首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WR211 and WR216 are derivatives of halobenzoate-degrading Pseudomonas sp. strain B13 into which the 117-kilobase TOL degradative plasmid pWW0 has been transferred from Pseudomonas putida mt-2. WR211 has lost the ability to grow on the TOL-specific substrate m-xylene but retains the ability to grow on its metabolite, m-toluate. An analysis of the induction of enzymes was consistent with WR211 carrying a nonfunctional regulatory gene, xy1R, WR216 is a spontaneous derivative of WR211 which grows on one of the TOL substrates and yet expresses the nonspecific toluate oxidase, which enables it to grow on the novel substrate 4-chlorobenzoate. In addition to the xy1R lesion inherited from WR211, WR216 appears to carry a mutation in the structural gene for catechol 2,3-oxygenase, xy1E. The plasmids in both strains were analyzed by restriction endonuclease digestion. pWW0-1211 in WR211 has a large deletion (39 kilobases) compared with pWW0 and appears to be identical to a previously described plasmid (pWW0-8) which encodes none of the TOL degradative functions. pWW0-1216 in WR216 has undergone a major structural reorganization relative to its parent, pWW0-1211. This plasmid has a smaller deletion (19 kilobases), which is staggered relative to the deletion in pWW0-1211, and in addition it has two 3-kilobase insertions of unknown origin, one of which appears to cause the xylE mutation.  相似文献   

2.
Summary The hypothesis that the early enzymes of the degradative pathway determined by the TOL plasmid pWW0 are positively regulated by the product of the xylR gene has been tested by constructing a strain which is a partial diploid for the TOL genes. Two parental plasmids were first constructed by in vivo methods, neither of which could determine the ability to grow on m-xylene, one of the primary substrates of the plasmid degradative pathway, because of mutations. One of these, pWW0-216, was a derivative of pWW0 but carried a xylR - allele and a copy of the Tn401 transposon, encoding carbenicillin resistance. The other plasmid, pWW0-152, was a derivative of the promiscuous R plasmid RP4 into which had been translocated part of a pWW0 plasmid carrying a wild type xylR + allele but with a defective xylA, the structural gene for xylene oxidase. When these two plasmids were mated into the same strain, all the transconjugants examined grew on m-xylene and one representative of these, PaW 219, was shown to contain induced levels of xylene oxidase when grown under inducing conditions. The possibility that ability to utilise m-xylene was due to recombination between or reversion of the coexisting plasmids was eliminated by demonstrating that the two parental plasmids segregated on mating out from PaW 219. It is concluded therefore that xylR + is transdominant to xylR -, and that its gene product is a positive regulator.  相似文献   

3.
Pseudomonas putida MT53 contains a TOL plasmid, pWW53, that encodes toluene-xylene catabolism. pWW53 is nonconjugative, is about 105 to 110 kilobase pairs (kbp) in size, and differs significantly in its restriction endonuclease digestion pattern and incompatibility group from the archetypal TOL plasmid pWW0. An RP4::pWW53 cointegrate plasmid, pWW53-4, containing about 35 kbp of pWW53 DNA, including the entire catabolic pathway genes, was formed, and a restriction map for KpnI, HindIII, and BamHI was derived. The entire regulated meta pathway genes for the catabolism of m-toluate were cloned into pKT230 from pWW53 on a 17.5-kbp HindIII fragment. The recombinant plasmid supported growth on m-toluate when mobilized into plasmid-free P. putida PaW130. A restriction map of the insert for 10 restriction enzymes was derived, and the locations of xylD, xylL, xylE, xylG, and xylF were determined by subcloning and assaying for their gene products in both Escherichia coli and P. putida hosts. Good induction of the enzymes by m-toluate and m-methylbenzyl alcohol but not by m-xylene was measured in P. putida, but little or no regulation was found in E. coli. The restriction map and the gene order showed strong similarities with published maps of the DNA encoding both the entire meta pathway operon (xylDLEGFJIH) and the regulatory genes xylS and xylR on the archetype TOL plasmid pWW0, suggesting a high degree of conservation in DNA structure for the catabolic operon on the two different plasmids.  相似文献   

4.
Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida   总被引:3,自引:0,他引:3  
The TOL plasmid pWW0 (117 kb) is the best studied catabolic plasmid and the archetype of the IncP-9 plasmid incompatibility group from Pseudomonas. It carries the degradative (xyl) genes for toluenes and xylenes within catabolic transposons Tn4651 and Tn4653. Analysis of the complete pWW0 nucleotide sequence revealed 148 putative open reading frames. Of these, 77 showed similarity to published sequences in the available databases predicting functions for: plasmid replication, stable maintenance and transfer; phenotypic determinants; gene regulation and expression; and transposition. All identifiable transposition functions lay within the boundaries of the 70 kb transposon Tn4653, leaving a 46 kb sector containing all the IncP-9 core functions. The replicon and stable inheritance region was very similar to the mini-replicon from IncP-9 antibiotic resistance plasmid pM3, with their Rep proteins forming a novel group of initiation proteins. pWW0 transfer functions exist as two blocks encoding putative DNA processing and mating pair formation genes, with organizational and sequence similarity to IncW plasmids. In addition to the known Tn4651 and IS1246 elements, two additional transposable elements were identified as well as several putative transposition functions, which are probably genetic remnants from previous transposition events. Genes likely to be responsible for known resistance to ultraviolet light and free radicals were identified. Other putative phenotypic functions identified included resistance to mercury and other metal ions, as well as to quaternary ammonium compounds. The complexity and size of pWW0 is largely the result of the mosaic organization of the transposable elements that it carries, rather than the backbone functions of IncP-9 plasmids.  相似文献   

5.
Structural genes for catechol 2,3-oxygenase (C23O) were cloned from the TOL plasmids pWW5, pWW14, pWW74, pWW84, and pWW88 isolated from Pseudomonas strains of diverse geographical origins. Each pKT230-based C23O+ recombinant plasmid carried a 2.05-kilobase XhoI insert which showed strong homology in Southern hybridizations with the xylE gene from the archetype TOL plasmid pWW0. Fragments were mapped for restriction endonuclease sites and were classified into two closely related groups on the basis of restriction maps. C23O structural genes were located on cloned fragments by a combination of subcloning and site-specific mutagenesis. All five TOL plasmids examined yielded clones whose maps differed from that of xylE of pWW0 by only a single XbaI site, but in addition plasmids pWW5, pWW74, and pWW88 carried a second, homologous C23O gene with seven further restriction site differences. The remaining plasmids, pWW14 and pWW84, carried a second nonhomologous C23O gene related to the second C23O gene (C23OII) of TOL plasmid pWW15 described previously (H. Keil, M. R. Lebens, and P. A. Williams, J. Bacteriol. 163:248-255, 1985). Thus, each naturally occurring TOL plasmid in this study appears to carry genes for two meta cleavage dioxygenases.  相似文献   

6.
Chromosomal location of TOL plasmid DNA in Pseudomonas putida.   总被引:11,自引:6,他引:5       下载免费PDF全文
The soil isolate Pseudomonas putida MW1000 can grow on toluene and other hydrocarbons; in this respect it is similar to strains of Pseudomonas which carry the TOL plasmid. By conjugation experiments, the genes conferring these growth abilities have been shown to be located on the bacterial chromosome, linked to vil and catB. A 56-kilobase segment of the bacterial chromosome of MW strains carrying the TOL genes can transpose to the IncP-1 plasmid R18-18. Physical analysis of these TOL R18-18 hybrids has shown that the TOL segment is almost identical to the same region found in the TOL plasmid pWW0.  相似文献   

7.
Summary TOL plasmid pWW0 and plasmid NAH7 encode catabolic enzymes required for oxidative degradation of toluene and naphthalene, respectively. The gene order of the catabolic operon of NAH7 for salicylate oxidation was determined to be: promoter-nahG (the structural gene for salicylate hydroxylase)-nahH (catechol 2,3-dioxygenase)-nahI (hydroxymuconic semialdehyde dehydrogenase)-nahN (hydroxymuconic semialdehyde hydrolase)-nahL (2-oxopent-4-enoate hydratase). This order is identical to that of the isofunctional genes of TOL plasmid pWW0. The complete nucleotide sequence of nahH was determined and compared with that of xylE, the isofunctional gene of TOL plasmid pWW0. There were 20% and 16% differences in their nucleotide and amino acid sequences, respectively. The homology between the NAH7 and TOL pWW0 plasmids ends upstream of the Shine-Dalgarno sequences of nahH and xylE, but the homology continues downstream of these genes. This observation suggested that genes for the catechol oxidative enzymes of NAH7 and TOL pWW0 were derived from a common ancestral sequence which was transferred as a discrete segment of DNA between plasmids.  相似文献   

8.
The size of the TOL plasmid pWW20 from Pseudomonas putida MT20, as measured by analysis of agarose electrophoresis gels after restriction endonuclease hydrolysis, was 270-280 kilobase pairs (kb). During growth on benzoate, MT20 segregates strains carrying mutations in the plasmid regulatory gene xylS; these so-called B3 strains retain the ability to grow on m-xylene (Mxy+) but do not grow on its metabolite m-toluate (Mtol-) and have also lost the ability to transfer the plasmid (Tra-). Analysis of restriction digests of plasmid DNA from seven such segregants, independently isolated, showed that pWW20 had undergone extensive deletions of 90-100 kb. All the deleted plasmids had lost a common core of DNA, of about 72-80 kb, but in class A mutants the deletion extended at one end of this core and in class B mutants at the other end. Class A and B mutants also differed in their rate of growth on m-xylene as a result of differences in the level of expression of their plasmid-coded catabolic enzymes. This suggests that an additional gene, involved in regulating levels of gene expression, is located in the region uniquely deleted in the class B mutants.  相似文献   

9.
DNA fragments containing the xylD and xylL genes of TOL plasmid pWW0 -161 of Pseudomonas putida, which code for the catabolic enzymes toluate 1,2-dioxygenase and dihydrodihydroxybenzoic acid dehydrogenase, respectively, and the nahG gene of the NAH plasmid NAH7 , which codes for salicylate hydroxylase, were cloned in pBR322 vector plasmid. Deletion and insertion mutagenesis were used to localize these genes with respect to crucial endonuclease cleavage sites. The pBR322-based plasmids were ligated to the broad host range cloning vector pKT231 , or derivatives of it, and the hybrid plasmids were introduced into Pseudomonas sp. B13( WR1 ), a bacterium able to degrade 3-chlorobenzoate but not 4-chlorobenzoate, 3,5- dichlorobenzoate , salicylate, or chlorosalicylates . The cloned xylD gene expanded the catabolic range of WR1 to include 4-chlorobenzoate, whereas the cloned xylD - xylL genes enabled the isolation of derivatives of WR1 that degraded 3-chlorobenzoate, 4-chlorobenzoate, and 3,5- dichlorobenzoate . The cloned nahG gene extended the catabolic range of WR1 to include salicylate and 3-, 4-, and 5- chlorosalicylate .  相似文献   

10.
Insertions of the TOL plasmid transposons Tn4651 and Tn4653 into the Pseudomonas aeruginosa PAO chromosome were isolated by a temperature selection technique. The locations and orientations of 16 insertions were determined by pulsed field gel electrophoresis and Southern hybridization with genomic and TOL DNA probes. All insertions occurred within a 334 kb region of the chromosome (representing less than 6% of the genome) with nine of the inserts clustered within a 10 kb area. Each transposon was able to insert in either orientation. An internal duplication of the 39 kb excisable region of pWW0 was seen in two independent insertions.  相似文献   

11.
Retrotransfer of DNA refers to the phenomenon by which a plasmid travels from a host strain to a recipient one and returns to the original host, bringing with it DNA from the recipient. The resultant host strain with DNA from the recipient is called a retrotransconjugant. The retrotransfer phenomenon mediated by the TOL plasmid pWW0 and other plasmids has been documented on plates under optimal laboratory culture conditions, but never under natural conditions. In this work, we show that retrotransfer mediated by the IncP9 TOL pWW0 plasmid occurs in the rhizosphere, a niche in which the continuous supply of nutrients via root exudates allows cells to reach a high density. This suggests that this unusual sexual fertilization may be of great importance in lateral gene transfer. We also show that retrotransfer of DNA seems to require co-integration of the plasmid and the host chromosome and subsequent resolution, because a TOL plasmid with a mutation in the tnpR gene, encoding the resolvase of the Tn 4653 of the TOL plasmid, was self-transferred between Pseudomonas strains, but unable to mobilize chromosome.  相似文献   

12.
The hybrid pathway for chlorobenzoate metabolism was studied in WR211 and WR216, which were derived from Pseudomonas sp. B13 by acquisition of TOL plasmid pWW0 from Pseudomonas putida mt-2. Chlorobenzoates are utilized readily by these strains when meta cleavage of chlorocatechols is suppressed. When WR211 utilizes 3-chlorobenzoate (3CB), the expression of catechol 2,3-dioxygenase (C23O) and the catabolic activities for chloroaromatics via the ortho pathway coexist as a consequence of inactivation of the meta cleavage activity by 3-chlorocatechol. Utilization of 4-chlorobenzoate (4CB) by WR216 presupposes the suppression of C23O by a spontaneous mutation in the structural gene, so that 4-chlorocatechol is not misrouted into the meta pathway. Such C23O- mutants were also selected when WR211 was grown continuously on 3CB. Our data explain why the phenotypic characters 3CB+ and Mtol+ (m-toluate) are compatible, whereas 4CB+ and Mtol+ are incompatible.  相似文献   

13.
Mutant derivatives of a plasmid, pCF20, which carries the XhoI-D fragment of the TOL plasmid pWW0 have been isolated using Tn5 transposon mutagenesis. Insertion mutations of the xylR and xylS regulatory genes of the catabolic pathway have been isolated and characterized and their ability to induce catechol 2,3-oxygenase activity determined. Analysis of the insertion mutants and also segments of the XhoI-D fragment cloned into plasmid pUC8 in maxicells has identified a 68 kDa polypeptide product encoded by the xylR gene. No clear candidate for the xylS polypeptide was observed. The nucleotide sequence of the xylS region, the intergenic region and part of the xylR region has been determined and open reading frames (ORFs) assigned for both genes. The ORF designated xylS appears capable of encoding a polypeptide of approximately 37 kDa.  相似文献   

14.
pWW53-4 is a cointegrate between RP4 and the catabolic plasmid pWW53 from Pseudomonas putida MT53, which contains 36 kbp of pWW53 DNA inserted close to the oriV gene of RP4; it encodes the ability to grow on toluene and the xylenes, characteristic of pWW53, as well as resistance to tetracycline, kanamycin and carbenicillin, characteristic of RP4. A physical map of the 36 kbp insert of pWW53 DNA for 11 restriction enzymes is presented, showing that the relative positions of the two xyl operons are different from those on the archetypal TOL plasmid pWW0. The location of the genes for 4-oxalocrotonate decarboxylase (xylI) and 4-oxalocrotonate tautomerase (xylH) were shown by subcloning and enzyme assay to lie at the distal end of the meta pathway operon. Although 2-oxopent-4-enoate hydratase (xylJ) and 4-hydroxy-2-oxovalerate aldolase (xylK) could be detected on a large cloned HindIII fragment, they could not be accurately located on smaller subcloned DNA, but the only credible position for them is between xylF and xylI. The gene order in the meta pathway operon is therefore xylDLEGF(J,K)IH. The regulatory genes xylS and xylR were located close to and downstream of the meta pathway operon, and the restriction map of the DNA in this region, as has previously been shown for the two operons carrying the structural genes, shows similarities with the corresponding region on pWW0. Evidence is also presented for the existence of two promoters, termed P3 and P4, internal to the meta pathway operon which support low constitutive expression of the structural genes downstream in Pseudomonas hosts but not in E. coli.  相似文献   

15.
Recent studies have indicated that the evolutionarily common catabolic gene clusters are loaded on structurally diverse toluene-catabolic (TOL) plasmids and their residing transposons. To elucidate the mechanisms supporting the diversification of catabolic plasmids and transposons, we determined here the complete 107,929 bp sequence of pWW53, a TOL plasmid from Pseudomonas putida MT53. pWW53 was found to belong to the IncP-7 incompatibility group that play important roles in the catabolism of several xenobiotics. pWW53 carried two distinct transposase-resolvase gene clusters (tnpAR modules), five short terminal inverted repeats (IRs), and three site-specific resolution (res) sites that are all typical of class II transposons. This organization of pWW53 suggested the four possible transposable regions, Tn4657 to Tn4660. The largest 86 kb region (Tn4657) spanned the three other regions, and Tn4657 and Tn4660 (62 kb) covered all of the 36 xyl genes for toluene catabolism. Our subsequent transposition experiments clarified that the three transposons, Tn4657 to Tn4659, indeed exhibit their transposability, and that pWW53 also generated another 37 kb toluene-catabolic transposon, Tn4656, which carried the two separated and inversely oriented segments of pWW53: the tnpRA-IR module of Tn4658 and a part of xyl gene clusters on Tn4657. The Tn4658 transposase was able to mediate the transposition of Tn4658, Tn4657, and Tn4656, while the Tn4659 transposase catalyzed only the transposition of Tn4659. Tn4656 was formed by the Tn4658 resolvase-mediated site-specific inversion between the two inversely oriented res sites on pWW53. These findings and comparison with other catabolic plasmids clearly indicate multiple copies of transposition-related genes and sites on one plasmid and their recombination activities contribute greatly to the diversification of plasmid structures as well as wide dissemination of the evolutionary common gene clusters in various plasmids.  相似文献   

16.
Pseudomonas sp. strain CB406 was isolated from polychlorinated biphenyl-contaminated soil and harbors a nontransmissible plasmid, pWW100, of approximately 200 kb which carries the genes required for biphenyl and 4-chlorobiphenyl catabolism. The catabolic phenotype was mobilized following the construction in vivo of a cointegrate plasmid containing functional upper and lower biphenyl operons inserted into the broad-host-range R plasmid RP4. The Bph+ phenotype carried by pWW100 was stable in nonselective media but was unstable during growth on benzoate, where the sequential selection of two species of bph deletion derivatives occurs at high frequency. This mirrors observations made with TOL plasmids (encoding toluene and xylene catabolism) grown under similar conditions. Subcloning of dioxygenase genes involved in biphenyl catabolism confirmed the localization of the bph genes on the wild-type plasmid and the RP4 cointegrate plasmid.  相似文献   

17.
Cointegrate plasmids were formed in vivo between the broad-host-range R-plasmid RP4 and two catabolic plasmids derived from Pseudomonas putida HS1. One of these was the wild-type plasmid pDK1 encoding the complete inducible toluene/xylene (TOL) catabolic pathway and one was pDKT1, a deletion derivative of pDK1 selected after growth of HS1 on benzoate and supporting growth on only toluene. The two plasmids formed, pDK2 and pDKT2 respectively, each consisted of a complete RP4 replicon in which was an insert of the parent plasmid DNA respectively 40 and 20 kbp in size. The detailed restriction maps of the two plasmids were determined and many of the catabolic genes were located by subcloning and enzyme assay of recombinant plasmids in Escherichia coli and Pseudomonas hosts. The insert in pDK2 contained both operons of the catabolic pathway, the 'upper pathway' operon (xylCAB) and the meta pathway operon (xylDLEGF(I,J,K)H), and a region identified as having the function of the regulator gene xylS. The insert in pDKT2 contained only the upper pathway operon and the regulatory region. Within each of the three coding regions there was great similarity with the same regions on TOL plasmids pWW0 and pWW53-4 apparent (a) by the same order of the genes, (b) by a similar pattern of restriction sites and (c) by hybridization studies. However, the order and orientations of the three coding regions differed from those previously described for both pWW0 and pWW53-4. The significance of these findings to the evolution of TOL plasmids is discussed.  相似文献   

18.
Mutant derivatives of the TOL plasmid pWW0-161, containing Tn5 insertions in the xylS and xylR regulatory genes of the catabolic pathway, have been identified and characterized. The two genes are located together on a 1.5- to 3.0-kilobase segment of TOL, just downstream of genes of the enzymes of the meta-cleavage pathway. As predicted by a current model for regulation of the TOL catabolic pathway, benzyl alcohol dehydrogenase, a representative enzyme of the upper (hydrocarbon leads to carboxylic acid) pathway, was induced by m-methylbenzyl alcohol in xylS mutant bacteria but not in a xylR mutant, whereas catechol 2,3-oxygenase, a representative enzyme of the lower (meta-cleavage) pathway, was induced by m-toluate in a xylR mutant but not in the xylS mutants. Unexpectedly, however, catechol 2,3-oxygenase was not induced by m-methylbenzyl alcohol in xylS mutants but was induced by benzyl alcohol and benzoate. These results indicate that expression of the TOL plasmid-encoded catabolic pathway is regulated by at least three control elements, two of which (the products of the xylS and xylR genes) interact in the induction of the lower pathway by methylated hydrocarbons and alcohols and one of which responds only to nonmethylated substrates.  相似文献   

19.
Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024-5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号