-based metabolism (Hikone-R) and two resistant neurological mutant strains; one voltage-gated sodium channel mutant (para(ts-1)) and one GABA-gated chloride channel mutant (Rdl). In general, the 11 tested insecticides displayed a diversity of toxicity, metabolism, and resistance characteristics that correlate with their structural diversity. Several important trends were revealed by these studies, including hydrolase- and cytochrome P450 (P450)-based activation, P450-based resistance, distinct patterns of neurological activity, and negative cross-resistance with established insecticides. These findings provide important insight into the metabolism and modes of action for the volatile insecticides. These findings also suggest potential approaches for insecticide deployment in integrated vector management and resistance management programs.  相似文献   

12.
Several structurally related anisidine and dibenzanthracene isomers were evaluated for genotoxic effects in the somatic w/w+ assay of Drosophila melanogaster employing insecticide-susceptible (IS) and insecticide-resistant (IR) tester strains. In addition, and in order to find whether or not at the genetic level a regulatory effect is found, crosses between ISxIR strains and IRxIS strains were done. Chemicals tested were the aromatic amines (AAs) ortho-anisidine (o-AN), meta-anisidine (m-AN), and para-anisidine (p-AN) and the polycyclic aromatic hydrocarbons (PAHs) 1,2;3,4-dibenzanthracene (1,2;3,4-DBA) and 1,2;5,6-dibenzanthracene (1,2;5,6-DBA). As positive control N-nitrosodimethylamine (DMN) was used. Our results show that the genotoxic activity of DMN was higher in the IR than in the IS strain. There seems to be a tendency for slightly lower values as measured by clone induction in crosses between ISxIR and IRxIS. o-AN was positive in the IS strain and in crosses between ISxIR and IRxIS but negative in the IR strain. m-AN, p-AN and 1,2;3,4-DBA proved to be not recombinogenic in all strains and crosses while 1,2;5,6-DBA was positive at the highest concentration tested in all the crosses assayed. These findings show that the recombinogenic activity of the anisidine isomers depends on the position of the chemical group relative to one another and that the position of the benzene ring seems to be structurally relevant for genotoxicity of DBA isomers. With respect to IR and IS strains it remains to be determined to what extent the spectrum of metabolizing capacity really differs between the strains of the test assay. Thus more information is needed about the regulation and expression of the cytochrome-P450 genes and action at the molecular level taking place in the eye imaginal disc as well as between insecticide susceptible and resistant strains after exposure to genotoxic chemicals.  相似文献   

13.
Unscheduled DNA synthesis (UDS), following exposure to dimethylnitrosamine (DMN), was potentiated in cultured hepatocytes isolated following treatment of rats for 14 or 28 days with 20% ethanol/5% sucrose solution. Ethanol treatment was associated with increased UDS, a concomitant increase in hepatic microsomal protein concentration and DMN N-demethylase activity. Increased aniline hydroxylase activity of hepatic microsomes from ethanol-treated rats preceded the measured increase in microsomal protein content or DMN metabolism. The increase in metabolism of DMN in vitro and potentiation of DMN-induced UDS associated with ethanol treatment may contribute to a synergistic effect of ethanol on DMN hepatotoxicity and carcinogenicity. In contrast, ethanol pretreatment did not increase the cytotoxicity of DMN as characterized by enzyme release.  相似文献   

14.
Genetic and molecular investigations were carried out with 10 Japanese Drosophila melanogaster strains on P-M system of hybrid dysgenesis. The strains used here were collected in the years from 1952 to 1984 from various natural populations, and have been maintained in our laboratory. The whole genomic Southern hybridization was performed by using the 2.9-kb P element and the internal fragments as probes. Five strains possessed no P element copy and the other 5 strains possessed mainly incomplete P elements which had internal deletions. The former 5 strains were M, 2 of the latter were Q, and the remaining 3 were M' strains. Hikone-R, collected in 1952, had no P element copy, while Hikone-H, collected in 1957, was the earliest observed to possess multicopies of an incomplete P element. This revealed that P elements in Drosophila melanogaster were present more than 30 years ago in Japan, as already shown to have been the case on the American continent.  相似文献   

15.
Two strains of Cydia pomonella (L.) (Lepidoptera: Tortricidae) were selected in the lab by exposure to increasing concentrations of diflubenzuron (Rdfb strain) or azinphos-methyl (Raz strain). Insecticide bioassays showed that the adults of the Rdfb strain exhibited a 2.6-fold and a 7.7-fold resistance ratio to azinphos-methyl and carbaryl, respectively compared to a susceptible strain (S) whereas the adults of the Raz strain exhibited a 6.7-fold resistance ratio to azinphos-methyl and a 130-fold resistance ratio to carbaryl. In the Raz strain, a target site resistance mechanism was suggested by the inhibition of acetylcholinesterase (AChE) activity. In fact the ki values did not discriminate the S and Rdfb strains, while the Raz strain exhibited a 1.7-fold and a 14-fold increase in ki value compared to the S strain for azinphos-methyl oxon and carbaryl, respectively. To verify this hypothesis, two cloned AChE cDNAs sequences (named cydpom-ace2 e cydpom-ace1) were compared between the susceptible and the resistant strains. No difference in the deduced amino acid sequence was found in cydpom-ace2 (orthologous to the Drosophila melanogaster AChE). In the putative cydpom-ace1 (paralogous to the Drosophila AChE), a single amino acid substitution F399V was exclusively present in the Raz strain. The F399 lined the active site of the enzyme and the F399V substitution likely could influence the accessibility of different types of inhibitors to the catalytic site of the insensitive cydpom-ace1.  相似文献   

16.
The lacI gene in Big Blue transgenic rodents has traditionally been used as a surrogate gene for in vivo mutations. Recently, a more efficient and less expensive assay involving direct selection in the smaller lambda cII gene has been developed. Little is known, however, about the comparative sensitivity of the two loci or their influence on the recovered mutation spectrum following mutagen treatment. We have compared the mutation frequency (MF) and mutational spectrum (MS) of lacI and cII from the same DNA samples isolated from the liver of control and dimethylnitrosamine (DMN)-treated mice. A three-fold (p<0.01) increase in the MF was observed at both loci in the DMN-treated group compared to the corresponding control groups. While the DMN-induced mutation spectrum at lacI was significantly different from its corresponding spontaneous mutation spectrum (p<0.001), the mutation spectrum at cII (p>0.28) was not. The mutation spectra at the two loci from the DMN-treated mice resembled each other but the 4, 2.5 and 12-fold increase in the mutation frequency of A:T>T:A transversions, single base deletions and deletions of more than four base pairs, respectively, at lacI, altered the spectra significantly (p<0.007). The number of mutations of these classes at cII was also increased, but the fractions were lower than at lacI. The spontaneous mutation spectra at the cII and lacI loci resembled each other except for the seven-fold increase in G:C相似文献   

17.
Ascorbic acid was tested for its ability to increase or decrease the induction of bacterial mutations by dimethylnitrosamine (DMN) or aminopyrine plus nitrite within intact mice. No evidence was found of the mutagenicity of ascorbic acid itself when tested alone or in the presence of copper ions. Similarly, no increase or decrease in the DMN-induced mutation frequency was observed. However, ascorbic acid was found to decrease the aminopyrine/ nitrite-induced mutation frequency to an extent which was dependent on the experimental conditions used.  相似文献   

18.
Dimethylnitrosamine (DMN) and diethylnitrosamine (DEN) are not mutagenic by themselves, but they can be converted by mammalian enzymes to highly mutagenic products. As indicators for mutagenic activity, Neurospora crassa and Salmonella typhimurium were used. The ad-3 forward-mutation system was used to detect specific locus mutations; mutants in this system can range from multi-locus deletions to leaky mutations. The induction of mutations in S. typhimurium is detected as induction of histidine revertants of the histidine-requiring strain G46. The activation of DMN is microsomal, inhibited by SKF 525-A, and requires co-factors. The activating enzyme is induced in mice by pretreatment with phenobarbital, 3-methylcholanthrene and butylated hydroxytoluene. The mutagenic activity of the reaction products is directly correlated with the metabolic formation of formaldehyde with and without induction by 3-methylcholanthrene and across strains of mine. Formaldehyde does not contribute to the mutagenic activity of the reaction products. It is clear from the data that the reversion sites in G46 are more sensitive than the ad-3 loci of Neurospora crassa to the mutagenic action of DMN metabolites formed by mammalian liver. The microsomal assay is a few orders of magnitude more sensitive than the intraperitoneal host-mediated assay, and the intrahepatic host-mediated assay is a few orders of magnitude more sensitive than the in vitro microsomal system.  相似文献   

19.
20.
The mixed-function oxidases that metabolize dimethylnitrosamine, aminopyrine, benzphetamine, 7-ethoxycoumarin and benzo[alpha]pyrene were measured in adults of the Canton-S, Oregon-R and Hikone-R strains of Drosophila melanogaster. The expression of these activities is both genotype and age dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号