首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 ± 1.86 g/l, an optimal ethanol concentration of 87.91 ± 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h.  相似文献   

2.
This study demonstrates a method to prepare an immobilized cellulase by using an electrospun polyacrylonitrile (PAN) nanofibrous membrane as the support. To obtain an immobilized cellulase with high hydrolytic activity, the immobilization conditions including activation time, enzyme concentration, immobilization time, and temperature were optimized. Under those conditions, the immobilized cellulase possessed a protein loading of 30 mg/g-support and a specific activity of 3.2 U/mg-protein. After immobilization, the enzymatic stability of cellulase against pH and thermal stresses was improved. Fourier transform infrared spectroscopy (FTIR) measurements also revealed that the cellulase was covalently bonded to the supports. The immobilized cellulase was then used to hydrolyze cell wall of microalgae for the production of reducing sugars. Analyses using response surface methodology (RSM) show that the hydrolysis yield was affected by the reaction temperature, pH, and substrate/cellulase mass ratio, and a hydrolysis yield of 60.86% could be obtained at 47.85 °C, pH 5.82, and a substrate/cellulase mass ratio of 40 g-substrate/g-cellulase. This result suggests that the proposed scheme for the cellulase immobilization has great potential for the application to the reducing sugar production.  相似文献   

3.
The thermophilic fungus Sporotrichum cellulophilum was immobilized with nonwoven materials for cellulase production. The cellulose powder concentration in the medium was an important factor controlling cellulase production. When the cellulose powder concentration in the nonwoven materials was more than 4%, cellulase production was suppressed. The growth of the immobilized fungi depended on the spaces in the nonwoven materials. Immobilized growing fungi were retained by the non-woven materials, and the supernatant medium did not contain mycelia. The heat stability of the immobilized growing fungus was higher than that of the free fungus. The immobilized fungus gave the same FPA as the free mycelium, but the lag time for cellulase production in the immobilized fungus was longer. It was necessary for the only medium to be changed in order to get the immobilized growing fungus to continue producing cellulase. In this instance there was no difference of lag time in comparison with the free cells, and the supply of cellulose powder and polypepton was reduced to two-thirds. After 23 exchanges of the medium (2.6 mg cellulose powder/1 cm(3) nonwoven materials) FPA value was maintained. The periodic batch culture was continued for 69 days.  相似文献   

4.
Halophilic Archaea are adapted to a life in the extreme conditions and some of them are capable of growth on cellulosic waste as carbon and energy source by producing cellulase enzyme. The production of cellulase using free and immobilized cells of halophilic archaeal strain Haloarcula 2TK2 isolated from Tuzkoy Salt Mine and capable of producing cellulose was studied. The cells were cultured in a liquid medium containing 2.5 M NaCl to obtain the maximum cellulase activity and immobilized on agarose or polyacrylamide or alginate. Optimal salt dependence of free and immobilized cells of Haloarcula 2TK2 was established and the effects of pH and temperature were investigated. Immobilization to Na-alginate enhanced the enzymatic activity of the Haloarchaeal cells when compared to free cells and other polymeric supports. From the results obtained it is reasonable to infer that decomposition of plant polymers into simpler end products does occur at high salinities and cellulase producing haloarchael cells may be potentially utilized for the treatment of hypersaline waste water to remove cellulose.  相似文献   

5.
Continuous cellulase production by Trichoderma viride QM 9123, immobilized in 6 mm diameter, spherical, stainless steel biomass support particles, has been achieved using a medium containing glucose as the main carbon source. Experiments were carried out in a 10-L spouted bed fermentor. In this type of reactor-recycled broth is used to create a jet at the base of a bed of particles, causing the particles to spout and circulate. During the circulation, particles pass through a region of high shear near the jet inlet. This effectively prevents a buildup of excess biomass and thus enables steady-state conditions to be achieved during continuous operation. Continuous production of cellulase was achieved at significantly higher yield and productivity than in conventional systems. At a dilution rate of 0.15 h(-1) (nominal washout rate for freely suspended cells is 0.012 h(-1)), the yield of cellulase on glucose was 31% higher than that measured during batch operation, while the volumetric productivity (31.5 FPA U/L. h) was 53% greater than in the batch system. The specific cellulase productivity of the immobilized cells was more than 3 times that of freely suspended cells, showing that diffusional limitations can be beneficial. This offers significant opportunity for the further development of biomass support particles and associated bioreactors.  相似文献   

6.
应用固定化里氏木霉糖化玉米秆纤维素的研究   总被引:15,自引:0,他引:15  
采用多孔聚酯材料固定里氏木霉(TrichodermareeseiRutC30)菌丝细胞,将固定化细胞在生长限制条件下重复分批培养,使纤维酶的合成与玉米秆纤维原料的酶解糖化耦合在一个反应器中同时进行。在30℃、初始pH4.8、摇瓶转速150r/min的条件下,连续重复进行12次分批培养试验。每批玉米秆用量为60g/L,培养周期4.5d,共54d。培养液中含滤纸酶活力平均为0.70IU/ml,还原糖26.41g/L,糖化率达到理论值的89.11%。固定化菌丝形态正常,菌量保持在10g/L左右。在间歇添料条件下,玉米秆原料的总量可提高到120g/L,7d后还原糖浓度达52.81g/L,糖化率为89.20%。利用固定化里氏木霉同时产酶和糖化植物纤维原料,工艺简便、成本低廉、易于连续自动化操作,是一条有效利用可再生纤维素资源的新途径。  相似文献   

7.
The production of cellulase was investigated in repeated batch experiments using immobilized cells of two Trichoderma reesei mutants in a rotating disc fermenter under very low shear stress. The enzyme production with one of the mutants was maintained for three successive batch cycles (ca. 30 days), while with the other mutant the cellulase formation lasted only one batch cycle (14 days) because of a genetic instability. The enzymatic hydrolysis of microcrystalline cellulose by the cellulase complex formed in the rotating disc fermenter is distinctly higher than that of cellulase produced in a stirred tank reactor, in which the higher shear stress partially damages the enzyme molecules, mainly those of cellobiohydrolase. The higher specific activity of the cellulase produced in the disc fermenter correlates with its higher capacity of adsorption onto microcrystalline cellulose.  相似文献   

8.
Aerobic cells of Trichoderma reesei have been immobilized by the radiation polymerization technique using fibrous substances and hydroxyethyl methacrylate. The enzyme [cellulase, 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] productivity and growth of the cells in the immobilized growing cells have been studied. The enzyme (filter paper) activity in the immobilized cells was comparable to that of the intact cells, showing that the cells immobilized with fibrous materials grow and become adhered to the surface of the fibrils. The filter paper activity of the immobilized cells was affected mainly by monomer concentration and the content of the fibrous materials, as well as the irradiation dose. It was demonstrated that in repeated batch culture of the immobilized cells the filter paper activity gave a constant value, and leakage of the cells was not observed.  相似文献   

9.
Trichoderma reesei (QM 9123) was immobilized within the open porous network of reticulated polyurethane foam matrices, and the growth pattern, glucose consumption and cellulase production were compared with those of freely suspended cells. It was found that the method of immobilization was simple and had no detrimental effect on cell activity. Various production media, to be used after the cultivation of T. reesei were tried. It was found that a nitrogen source-free production medium gave the highest enzyme titers of 1.5 × 103 FPA U l−1. Similar results were obtained with both freely suspended and immobilized cells.  相似文献   

10.
Enzyme immobilization by radiation-induced polymerization of hydrophilic glass-forming monomers, such as 2-hydroxyethyl methacrylate, was studied. Enzyme radiation damage could be sufficiently retarded at low temperatures. The immobilized enzyme activity yield was markedly higher at low temperature than at higher temperature polymerization. At low temperatures the polymerized composite had a porous structure owing to ice crystallization which depends on the monomer concentration. It was deduced that the enzyme was partially trapped on the polymer surface, partially isolated in the pore, and partially occluded inside the polymer matrix. A decrease in activity caused by enzyme leakage was observed with repeated use in enzyme reactions where the composites had a large porosity. The activity yield showed a maximum at certain optimum porosities, i.e., at optimum monomer concentrations. Continuous enzyme reaction was preferably carried out using immobilized enzyme columns.  相似文献   

11.
Protoplasts from Trichoderma reesei were immobilized in alginate and induced to produce cellulase (endoglucanase and β-glucosidase) enzymes. The specific activities of the synthesized enzymes were higher in immobilized protoplasts than in both free and immobilized mycelia. Immobilized protoplasts show an enhanced rate of exocellular β-glucosidase production compared to intact mycelia due to the lack of cell wall. The ratio of the exocellular/intracellular β-glucosidase was 5.9 for immobilized protoplasts and 0.32 for free mycelia.  相似文献   

12.
Spores of Sporotrichum thermophile were immobilized in agar, polyacrylamide, and sodium alginate to generate in situ mycelium for production of cellulolytic enzymes. Immobilized mycelium was considerably less effective than free cells for cellulase productivity. Of the three gel types, agar beads proved to be the best carrier for the immobilized spores and subsequently generated mycelium. Results of repeated batch experiments suggested that the immobilized mycelia could be reused but at much reduced efficiency.  相似文献   

13.
Cellulase production by a solid state culture system   总被引:1,自引:0,他引:1  
Production of cellulase using solid culture systems of Trichoderma reesei QM9414 and Sporotrichum cellulophilum on wheat bran was studied. By using moisture-controlled solid culture equipment, the effect of water content of wheat bran on cell growth and cellulase production was investigated. Cellular biomass grown on solid substrate was estimated by measuring oxygen consumption rate and glucosamine content of the cells. These parameters were shown to have a good linear correlation with the specific growth rate. This reliable method of estimating the cell growth rate enabled us to simulate the enzyme production in a solid culture system by means of multiple linear regression analysis which takes into account of the water content, cell mass, and the oxygen consumption rate as variables. The cell growth and cellulase production were maximized at different water content of the medium. A high water content, 57% for T. reesei and 70% for S. cellulophilum, favored mycelial growth, while the maximum cellulase activity was obtained at a lower water content such as 50% for both fungi. It was observed that cellulase production by T. reesei depended on the culture conditions that support the optimal growth rate for the maximum enzyme production.  相似文献   

14.
Enzymatic properties of Alcaligenes faecalis cells immobilized in polyacrylamide were characterized and compared with those reported for the extracted enzyme, and with those measured for free cells. Many of the properties reflected those of the extracted enzyme rather than those measured in the free whole cells prior to immobilization, suggesting cell disruption during immobilization. These properties included the pH activity profile, a slightly broader pH stability profile, and the activation energy. Electron micrographs showed evidence of cell debris among the polymer matrix. The immobilized cells were not viable, and did not consume glucose. Thermal stability was less after immobilization with a half-life of 16 h at 45 degrees C, and 3.5 h at 50 degrees C. The immobilized preparation was more stable when stored lyophilized rather than in buffer, losing 23 and 52% activity, respectively, after six months. The enzyme was irreversibly inhibited by both acetate and citrate buffers. If the immobilized enzyme is to be used in conjunction with cellulases from Trichoderma reesei for cellulase saccharification, the optimal conditions would be pH 5.5 and 45 degrees C in a buffer containing no carboxylic acid groups.  相似文献   

15.
Aspergillus terreus, isolated from rotting bagasse, showed comparable cellulolytic activities when grown either in the free or immobilized states with cellulose as the sole carbon source. The cultural and nutritional requirements for maximum cellulase production by the organism either in the free or immobilized states were similar, except an increase in the temperature optimum from 30 to 40°C, occurred upon immobilization. In the free state, the maximum filter paper hydrolase, carboxymethylcellulase and β-glucosidase activities produced were 2.1, 13.6, and 3.2 U/ml, respectively, while in the immobilized state, the levels were 1.8, 12.0, and 2.4 U/ml. Production of cellulolytic enzymes by immobilized cells was influenced by the surface area of the support material. In addition, cells in the immobilized state sustained enzyme production for a much longer period with a 4.5-fold increase in productivity during repeated batch when compared to free cells.  相似文献   

16.
The conditions for batch and continuous production of ethanol, using immobilized growing yeast cells of Kluyveromyces lactis, have been optimized. Yeast cells have been immobilized in hydrogel copolymer carriers composed of polyvinyl alcohol (PVA) with various hydrophilic monomers, using radiation copolymerization technique. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves. The ethanol production of immobilized growing yeast cells with these hydrogel carriers was related to the monomer composition of the copolymers and the optimum monomer composition was hydroxyethyl methacrylate (HEMA). In this case by using batch fermentation, the superior ethanol production was 32.9 g L(-1) which was about 4 times higher than that of cells in free system. The relation between the activity of immobilized yeast cells and the water content of the copolymer carriers was also discussed. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier, were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) g L(-1). For all lactose feed concentrations, an increase in dilution rates from 0.1 h(-1) to 0.3 h(-1) lowered ethanol concentration in fermented broth, but the volumetric ethanol productivity and volumetric lactose uptake rate were improved. The fermentation efficiency was lowered with the increase in dilution rate and also at higher lactose concentration in feed medium and a maximum of 70.2% was obtained at the lowest lactose concentration 50 g L(-1).  相似文献   

17.
A convenient and economical method of NADH production from NAD+ has been established using a formate dehydrogenase system involving immobilized cells of a methanol-utilizing bacterium. Arthrobacter sp, KM62. Four kinds of cell entrapment were studied. An immobilized cell preparation showing a high NADH production activity was obtained by entrapment in a kappa-carrageenan gel lattice. The NADH-producing activity of the immobilized cells was investigated under various conditions. The NADH-producing activity was evoked on the addition of Triton X-100 to the reaction mixture. The conditions for the continuous production of NADH with an immobilized cell column were also investigated. When a reaction mixture containing 10 mumol (6.63 mg) ml-1 NAD+ was passed through the column (1.2 x 20 cm) containing 1.62 g (as dry weight) of immobilized cells, at a space velocity of 0.125 at 35 degrees C, complete conversion was attained.  相似文献   

18.
The liposome-bound cellulase was prepared by covalently coupling cellulase with the enzyme-free liposomes bearing aldehyde groups so that cellulase was located solely on the outer membrane of liposomes. The modified cellulase possessed the higher activity efficiency and lipid-based specific activity than the cellulase-containing liposomes reported previously. The enzyme-free liposomes bearing aldehyde groups were covalently immobilized with the chitosan gel beads and the free cellulase was coupled with the treated gel beads to prepare the immobilized liposome-bound cellulase. The activity efficiency of the immobilized liposome-bound cellulase was much higher than that of the conventionally immobilized cellulase. The results on reusability of the immobilized liposome-bound cellulase in the hydrolysis of either soluble or insoluble cellulose showed that the immobilized liposome-bound cellulase had the higher remaining cellulase activity and reusability than the conventionally immobilized cellulase for the hydrolysis of either type of cellulose. The liposomal membrane was suggested to be efficient in maintaining the cellulase activity during the hydrolysis.  相似文献   

19.
The kinetic properties of Saccharomyces cerevisiae immobilized on crosslinked gelatin were found to be substantially different from those of the suspended yeast. Batch fermentation experiments conducted in a gradientless reaction system allowed comparison of immobilized cell and suspended cell performance. The specific rate of ethanol production by the immobilized cell was 40-50% greater than for the suspended yeast. The immobilized cells consumed glucose twice as fast as the suspended cells, but their specific growth rate was reduced by 45%. Yields of biomass from the immobilized cell population were lower at one-third the value for the suspended cells. Cellular composition was also affected by immobilization. Measurements of intracellular polysaccharide levels showed that the immobilized yeast stored larger quantities of reserve carbohydrates and contained more structural polysaccharide than did suspended cells. Flow cytometry was used to obtain. DNA, RNA, and protein frequency functions for immobilized and suspended cell populations. These data showed that the immobilized cells have higher ploidy than cells in suspension. The observed changes in immobilized cell metabolism and composition may have arisen from disturbance to the yeast cell cycle by the cell attachment, causing alterations in the normal pattern of yeast bud development, DNA replication, and synthesis of cell wall components.  相似文献   

20.
Cellulase has been immobilized on hybrid concanavalin A (Con A)-layered calcium alginate–starch beads. Immobilized cellulase retained about 82% of its activity. Con A was extracted from jack bean and the obtained crude protein was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The immobilized beads showed high mechanical and storage stability; immobilized cellulase retained 100% and 85% activity at 4°C and 30°C, respectively, over one month. The immobilized cellulase retained about 70% of its activity after five cycles of use. The immobilized cellulase retained 70% activity after 120-min exposure to 60°C, whereas the soluble form only retained about 20%, showing that immobilization improved thermal stability. Surface morphology and elemental analysis of immobilized cellulase were examined using scanning electron microscope equipped with energy-dispersive X-ray. Based on the enzyme stability and reuse, this method of immobilization is both convenient and cheap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号