首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims There have been a large number of studies on the independent separate responses of fine roots to warming and nitrogen deposition, but with contradictory reporting. Fine root production plays a critical role in ecosystem carbon, nutrient and water cycling, yet how it responds to the interactive warming and nitrogen addition is not well understood. In the present study, we aimed to examine the interactive effects of soil warming and nitrogen addition on fine root growth of 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in subtropical China. Methods A mesocosm experiment, with a factorial design of soil warming (ambient, +5 °C) and nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1, ambient + 80 kg·hm-2·a-1), was carried out in the Chenda State-owned Forest Farm in Sanming City, Fujian Province, China. Fine root production (indexed by the number of fine roots emerged per tube of one year) was measured biweekly using minirhizotrons from March of 2014 to February of 2015. Important findings (1) The two-way ANOVA showed that soil warming had a significant effect on fine root production, while nitrogen addition and soil warming × nitrogen addition had no effect. (2) The three-way ANOVA (soil warming, nitrogen addition and diameter class) showed that soil warming, diameter class and soil warming × diameter class had significant effects on fine root production, especially for the number of fine roots in 0-1 mm diameter class that had been significantly increased by soil warming. Compared with the 1-2 mm roots, the 0-1 mm roots seemed more flexible. (3) Repeated measures of ANOVA (soil warming, nitrogen addition and season) showed that soil warming, season, soil warming × season, and soil warming × nitrogen addition × season had significant effects on fine root production. In spring, the number of fine roots was significantly increased both by soil warming and soil warming × season, while soil warming, nitrogen addition, soil warming × nitrogen addition significantly decreased fine root production in the summer. (4) Soil warming, soil layer, soil warming × soil layer had significant effects on fine root production. The number of in-growth fine roots was significantly increased by soil warming at the 20-30 cm depth only. It seemed that warming forced fine roots to grow deeper in the soil. In conclusion, soil warming significantly increased fine root production, but they had different responses and were dependent of different diameter classes, seasons and soil layers. Nitrogen addition had no effect on fine root production. Only in spring and summer, soil warming and nitrogen addition had significant interactive effects.  相似文献   

2.
The rhizosheath, a layer of soil particles that adheres firmly to the root surface by a combination of root hairs and mucilage, may improve tolerance to drought stress. Setaria italica(L.) P. Beauv.(foxtail millet), a member of the Poaceae family, is an important food and fodder crop in arid regions and forms a larger rhizosheath under drought conditions. Rhizosheath formation under drought conditions has been studied, but the regulation of root hair growth and rhizosheath size in response to soil moisture remains unclear. To address this question, in this study we monitored root hair growth and rhizosheath development in response to a gradual decline in soil moisture. Here, we determined that a soil moisture level of 10%–14%(w/w)stimulated greater rhizosheath production compared to other soil moisture levels. Root hair density and length also increased at this soil moisture level, which was validated by measurement of the expression of root hair-related genes.These findings contribute to our understanding of rhizosheath formation in response to soil water stress.  相似文献   

3.
In order to have a basic knowledge of revegetation, one needs to deepen his understanding of the interactive effects of vegetation and soil. In this article, aboveground biomass, soil nutrients and moisture of 36 old-fields with different abandonment ages (from 2 to 45 years after abandonment), aboveground biomass of 4 typical old-fields, and growth characteristics of 7 predominant old-field species were measured. Changing pace, trend and relationship of community aboveground biomass and soil nutrition during the secondary succession were evaluated; effects of soil nutrition on community aboveground biomass were analyzed using multivariable analysis and pathway analysis, and effects of aboveground biomass on soil nutrition were further discussed. The results show that: (1) Soil nutrients, including organic matter, total nitrogen, total phosphorus, total potassium, nitrate nitrogen, ammonium nitrogen, active phosphorus and active potassium, have the same changing pace and trends as the aboveground biomass. In the process of secondary succession, both the soil nutrition and the community aboveground biomass decreased in the earlier abandonment stage of succession and then increased subsequently. (2) On the basis of the correlation of soil nutrients and abandonment ages, effects of vegetation on 0–20 cm organic matter, active phosphorus, 0–20 cm and 20–40 cm nitrate nitrogen nutrition are significant, while on the basis of the correlation of soil nutrition and aboveground biomass, no significant effects were observed. Hereinbefore, aboveground biomass accounts for only a part of vegetation-soil nutrition effects. The effects of biomass on organic matter, total nitrogen, total phosphorous, total potassium, nitrate nitrogen, active potassium and phosphorous are positive, whereas for ammonium nitrogen it is negative. (3) Abandonment ages, total nitrogen, total potassium, active potassium and soil moisture fluctuation have direct positive effects on the aboveground biomass of old-field communities; abandonment and soil moisture fluctuation have lager effects. Each ingredient of soil nutrition has relatively small effect, among which total nitrogen has larger effects than total and active potassium. The changes in aboveground biomass of old-field communities during succession are caused mainly by the changes in coverage and ecological characteristics of community species (the relatively larger direct effects of abandonment ages), and secondly by the soil moisture fluctuation (the relative smaller indirect effect of abandonment ages through soil moisture). (4) As a dependent variable, belowground biomass approaches power function of soil depth and declines in deeper layer. The root/shoot ratio of communities tends to increase in later succession stages, which also has an increasing tendency. These may influence the accumulation of biomass and decomposition of organic matter, and the vegetation-soil effects may be different.  相似文献   

4.
Du F  Liang Z S  Xu X X  Shan L  Zhang X C 《农业工程》2007,27(5):1673-1683
In order to have a basic knowledge of revegetation, one needs to deepen his understanding of the interactive effects of vegetation and soil. In this article, aboveground biomass, soil nutrients and moisture of 36 old-fields with different abandonment ages (from 2 to 45 years after abandonment), aboveground biomass of 4 typical old-fields, and growth characteristics of 7 predominant old-field species were measured. Changing pace, trend and relationship of community aboveground biomass and soil nutrition during the secondary succession were evaluated; effects of soil nutrition on community aboveground biomass were analyzed using multivariable analysis and pathway analysis, and effects of aboveground biomass on soil nutrition were further discussed. The results show that: (1) Soil nutrients, including organic matter, total nitrogen, total phosphorus, total potassium, nitrate nitrogen, ammonium nitrogen, active phosphorus and active potassium, have the same changing pace and trends as the aboveground biomass. In the process of secondary succession, both the soil nutrition and the community aboveground biomass decreased in the earlier abandonment stage of succession and then increased subsequently. (2) On the basis of the correlation of soil nutrients and abandonment ages, effects of vegetation on 0–20 cm organic matter, active phosphorus, 0–20 cm and 20–40 cm nitrate nitrogen nutrition are significant, while on the basis of the correlation of soil nutrition and aboveground biomass, no significant effects were observed. Hereinbefore, aboveground biomass accounts for only a part of vegetation-soil nutrition effects. The effects of biomass on organic matter, total nitrogen, total phosphorous, total potassium, nitrate nitrogen, active potassium and phosphorous are positive, whereas for ammonium nitrogen it is negative. (3) Abandonment ages, total nitrogen, total potassium, active potassium and soil moisture fluctuation have direct positive effects on the aboveground biomass of old-field communities; abandonment and soil moisture fluctuation have lager effects. Each ingredient of soil nutrition has relatively small effect, among which total nitrogen has larger effects than total and active potassium. The changes in aboveground biomass of old-field communities during succession are caused mainly by the changes in coverage and ecological characteristics of community species (the relatively larger direct effects of abandonment ages), and secondly by the soil moisture fluctuation (the relative smaller indirect effect of abandonment ages through soil moisture). (4) As a dependent variable, belowground biomass approaches power function of soil depth and declines in deeper layer. The root/shoot ratio of communities tends to increase in later succession stages, which also has an increasing tendency. These may influence the accumulation of biomass and decomposition of organic matter, and the vegetation-soil effects may be different.  相似文献   

5.
Aims Soil microbe plays key role in mediating terrestrial carbon cycles. It has been suggested that climate warming may affect the microbial community, which may accelerate carbon release and induce a positive feedback to soil climate warming. However, there is still controversy on how microbial community responds to experimental warming, especially in cold and drought environment. Methods We conducted an open top chambers (OTCs) experiment to explore the effects of warming on soil microbial community in an alpine steppe on Qinghai-Xizang Plateau. During the maximum of the growing seasons (August) of 2015 and 2016, we monitored the biomass and structure of soil microbial community in warming and control plots using phospholipid fatty acids (PLFA) as biomarkers. Important findings Short-Term warming treatment significantly increased the soil temperature by 1.6 and 1.6 C and decreased soil moisture by 3.4% and 2.4% (volume fraction) respectively, but did not alter either soil properties or normalized difference vegetation index (NDVI) during the growing season (from May to October) in 2015 and 2016. During the maximum of growing seasons (August) of 2015 and 2016, the magnitude of microbial biomass carbon (MBC) were 749.0 and 844.3 mg·kg-1, microbial biomass nitrogen (MBN) were 43.1 and 102.1 mg·kg-1, and the microbial biomass C:N ranged between 17.9 and 8.4. Moreover, all three showed no significant differences between warming and control treatments. The abundance of bacteria was the most in microbial community, while arbuscular mycorrhizal fungi was the least, and warming treatment did not alter the abundance of different microbial group and the microbial community structure. Nonetheless, our result revealed that warming-induced changes in MBC had significant positive correlation with changes in soil temperature and soil moisture. These patterns indicate that, microbial community in this alpine steppe may not respond substantially to future climate warming due to the limitation of soil drought. Therefore, estimation of microbial community response to climate change calls for consideration on the combined effect of warming and drought. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

6.
This work evaluates the phenotypic response of the model grass(Brachypodium distachyon(L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots.Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose–response curve. Shoot biovolume and biomass, root length and biomass,and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight(R2 0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response to nitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determination of genomic regions associated with superior nutrient use efficiency.  相似文献   

7.
Most golf course green have been constructed with pure sand or sand-based rootzone mixes. As we know, high sand content provides rapid drainage despite sand’s inefficiency in retaining moisture. However, drainage capability and water retention are both essential elements to the golf course green, and the addition of peat could increase the soil moisture retention, therefore, the research on the drainage capability and water retention of the sandy golf green has become more and more important these years. In this study, extreme vertex design was applied which is one of the mixture experiment designs widely used in mixture experiments, the study investigated the effects of the thirteen different rootzone soil mixtures using middle-coarse, fine sand, very fine sand plus silt and clay as well as peat as the materials under three kinds of golf green profile (1-layer profile, 2-layer profile, 3-layer profile) conditions on the water retention of green rootzone. Through the qualitative, quantitative and optimization analysis of water retention capability of the sandy golf green, evidence a basis for choice of green profiles and rootzone matrix could be provided. And the significantly correlative regression model was established between the moisture retention and components of rootzone soil mixture. In addition, the order of factor contribution ratio, effect of single and double factor and optimization of the model were analyzed in detail. The results were as follows: both green profile and soil mixture, which had interaction of each other, had significant effects on soil moisture retention. Additional attributes include high porosity and greater water holding capacity than sand, and the higher content of peat, fine sand plus silt and clay, the better water retention. The mixtures had much higher water content in 1-layer profile than that in the other two profiles. There was significantly higher water content in 2-layer profile for pure sand mixtures (A–E) and low peat mixture (F) than that in 3-layer profile, while there was no higher water content for other 7 high peat mixtures (G–M) (>5%) in 2-layer than that in 3-layer profiles. The significance of key factors in rootzone soil mixture on moisture retention were: very fine sand plus silt and clay > peat > middle-coarse > fine sand. According to the moisture retention 15–25% specification of USGA (United States Golf Association), the optimal soil mixture in 1-layer profile was: middle-coarse 71.4–73.5%; fine sand 17.8–21.5%; very fine sand plus silt and clay 6.8–8.4%; peat 0–1%. The optimal soil mixture in 2-layer profile was: middle-coarse 65.0–73.4%; fine sand 17.8–20.5%; very fine sand plus silt and clay 7.5–8.9%; peat 0.2–6.3%. The optimal soil mixture in 3-layer profile was: middle-coarse 62.3– 73.9%; fine sand 17.7–21.4%; very fine sand plus silt and clay 7.3–10.7%; peat 0–6.3%. These optimal recipes took through the limitation of previous research, which were practically important to golf green soil selection and profile design. Thus, both proportion and interaction should be considered when we choose the soil mixture.  相似文献   

8.
Above- and belowground biomasses of grasslands are important parameters for characterizing re- gional and global carbon cycles in grassland ecosystems. Compared with the relatively detailed in- formation for aboveground biomass (AGB), belowground biomass (BGB) is poorly reported at the re- gional scales. The present study, based on a total of 113 sampling sites in temperate grassland of the Inner Mongolia, investigated regional distribution patterns of AGB, BGB, vertical distribution of roots, and their relationships with environmental factors. AGB and BGB increased from the southwest to the northeast of the study region. The largest biomass occurred in meadow steppe, with mean AGB and BGB of 196.7 and 1385.2 g/m2, respectively; while the lowest biomass occurred in desert steppe, with an AGB of 56.6 g/m2 and a BGB of 301.0 g/m2. In addition, about 47% of root biomass was distributed in the top 10 cm soil. Further statistical analysis indicated that precipitation was the primary determinant factor in shaping these distribution patterns. Vertical distribution of roots was significantly affected by precipitation, while the effects of soil texture and grassland types were weak.  相似文献   

9.
Aims In the Xilin Gol Steppe, human-induced grassland degradation and land desertification are becoming increasingly severe. Critical evaluation of its impact on soil water and recharge rate is important for sustainable management of soil health and water resources in the region. Methods In order to determine the effect of different grazing history on dynamics of deep soil moisture contents and precipitation infiltration in the Xilin Gol Steppe, three sites with different grazing history (ungrazed since 1979 or UG79, ungrazed since 1999 or UG99, and continuously grazed or CG) were selected with two sampling spots for each site. The precipitation infiltration was estimated using the chloride mass balance method. Important findings The results showed that: 1) Average soil water content of 0–5 m was 7.1%, 6.9%, and 6.3% for UG79, UG99, and CG, respectively, with no significant difference. In the soil layer of 0–2 m, the soil water content of UG79 was 26.6% and 33.7% higher than that of UG99 and CG, respectively. The soil water content of UG79 was significantly higher than that of UG79 and UG99 (p < 0.05) with no significant difference between UG99 and CG. The soil water storage capacity of UG79 was 87.19 mm higher than UG99 and 82.52 mm higher than CG. In the deep layer of 2–5 m, no significant difference in the soil water content and the water storage among different grazing history. 2) The factors influencing soil water differed among different grazing treatments. The soil water content was mainly affected by the vegetation conditions and soil properties for the 0–2 m soil layer, but by the composition of soil particles for the 2–5 m soil layer. The effect of soil organic matter (SOM) content on soil water increased with time without grazing. Soil water content of the entire soil profile of UG79 was significantly correlated with soil texture and SOM content (p < 0.01). Soil water content of 0–2 m was significantly correlated with SOM content (p < 0.01), soil water content of 2–5 m was significantly correlated with the soil texture (p <0.01), but soil moisture content of UG99 and CG had no significant correlation with SOM content. 3) Annual recharge rate was 5.64, 3.54, and 2.45 mm·a –1 for UG79, UG99 and CG, respectively. The recharge rate increased by 44.5% and 130.2% for the site without grazing for 15 and 35 years, respectively. The recharge rate in the study area ranged from 1.95 to 7.61 mm·a –1 , accounting for only 0.55%–2.13% of the precipitation. In summary, ungrazing treatment can increase soil water retention, total water storage capacity, and recharge. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

10.
This work evaluates the phenotypic response of the model grass (Brachypodium distacbyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R2 〉 0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response tonitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determina- tion of genomic regions associated with superior nutrient use efficiency.  相似文献   

11.
It is well known that the earthworm's activities can increase the availability of soil nutrients, improve soil structure, and enhance the biomass of plants in uncontaminated soil. Recently, many researchers found that some metal-tolerant earthworms can survive and even change the fractional distribution of heavy metals in contaminated soil. Furthermore, it has been revealed that earthworms are able to increase metal availability, and therefore, accumulate more metals in plants through their burrowing and casting activity. It is clear that the influence of soil animals is an important factor for phyto-remedation that must be taken into account. ~In this article, the authors studied some effects of addition of earthworms (Metaphire guillelmi), corn straw, and in combinations of earthworms and corn straw on the growth and Cu uptake by ryegrass in Cu contaminated pot soils. The experiment consisted of four levels of Cu addition (0, 100, 200, 400 mg·kg?1) and four treatments. The treatments were 1. control (CK); 2.straw mulching only (M); 3. earthworm additions to soil only (E); and 4.straw mulching plus earthworm additions (ME). Each treatment had three replicates. 10 seeds of ryegrass (Lolium multiflorum) were sowed in each pot and harvested after 30 days. After 30 days of incubation, all earthworms were found to be alive and the pot soils were burrowed through by earthworms. Results showed that the biomass of earthworm declined with the increase of the dosage of Cu additions. The biomass of earthworm increased significantly in treatment 4 (ME) as compared with treatment 3 (E). Not only the earthworms could get more food from the straw, but also could counteract some negative effects of Cu on the earthworms. The rates of straw decomposition in ME treatment increased by about 58.11% ?77.32%. The earthworm activities increased root biomass of ryegrass significantly, but did not show the effect on plant root growth. On the contrary, straw enhanced roots biomass significantly instead of shoots biomass. It was also found that the concentration of Cu in the plant shoot and the plant root, as well as plant Cu uptake were enhanced by earthworm's activities and straw mulching. The increased amount by straw mulching was lower than that of earthworms (E). The treatment of the earthworm–straw mulching combinations enhanced plant Cu concentration, and the amount increased by it was lower than that of the earthworm treatment (E) but higher than that of straw mulching treatment (M). The accumulation factors of copper in the shoots of ryegrass were increased by 31.22% ?121.07%, 2.12% ?61.28% and 25.56% ?132.64%, respectively, in treatment 3(E), 2(M), and 4(ME), respectively. In conclusion, the earthworm activities, straw-mulching and their interactions may have potential roles in elevating phyto-extraction efficiency in low to medium level Cu contaminated soil.  相似文献   

12.
Wang D D  Li H X  Hu F  Wang X 《农业工程》2007,27(4):1292-1298
It is well known that the earthworm's activities can increase the availability of soil nutrients, improve soil structure, and enhance the biomass of plants in uncontaminated soil. Recently, many researchers found that some metal-tolerant earthworms can survive and even change the fractional distribution of heavy metals in contaminated soil. Furthermore, it has been revealed that earthworms are able to increase metal availability, and therefore, accumulate more metals in plants through their burrowing and casting activity. It is clear that the influence of soil animals is an important factor for phyto-remedation that must be taken into account. ~In this article, the authors studied some effects of addition of earthworms (Metaphire guillelmi), corn straw, and in combinations of earthworms and corn straw on the growth and Cu uptake by ryegrass in Cu contaminated pot soils. The experiment consisted of four levels of Cu addition (0, 100, 200, 400 mg·kg?1) and four treatments. The treatments were 1. control (CK); 2.straw mulching only (M); 3. earthworm additions to soil only (E); and 4.straw mulching plus earthworm additions (ME). Each treatment had three replicates. 10 seeds of ryegrass (Lolium multiflorum) were sowed in each pot and harvested after 30 days. After 30 days of incubation, all earthworms were found to be alive and the pot soils were burrowed through by earthworms. Results showed that the biomass of earthworm declined with the increase of the dosage of Cu additions. The biomass of earthworm increased significantly in treatment 4 (ME) as compared with treatment 3 (E). Not only the earthworms could get more food from the straw, but also could counteract some negative effects of Cu on the earthworms. The rates of straw decomposition in ME treatment increased by about 58.11% ?77.32%. The earthworm activities increased root biomass of ryegrass significantly, but did not show the effect on plant root growth. On the contrary, straw enhanced roots biomass significantly instead of shoots biomass. It was also found that the concentration of Cu in the plant shoot and the plant root, as well as plant Cu uptake were enhanced by earthworm's activities and straw mulching. The increased amount by straw mulching was lower than that of earthworms (E). The treatment of the earthworm–straw mulching combinations enhanced plant Cu concentration, and the amount increased by it was lower than that of the earthworm treatment (E) but higher than that of straw mulching treatment (M). The accumulation factors of copper in the shoots of ryegrass were increased by 31.22% ?121.07%, 2.12% ?61.28% and 25.56% ?132.64%, respectively, in treatment 3(E), 2(M), and 4(ME), respectively. In conclusion, the earthworm activities, straw-mulching and their interactions may have potential roles in elevating phyto-extraction efficiency in low to medium level Cu contaminated soil.  相似文献   

13.
Aims This study aims to evaluate the impacts of future climate change on vegetation and soil carbon accumulation rate in China's forests. Methods The vegetation and soil carbon storage were predicted by the atmosphere-vegetation interaction model (AVIM2) based on B2 climate change scenario during the period of 1981 2040. This study focused on mature forests in China and the forested area maintained constant over the study period. The carbon accumulation rate in year t is defined as the carbon storage of year t minus that of year t 1. Important findings Under B2 climate change scenario, mean air temperature in China's forested area was projected to rise from 7.8 °C in 1981 to 9.0 °C in 2040. The total vegetation carbon storage was then estimated to increase from 8.56 Pg C in 1981 to 9.79 Pg C in 2040, meanwhile total vegetation carbon accumulation rate was estimated to fluctuate between 0.054 0.076 Pg C•a1, with the average of 0.022 Pg C•a1. The total soil carbon storage was estimated to increase from 30.2 Pg C in 1981 to 30.72 Pg C in 2040, and total soil carbon accumulation rate was estimated to vary in the range of 0.035 0.072 Pg C•a1, with the mean of 0.010 Pg C•a1. The response of vegetation and soil carbon accumulation rate to climate change had significant spatial difference in China although the two time series did not show significant trend over the study period. Our results also showed warming was not in favor of forest carbon accumulation, so in the northeastern and southeastern forested area, especially in the Changbai Mountain, with highest temperature increase in the future, the vegetation and soil carbon accumulation rate were estimated to decrease greatly. However, in the southern of southwestern forested area and other forested area, with relatively less temperature increase, the vegetation and soil carbon accumulation rate was estimated to increase in the future.  相似文献   

14.
Permafrost, covering approximately 25% of the land area in the Northern Hemisphere, is one of the key components of terrestrial ecosystem in cold regions. As a product of cold climate, permafrost is extremely sensitive to climate change. Climate warming over past decades has caused degradation in permafrost widely and quickly. Permafrost degradation has the potential to significantly change soil moisture content, alter soil nutrients availability and influence on species composition. In lowland ecosystems the loss of ice-rich permafrost has caused the conversion of terrestrial ecosystem to aquatic ecosystem or wetland. In upland ecosystems permafrost thaw has resulted in replacement of hygrophilous community by xeromorphic community or shrub. Permafrost degradation resulting from climate warming may dramatically change the productivity and carbon dynamics of alpine ecosystems. This paper reviewed the effects of permafrost degradation on ecosystem structure and function. At the same time, we put forward critical questions about the effects of permafrost degradation on ecosystems on Qinghai–Tibetan Plateau, included: (1) carry out research about the effects of permafrost degradation on grassland ecosystem and the response of alpine ecosystem to global change; (2) construct long-term and located field observations and research system, based on which predict ecosystem dynamic in permafrost degradation; (3) pay extensive attention to the dynamic of greenhouse gas in permafrost region on Qinghai–Tibetan Plateau and the feedback of greenhouse gas to climate change; (4) quantitative study on the change of water-heat transport in permafrost degradation and the effects of soil moisture and heat change on vegetation growth.  相似文献   

15.
Permafrost, covering approximately 25% of the land area in the Northern Hemisphere, is one of the key components of terrestrial ecosystem in cold regions. As a product of cold climate, permafrost is extremely sensitive to climate change. Climate warming over past decades has caused degradation in permafrost widely and quickly. Permafrost degradation has the potential to significantly change soil moisture content, alter soil nutrients availability and influence on species composition. In lowland ecosystems the loss of ice-rich permafrost has caused the conversion of terrestrial ecosystem to aquatic ecosystem or wetland. In upland ecosystems permafrost thaw has resulted in replacement of hygrophilous community by xeromorphic community or shrub. Permafrost degradation resulting from climate warming may dramatically change the productivity and carbon dynamics of alpine ecosystems. This paper reviewed the effects of permafrost degradation on ecosystem structure and function. At the same time, we put forward critical questions about the effects of permafrost degradation on ecosystems on Qinghai–Tibetan Plateau, included: (1) carry out research about the effects of permafrost degradation on grassland ecosystem and the response of alpine ecosystem to global change; (2) construct long-term and located field observations and research system, based on which predict ecosystem dynamic in permafrost degradation; (3) pay extensive attention to the dynamic of greenhouse gas in permafrost region on Qinghai–Tibetan Plateau and the feedback of greenhouse gas to climate change; (4) quantitative study on the change of water-heat transport in permafrost degradation and the effects of soil moisture and heat change on vegetation growth.  相似文献   

16.
Two plant species,Medicago truncatula (legume) and Avena sativa (non-legume),were grown in low-or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly,there was no interaction between CO2 and soil N on plant growth. In other words,the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil,the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage,indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil,the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10),suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.  相似文献   

17.
A comparative study of the efficiency of contaminant removal between five emergent plant species and between vegetated and unvegetated wetlands was conducted in small-scale (2.0 m×1.0 m×0.7 m, lengthxwidthxdepth) constructed wetlands for domestic wastewater treatment in order to evaluate the decontaminated effects of different wetland plants. There was generally a significant difference in the removal of total nitrogen (TN) and total phosphorus (TP), but no significant difference in the removal of organic matter between vegetated and unvegetated wetlands. Wetlands planted with Canna indica Linn., Pennisetum purpureum Schum., and Phragmites communis Trin. had generally higher removal rates for TN and TP than wetlands planted with other species. Plant growth and fine root (root diameter ≤ 3 mm) biomass were related to removal efficiency. Fine root biomass rather than the mass of the entire root system played an important role in wastewater treatment. Removal efficiency varied with season and plant growth. Wetlands vegetated by P. purpureum significantly outperformed wetlands with other plants in May and June, whereas wetlands vegetated by P. communis and C. indica demonstrated higher removal efficiency from August to December. These findings suggest that abundance of fine roots is an important factor to consider in selecting for highly effective wetland plants. It also suggested that a plant community consisting of multiple plant species with different seasonal growth patterns and root characteristics may be able to enhance wetland performance.  相似文献   

18.
An ecosystem process model, BIOME-BGC, was used to explore the sensitivity of net primary productivity (NPP) of an oak (Quercus liaotungensis Koidz) forest ecosystem in Beijing area to global climate changes caused by increasing atmospheric CO2 concentrations. Firstly we tested the model, and validated the modeled outputs using observational data; the outputs of BIOME-BGC model were consistent with observed soil water content and annual NPP. Secondly the potential impacts of climate change on the oak forest ecosystem were predicted with BIOME-BGC model. We found that the simulated NPP was much more sensitive to a 20% precipitation increase or a doubling of atmospheric CO2 from 355 to 710 祄ol/mol than to a 2 ℃ temperature increase. Our results also indicated that the effects of elevated CO2 and climate change on the response of NPP were not interactive.  相似文献   

19.
Soil Anti-Scouribility Enhanced by Plant Roots   总被引:11,自引:0,他引:11  
The magnitude of soil anti-scouribility depends on the physical condition of the soil. Plant roots can greatly enhance soil stability and anti-erodibility. A scouring experiment of undisturbed soil was conducted to investigate the effects of roots on soil anti-scouribility and its distribution in the soil profile. At the end of each erosion test, plant roots were collected from soil samples and root surface area was calculated by means of a computer image analysis system (CIAS). Root surface area density (RSAD), the surface area of the roots per unit of soil volume, was related to soil anti-scouribility. More than 83% of root surface area was concentrated in the 0-30 cm soil layer. Soil anti-scouribility increased with an increase in RSAD and the value of intensified soil anti-scouribility (ΔAS) can be expressed by exponential equations, depending on the plant species. These equations were ΔAS=9.578 6 RSAD^0.8321 (R^2=0.951) for afforested Pinus tabulaeformis Carr.ΔAS=7.8087 RSAD^0.7894(R^2=0.974) for afforested Robinia pseudoacacia L., and ΔAS=9.256 6 RSAD^0.8707(R^2=0.899) for Bothriochloa ischemum L.  相似文献   

20.
Understanding soil carbon fractions and their responses to the global warming is important for improving soil carbon management of natural altitudinal forest ecosystem. In this study, the contents of soil total organic carbon (SOC), soil labile organic carbon (LOC), and microbial biomass carbon (MBC) in soil upper layers (0–20 cm) were measured along a natural altitudinal transect in the north slope of Changbai Mountain. The results showed that under natural conditions the contents of SOC and LOC were largest in Betula ermanii forest (altitude 1996 m), moderate in spruce-fir forest (altitude 1350 m), and smallest in Korean pine mixed broad-leaf tree forest (altitude 740 m). MBC contents in different forest ecosystems decreased in the order of Betula ermanii forest, Korean pine mixed broad-leaf tree forest, and dark coniferous forest. In addition, the responses of SOC, LOC, and MBC to soil warming were conducted by relocating intact soil cores from high- to low-elevation forests for one year. As expected, the soil core relocation caused significant increase in soil temperature but made no significant effect on soil moisture. After one year incubation, soil relocation significantly decreased SOC contents, whereas the contents of LOC, MBC, and the ratios of LOC to SOC and MBC to SOC increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号