首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Soil microbe plays key role in mediating terrestrial carbon cycles. It has been suggested that climate warming may affect the microbial community, which may accelerate carbon release and induce a positive feedback to soil climate warming. However, there is still controversy on how microbial community responds to experimental warming, especially in cold and drought environment. Methods We conducted an open top chambers (OTCs) experiment to explore the effects of warming on soil microbial community in an alpine steppe on Qinghai-Xizang Plateau. During the maximum of the growing seasons (August) of 2015 and 2016, we monitored the biomass and structure of soil microbial community in warming and control plots using phospholipid fatty acids (PLFA) as biomarkers. Important findings Short-Term warming treatment significantly increased the soil temperature by 1.6 and 1.6 C and decreased soil moisture by 3.4% and 2.4% (volume fraction) respectively, but did not alter either soil properties or normalized difference vegetation index (NDVI) during the growing season (from May to October) in 2015 and 2016. During the maximum of growing seasons (August) of 2015 and 2016, the magnitude of microbial biomass carbon (MBC) were 749.0 and 844.3 mg·kg-1, microbial biomass nitrogen (MBN) were 43.1 and 102.1 mg·kg-1, and the microbial biomass C:N ranged between 17.9 and 8.4. Moreover, all three showed no significant differences between warming and control treatments. The abundance of bacteria was the most in microbial community, while arbuscular mycorrhizal fungi was the least, and warming treatment did not alter the abundance of different microbial group and the microbial community structure. Nonetheless, our result revealed that warming-induced changes in MBC had significant positive correlation with changes in soil temperature and soil moisture. These patterns indicate that, microbial community in this alpine steppe may not respond substantially to future climate warming due to the limitation of soil drought. Therefore, estimation of microbial community response to climate change calls for consideration on the combined effect of warming and drought. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

2.
Aims There have been a large number of studies on the independent separate responses of fine roots to warming and nitrogen deposition, but with contradictory reporting. Fine root production plays a critical role in ecosystem carbon, nutrient and water cycling, yet how it responds to the interactive warming and nitrogen addition is not well understood. In the present study, we aimed to examine the interactive effects of soil warming and nitrogen addition on fine root growth of 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in subtropical China. Methods A mesocosm experiment, with a factorial design of soil warming (ambient, +5 °C) and nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1, ambient + 80 kg·hm-2·a-1), was carried out in the Chenda State-owned Forest Farm in Sanming City, Fujian Province, China. Fine root production (indexed by the number of fine roots emerged per tube of one year) was measured biweekly using minirhizotrons from March of 2014 to February of 2015. Important findings (1) The two-way ANOVA showed that soil warming had a significant effect on fine root production, while nitrogen addition and soil warming × nitrogen addition had no effect. (2) The three-way ANOVA (soil warming, nitrogen addition and diameter class) showed that soil warming, diameter class and soil warming × diameter class had significant effects on fine root production, especially for the number of fine roots in 0-1 mm diameter class that had been significantly increased by soil warming. Compared with the 1-2 mm roots, the 0-1 mm roots seemed more flexible. (3) Repeated measures of ANOVA (soil warming, nitrogen addition and season) showed that soil warming, season, soil warming × season, and soil warming × nitrogen addition × season had significant effects on fine root production. In spring, the number of fine roots was significantly increased both by soil warming and soil warming × season, while soil warming, nitrogen addition, soil warming × nitrogen addition significantly decreased fine root production in the summer. (4) Soil warming, soil layer, soil warming × soil layer had significant effects on fine root production. The number of in-growth fine roots was significantly increased by soil warming at the 20-30 cm depth only. It seemed that warming forced fine roots to grow deeper in the soil. In conclusion, soil warming significantly increased fine root production, but they had different responses and were dependent of different diameter classes, seasons and soil layers. Nitrogen addition had no effect on fine root production. Only in spring and summer, soil warming and nitrogen addition had significant interactive effects.  相似文献   

3.
Aims: It is important to study the effects of land use change and reduced precipitation on greenhouse gas fluxes (CO2, CH4 and N2O) of forest soils. Methods: The fluxes of CO2, CH4 and N2O and their responses to environmental factors of primary forest soil, secondary forest soil and artificial forest soil under a reduced precipitation regime were explored using the static chamber and gas chromatography methods during the period from January to December in 2014. Important findings: Results indicate that CH4 uptake of primary forest soil ((-44.43 ± 8.73) μg C·m-2·h-1) was significantly higher than that of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) and the artificial forest soil ((-10.52 ± 2.11) μg C·m-2·h-1). CH4 uptake of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) was significantly higher than that of the artificial forest ((-10.52 ± 2.11) μg C·m-2·h-1). CO2 emissions of the artificial forest soil ((106.53 ± 19.33) μg C·m-2·h-1) were significantly higher than that of the primary forest soil ((49.50 ± 8.16) μg C·m-2·h-1) and the secondary forest soil ((63.50 ± 5.35) μg C·m-2·h-1) (p < 0.01). N2O emissions of the secondary forest soil ((1.91 ± 1.22) ug N·m-2·h-1) were higher than that of the primary forest soil ((1.40 ± 0.28) μg N·m-2·h-1) and the artificial forest soil ((1.01 ± 0.86) μg N·m-2·h-1). Reduced precipitation (-50%) had a significant inhibitory effect on CH4 uptake of the artificial forest soil, while it enhanced CO2 emissions of the primary forest soil and the secondary forest soil. Reduced precipitation had a significant inhibitory effect on CO2 emissions of the artificial forest soil and N2O emissions of the secondary forest (p < 0.01). Reduced precipitation promotes N2O emissions of the primary forest soil and the artificial forest soil. CH4 uptake of the primary forest and the secondary forest soil increased significantly with the increase of soil temperature under natural and reduced precipitation. CO2 and N2O emission fluxes of the primary forest soil, secondary forest soil and artificial forest soil were positively correlated with soil temperature (p < 0.05). Soil moisture inhibited CH4 uptake of the secondary forest soil and the artificial forest soil (p < 0.05). CO2 emissions of the primary forest soil were significantly positively correlated with soil moisture (p < 0.05). N2O emissions of primary forest soil and secondary forest soil were significantly correlated with the nitrate nitrogen content (p < 0.05). It was implied that reduced precipitation and land use change would have significant effects on greenhouse gas emissions of subtropical forest soils.  相似文献   

4.
Aims Desert soils play an important role in the exchange of major greenhouse gas (GHG) between atmosphere and soil. However, many uncertainties existed in understanding of desert soil role, especially in efflux evaluation under a changing environment. Methods We conducted plot-based field study in center of the Gurbantünggüt Desert, Xinjiang, and applied six rates of simulated nitrogen (N) deposition on the plots, i.e. 0 (N0), 0.5 (N0.5), 1.0 (N1), 3.0 (N3), 6.0 (N6) and 24.0 (N24) g·m-2·a-1. The exchange rates of N2O, CH4 and CO2 during two growing seasons were measured for two years after N applications. Important findings The average efflux of two growing seasons from control plots (N0) were 4.8 μg·m-2·h-1, -30.5 μg·m-2·h-1 and 46.7 mg·m-2·h-1 for N2O, CH4 and CO2, respectively. The effluxes varied significantly among seasons. N0, N0.5 and N1 showed similar exchange of N2O in spring and summer, which was relatively higher than in autumn, while the rates of N2O in N6 and N24 were controled by time points of N applications. The uptake of CH4 was relatively higher in both spring and summer, and lower in autumn. Emission of CO2 changed minor from spring to summer, and greatly decreased in autumn in the first measured year. In the second year, the emission patterns were changed by rates of N added. N additions generally stimulated the emission of N2O, while the effects varied in different seasons and years. In addition, no obvious trends were found in the emission factor of N2O. The uptake of CH4 was not significantly affected by N additions. N additions did not change CO2 emissions in the first year, while high N significantly reduced the CO2 emissions in spring and summer of the second year, without affected in autumn. Structure equation model analysis on the factors suggested that N2O, CH4 and CO2 were dominantly affected by the N application rates, soil temperature or moisture and plant density, respectively. Over the growing seasons, both the net efflux and the global warming potential caused by N additions were small.  相似文献   

5.
Aims: Recent studies have shown that artificial addition of biochar is an effective way to mitigate atmospheric carbon dioxide concentrations. However, it is still unclear how biochar addition influences soil respiration in Phyllostachys edulis forests of subtropical China. Our objectives were to examine the effects of biochar addition on the dynamics of soil respiration, soil temperature, soil moisture, and the cumulative soil carbon emission, and to determine the relationships of soil respiration with soil temperature and moisture. Methods: We conducted a two-year biochar addition experiment in a subtropical P. edulis forest from 2014.05 to 2016.04. The study site is located in the Miaoshanwu Nature Reserve in Fuyang district of Hangzhou, Zhejiang Province, in southern China. The biochar addition treatments included: control (CK, no biochar addition), low rate of biochar addition (LB, 5 t·hm-2), medium rate of biochar addition (MB, 10 t·hm-2), and high rate of biochar addition (HB, 20 t·hm-2). Soil respiration was measured by using a LI-8100 soil CO2 efflux system. Important findings: Soil respiration was significantly reduced by biochar addition, and exhibited an apparent seasonal pattern, with the maximum occurring in June or July (except LB in one of the replicated stand) and the minimum in January or February. There were significant differences in soil respiration between the CK and the treatments. Annual mean soil respiration rate in the CK, LB, MB and HB were 3.32, 2.66, 3.04 and 3.24 μmol·m-2·s-1, respectively. Compared with CK, soil respiration rate was 2.33%-54.72% lower in the LB, 1.28%-44.21% lower in the MB, and 0.09%-39.22% lower in the HB. The soil moisture content was increased by 0.97%-75.58% in LB, 0.87%-48.18% in MB, and 0.68%-74.73% in HB, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature and a significant linear relationship with combination of soil temperature and moisture at the depth of 5 cm; no significant relationship was found between soil respiration and soil moisture alone. The temperature sensitivity (Q10) value was reduced in LB and HB. Annual accumulative soil carbon emission in the LB, MB and HB was reduced by 7.98%-35.09%, 1.48%-20.63%, and -4.71%-7.68%, respectively. Biochar addition significantly reduced soil carbon emission and soil temperature sensitivity, highlighting its role in mitigating climate change.  相似文献   

6.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg-1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, -AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg-1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg-1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

7.
An incubation method was used to investigate the nitrogen release characteristics from the residue of ten plant species which commonly grow in the northern part of the Loess Plateau. The effect of the residue on soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) was also determined. There were significant differences in the total N content and the C/N ratios among the different types of plant residue. The total N content of the residues ranged from 6.61 to 32.78 g kg?1. The C/N ratio of the residue ranged from 14 to 65. There was an immediate increase in soil N after alfalfa, erect milkvetch, and korshinsk peashrub residue was added to the soil. In contrast, soil N decreased after elm, sea buckthorn, and wild peach residue was added to the soil. The soil N content remained relatively low for 14–34 days and then increased. This indicated that N immobilization occurred during the early portion of the incubation period when elm, sea buckthorn and wild peach residue was added to the soil. Soil N levels were low during the entire incubation period when simon poplar, locust, Stipa bungeana, and old world bluestem residue were added to the soil. The addition of plant residue significantly increased SMBC and SMBN in all treatments. The SMBC and SMBN values were greatest in treatments containing plant residue with high total N content and low C/N ratios. The C/N ratios of korshinsk peashrub, sea buckthorn, and wild peach residues were similar, but the amount of N released from these residues and the effects of the residue on SMBC and SMBN in soil were significantly different. This indicates that not only the C/N ratio but also the chemical composition of the plant residue affected decomposition. It is important to consider C and N release characteristics from plant residue in order to adjust the C and N balance of soil when revegetating degraded ecosystems.  相似文献   

8.
An incubation method was used to investigate the nitrogen release characteristics from the residue of ten plant species which commonly grow in the northern part of the Loess Plateau. The effect of the residue on soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) was also determined. There were significant differences in the total N content and the C/N ratios among the different types of plant residue. The total N content of the residues ranged from 6.61 to 32.78 g kg?1. The C/N ratio of the residue ranged from 14 to 65. There was an immediate increase in soil N after alfalfa, erect milkvetch, and korshinsk peashrub residue was added to the soil. In contrast, soil N decreased after elm, sea buckthorn, and wild peach residue was added to the soil. The soil N content remained relatively low for 14–34 days and then increased. This indicated that N immobilization occurred during the early portion of the incubation period when elm, sea buckthorn and wild peach residue was added to the soil. Soil N levels were low during the entire incubation period when simon poplar, locust, Stipa bungeana, and old world bluestem residue were added to the soil. The addition of plant residue significantly increased SMBC and SMBN in all treatments. The SMBC and SMBN values were greatest in treatments containing plant residue with high total N content and low C/N ratios. The C/N ratios of korshinsk peashrub, sea buckthorn, and wild peach residues were similar, but the amount of N released from these residues and the effects of the residue on SMBC and SMBN in soil were significantly different. This indicates that not only the C/N ratio but also the chemical composition of the plant residue affected decomposition. It is important to consider C and N release characteristics from plant residue in order to adjust the C and N balance of soil when revegetating degraded ecosystems.  相似文献   

9.
Aims Our aim was to characterize the effects of nitrogen (N) addition on plant root standing crop, production, mortality and turnover in an alpine meadow on the Northwestern plateau of Sichuan Province, China. Methods A N addition experiment was conducted in an alpine meadow on the Northwestern plateau of Sichuan Province since 2012. Urea was applied at four levels: 0, 10, 20 and 30 g·m-2·a-1, referred to as CK, N10, N20 and N30. Root samples in surface (0-10 cm) and subsurface layers (10-20 cm) were observed using Minirhizotron from May 10th to Sept. 27th in 2015. The root standing crop, production, mortality and turnover rate were estimated using WinRHZIO Tron MF software. Repeated-measure ANOVA, one-way ANOVA and Pearson correlation were performed to analyze the effect of N addition on soil and root characteristics. Important findings N addition significantly increased soil available N content and decreased soil pH value, but did not alter soil total N and SOM contents under all treatments. N addition did not exhibit any significant effects on the mean root standing crop and cumulative root production in the 0-10 cm, but significantly reduced mean root standing crop and cumulative root production in 10-20 cm soil layer by 195.3 and 142.3 g·m-2 (N10), 235.8 and 212.1 g·m-2 (N20) and 198.0 and 204.4 g·m-2 (N30), respectively. The cumulative root mortality was significantly decreased by 206.1 g·m-2 in N10 treatment and root turnover rate was significantly increased with 17% for N30 treatment at the 0-10 cm soil depth, but the cumulative root mortality and root turnover rate was not significantly different at 10-20 cm soil depth. In addition, cumulative root production, mortality and turnover rate in 0-10 cm soil layer were significantly correlated with the soil available N content, whereas no significant associations were observed in 10-20 cm soil. Taken together, these results demonstrate that N addition alters the soil N availability and thus induces the root dynamics and changes in root distribution as well as C allocation in alpine meadow. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

10.
Aims This study aims to evaluate the impacts of future climate change on vegetation and soil carbon accumulation rate in China's forests. Methods The vegetation and soil carbon storage were predicted by the atmosphere-vegetation interaction model (AVIM2) based on B2 climate change scenario during the period of 1981 2040. This study focused on mature forests in China and the forested area maintained constant over the study period. The carbon accumulation rate in year t is defined as the carbon storage of year t minus that of year t 1. Important findings Under B2 climate change scenario, mean air temperature in China's forested area was projected to rise from 7.8 °C in 1981 to 9.0 °C in 2040. The total vegetation carbon storage was then estimated to increase from 8.56 Pg C in 1981 to 9.79 Pg C in 2040, meanwhile total vegetation carbon accumulation rate was estimated to fluctuate between 0.054 0.076 Pg C•a1, with the average of 0.022 Pg C•a1. The total soil carbon storage was estimated to increase from 30.2 Pg C in 1981 to 30.72 Pg C in 2040, and total soil carbon accumulation rate was estimated to vary in the range of 0.035 0.072 Pg C•a1, with the mean of 0.010 Pg C•a1. The response of vegetation and soil carbon accumulation rate to climate change had significant spatial difference in China although the two time series did not show significant trend over the study period. Our results also showed warming was not in favor of forest carbon accumulation, so in the northeastern and southeastern forested area, especially in the Changbai Mountain, with highest temperature increase in the future, the vegetation and soil carbon accumulation rate were estimated to decrease greatly. However, in the southern of southwestern forested area and other forested area, with relatively less temperature increase, the vegetation and soil carbon accumulation rate was estimated to increase in the future.  相似文献   

11.
Global temperature has been Increased by 0.6 ℃ over the past century and is predicted to Increase by 1.4-5.8 ℃ by the end of this century. It is unclear what impacts global warming will have on tallgrass species. In the present study, we examined leaf net photosynthetic rate (P.) and leaf respiration rate in darkness (Rd) of Aster erlcoldes (L.) Nesom, Ambrosia psllostachya DC., Helianthus mollis Lam., and Sorghastrum nutans (L.) Nash In response to experimental warming in a tallgrass prairie ecosystem of the Great Plains, USA, in the autumn (fall) of 2000 and through 2001. Warming has been Implemented with infrared heaters since 21 November 1999. The P. increased significantly In spring, decreased in early fall, and did not change in summer and late fall in the four species under warming compared with control. The Rd of the four species increased significantly until mid-summer and then did not change under warming. Measured temperature-response curves of P. showed that warming Increased the optimum temperature of P. (Topt) by 2.32 and 4.59 ℃ for H. mollis and S. nutans, respectively, in August, whereas there were no changes in May and September, and A. ericoldes and A. psllostachya also showed no changes in any of the 3 months. However, P. at optimum temperature (Popt) showed downregulation in September and no regulation in May and August for all four species. The temperature-response curves of Rd Illustrate that the temperature sensitivity of Rd, Q10, was lower in the warmed plots compared with the control plots, except for A. ericoides in August, whereas there were no changes In May and September for all four species. The results of the present study indicate that photosynthetic and respiratory acclimation varies with species and among seasons, occurring In the mid-growing season and not in the early and late growing seasons.  相似文献   

12.
Understanding soil carbon fractions and their responses to the global warming is important for improving soil carbon management of natural altitudinal forest ecosystem. In this study, the contents of soil total organic carbon (SOC), soil labile organic carbon (LOC), and microbial biomass carbon (MBC) in soil upper layers (0–20 cm) were measured along a natural altitudinal transect in the north slope of Changbai Mountain. The results showed that under natural conditions the contents of SOC and LOC were largest in Betula ermanii forest (altitude 1996 m), moderate in spruce-fir forest (altitude 1350 m), and smallest in Korean pine mixed broad-leaf tree forest (altitude 740 m). MBC contents in different forest ecosystems decreased in the order of Betula ermanii forest, Korean pine mixed broad-leaf tree forest, and dark coniferous forest. In addition, the responses of SOC, LOC, and MBC to soil warming were conducted by relocating intact soil cores from high- to low-elevation forests for one year. As expected, the soil core relocation caused significant increase in soil temperature but made no significant effect on soil moisture. After one year incubation, soil relocation significantly decreased SOC contents, whereas the contents of LOC, MBC, and the ratios of LOC to SOC and MBC to SOC increased.  相似文献   

13.
Understanding soil carbon fractions and their responses to the global warming is important for improving soil carbon management of natural altitudinal forest ecosystem. In this study, the contents of soil total organic carbon (SOC), soil labile organic carbon (LOC), and microbial biomass carbon (MBC) in soil upper layers (0–20 cm) were measured along a natural altitudinal transect in the north slope of Changbai Mountain. The results showed that under natural conditions the contents of SOC and LOC were largest in Betula ermanii forest (altitude 1996 m), moderate in spruce-fir forest (altitude 1350 m), and smallest in Korean pine mixed broad-leaf tree forest (altitude 740 m). MBC contents in different forest ecosystems decreased in the order of Betula ermanii forest, Korean pine mixed broad-leaf tree forest, and dark coniferous forest. In addition, the responses of SOC, LOC, and MBC to soil warming were conducted by relocating intact soil cores from high- to low-elevation forests for one year. As expected, the soil core relocation caused significant increase in soil temperature but made no significant effect on soil moisture. After one year incubation, soil relocation significantly decreased SOC contents, whereas the contents of LOC, MBC, and the ratios of LOC to SOC and MBC to SOC increased.  相似文献   

14.
Aims Soil exchangeable base cations (BCs) play important roles in keeping soil nutrient and buffering soil acidification, which may be disturbed by anthropogenic nitrogen (N) input. Considering relatively limited evidence from alkaline soils, this study was designed to explore the effects of N addition on soil exchangeable BCs in a typical alpine steppe on the Qinghai-Xizang Plateau. Methods From May 2013, eight levels of N addition (0, 1, 2, 4, 8, 16, 24, 32 g·m-2·a-1) in the form of NH4NO3 were added in the alpine steppe, where soil is alkaline. During the following three years (2014-2016), we collected soil samples in mid-August in each year. By measuring the concentrations of exchangeable BCs, we examined their changes along the N addition gradient. We also explored the relationships between BCs and other plant and soil properties. Important findings Continuous N addition resulted in significant loss of exchangeable BCs, especially Mg2+ in all three years and Na+ in two years. The concentrations of BCs were found to be negatively related to above-ground biomass and the concentration of soil inorganic N (p < 0.05). These results indicated that increase in N availability stimulated plant growth, which in turn led to more uptake of BCs by plants. Moreover, enhanced NO3- leaching resulted in the loss of BCs due to the charge balance in soil solution. In addition, increased NH4+ displaced BCs binding to soil surface and made them easy to be leached out of soils. Different from acid soils, soil acidification caused by N deposition in alkaline soils is mainly buffered by calcium carbonate, having less effect on BCs. Our results suggest that N addition results in the loss of exchangeable BCs in alkaline soils, leading to poor buffering capacity and decreased plant productivity over long time period, which needs to be considered during grassland management in the future. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

15.
Two plant species,Medicago truncatula (legume) and Avena sativa (non-legume),were grown in low-or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly,there was no interaction between CO2 and soil N on plant growth. In other words,the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil,the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage,indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil,the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10),suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.  相似文献   

16.
Effects of entomopathogenic fungus Verticillium lecanii on biological characteristics and life table of Serangiumjaponicum, a predator of whiteflies against five different conidial concentrations (1 × 10^4, 1 × 10^5, 1 × 10^6, 1 × 10^7, and 1 × 10^8 conidia/mL) were studied under laboratory conditions. The developmental periods for all immature stages (from eggs, 1 st, 2nd, 3rd, 4th instar nymph and pupae up to emergence) among the treatments were significantly different when compared to that of control, and the longest development period was observed as treated with 1 × 10^8 spore/mL. However, no significant difference on the percent survival of all immature stages was observed among the treatments and control. Also, there were no significantly different effects of V. lecanii on mean generation time, intrinsic rate, the finite rate of increase and longevity of S. japonicum among the treatments and control.  相似文献   

17.
Aims In the Xilin Gol Steppe, human-induced grassland degradation and land desertification are becoming increasingly severe. Critical evaluation of its impact on soil water and recharge rate is important for sustainable management of soil health and water resources in the region. Methods In order to determine the effect of different grazing history on dynamics of deep soil moisture contents and precipitation infiltration in the Xilin Gol Steppe, three sites with different grazing history (ungrazed since 1979 or UG79, ungrazed since 1999 or UG99, and continuously grazed or CG) were selected with two sampling spots for each site. The precipitation infiltration was estimated using the chloride mass balance method. Important findings The results showed that: 1) Average soil water content of 0–5 m was 7.1%, 6.9%, and 6.3% for UG79, UG99, and CG, respectively, with no significant difference. In the soil layer of 0–2 m, the soil water content of UG79 was 26.6% and 33.7% higher than that of UG99 and CG, respectively. The soil water content of UG79 was significantly higher than that of UG79 and UG99 (p < 0.05) with no significant difference between UG99 and CG. The soil water storage capacity of UG79 was 87.19 mm higher than UG99 and 82.52 mm higher than CG. In the deep layer of 2–5 m, no significant difference in the soil water content and the water storage among different grazing history. 2) The factors influencing soil water differed among different grazing treatments. The soil water content was mainly affected by the vegetation conditions and soil properties for the 0–2 m soil layer, but by the composition of soil particles for the 2–5 m soil layer. The effect of soil organic matter (SOM) content on soil water increased with time without grazing. Soil water content of the entire soil profile of UG79 was significantly correlated with soil texture and SOM content (p < 0.01). Soil water content of 0–2 m was significantly correlated with SOM content (p < 0.01), soil water content of 2–5 m was significantly correlated with the soil texture (p <0.01), but soil moisture content of UG99 and CG had no significant correlation with SOM content. 3) Annual recharge rate was 5.64, 3.54, and 2.45 mm·a –1 for UG79, UG99 and CG, respectively. The recharge rate increased by 44.5% and 130.2% for the site without grazing for 15 and 35 years, respectively. The recharge rate in the study area ranged from 1.95 to 7.61 mm·a –1 , accounting for only 0.55%–2.13% of the precipitation. In summary, ungrazing treatment can increase soil water retention, total water storage capacity, and recharge. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

18.
The current cropping system of excessive tillage and stubble removal in the northwestern Loess Plateau of China is clearly unsustainable. A better understanding of tillage and stubble management on surface soil structure is vital for the development of effective soil conservation practices in the long term. Changes in surface soil structure and hydraulic properties were measured after 4 years of stubble management (stubble retained vs. stubble removed) under contrasting tillage practices (no-tillage vs. conventional tillage) in a silt loam soil (Los Orthic Entisol) in Dingxi, Gansu, the northwestern Loess Plateau, China. Our results indicated that after 4 years small but significant changes in soil properties were observed amongst the different tillage and stubble treatments. Surface soil (0–5 cm) under no-tillage with stubble retention had the highest water stability of macroaggregates (>250 μm), soil organic carbon (SOC) and saturated hydraulic conductivity. Significant correlation was found between water stable macro-aggregates and soil organic carbon content, indicating the importance of the latter on soil structural stability. The improvement in soil structure and stability was confirmed by higher soil hydraulic conductivity measurements. Consistently higher Ksat was detected in the no tillage with stubble retained soil compared to other treatments. Therefore, no-tillage with stubble retention practice is an effective management technique for improving physical quality of this fragile soil in the long term.  相似文献   

19.
The current cropping system of excessive tillage and stubble removal in the northwestern Loess Plateau of China is clearly unsustainable. A better understanding of tillage and stubble management on surface soil structure is vital for the development of effective soil conservation practices in the long term. Changes in surface soil structure and hydraulic properties were measured after 4 years of stubble management (stubble retained vs. stubble removed) under contrasting tillage practices (no-tillage vs. conventional tillage) in a silt loam soil (Los Orthic Entisol) in Dingxi, Gansu, the northwestern Loess Plateau, China. Our results indicated that after 4 years small but significant changes in soil properties were observed amongst the different tillage and stubble treatments. Surface soil (0–5 cm) under no-tillage with stubble retention had the highest water stability of macroaggregates (>250 μm), soil organic carbon (SOC) and saturated hydraulic conductivity. Significant correlation was found between water stable macro-aggregates and soil organic carbon content, indicating the importance of the latter on soil structural stability. The improvement in soil structure and stability was confirmed by higher soil hydraulic conductivity measurements. Consistently higher Ksat was detected in the no tillage with stubble retained soil compared to other treatments. Therefore, no-tillage with stubble retention practice is an effective management technique for improving physical quality of this fragile soil in the long term.  相似文献   

20.
A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DCD (SRU2), and SRU1 mixed with calcium carbide CaC2 (SRU3) on urease activity, microbial biomass C and N, and nematode communities in an aquic brown soil during the maize growth period. The results demonstrated that the application of slow-release urea fertilizers inhibits soil urease activity and increases the soil NH4+-N content. Soil available N increment could promote its immobilization by microorganisms. Determination of soil microbial biomass N indicated that a combined application of coated urea and nitrification inhibitors increased the soil active N pool. The population of predators/omnivores indicated that treatment with SRU2 could provide enough soil NH4+-N to promote maize growth and increased the food resource for the soil fauna compared with the other treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号