首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims This study was conducted to determine the responses of nutrients in plants and rhizospheric soils to climate in alpine-cold desert on the Qinghai-Xizang Plateau. Methods Tissue samples for two dominant plant species, Hippophae rhamnoides subsp. sinensis and Artemisia desertorum, and associated rhizospheric soil samples were collected from sites representing semi-Arid and sub-humid climates in the alpine-cold desert on the Qinghai-Xizang Plateau. Measurements were made on the contents of carbon, nitrogen and phosphorus in roots and shoots, as well as on organic carbon, total nitrogen, total phosphate, ammonium nitrogen, nitrate nitrogen and available phosphate in rhizospheric soils in the 0-10 cm and 10-20 cm layer. The relationship between nutrients in plant tissues and rhizospheric soils and the influencing factors were analyzed. Important findings There were significant differences between the semi-Arid and the sub-humid sites in tissue nutrients and rhizospheric soil nutrients for the two specie. Specifically, the contents of carbon, nitrogen, phosphorus in plant tissues differed significantly between the semi-Arid and the sub-humid sites. Soil organic carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen and available phosphate for the rhizosphere of A. desertorum were significantly higher on site under sub-humid climate than that under semi-Arid climate; whereas the trend was reversed for the rhizosphere of H. rhamnoides subsp. sinensis. We found significant relationships between the tissue nutrients and soil nutrients, and significantly different plant nutrient ratios between the two species. There were negative correlations between tissues and rhizosheric soils in N:P ratio for A. desertorum and C:N ratio for H. rhamnoides subsp. sinensis under different climates. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

2.
Aims Alpine shrub-meadows and steppe-meadows are the two dominant vegetation types on the Qinghai-Xizang Plateau, and plays an important role in regional carbon cycling. However, little is known about the temporal- spatial patterns and drivers of CO2 fluxes in these two ecosystem types. Methods Based on five years of consecutive eddy covariance measurements (2004-2008) in an eastern alpine shrub-meadow at Haibei and a hinterland alpine steppe-meadow at Damxung, we investigated the seasonal and annual variation of net ecosystem productivity (NEP) and its components, i.e. gross primary productivity (GPP) and ecosystem respiration (Re). Important findings The CO2 fluxes (NEP, GPP and Re) were larger in the shrub-meadow than in the steppe-meadow during the study period. The shrub-meadow functioned as a carbon sink through the five years, with the mean annual NEP of 70 g C·m-2·a-1. However, the steppe-meadow acted as a carbon neutral, with mean annual NEP of -5 g C·m-2·a-1. The CO2 fluxes of steppe-meadow exhibited large variability due to the inter-Annual and seasonal variations in precipitation, ranging from a carbon sink (54 g C·m-2·a-1) in 2008 to a carbon source (-88 g C·m-2·a-1) in 2006. The differences in carbon budget between the two alpine ecosystems were firstly attributed to the discrepancy of normalized difference vegetation index (NDVI) because NDVI was the direct factor regulating the seasonal and inter-Annual NEP. Secondly, the shrub-meadow had higher carbon use efficiency (CUE), which was substantially determined by annual precipitation (PPT) and NDVI. Our results also indicated that the environmental drivers of CO2 fluxes were also different between these two alpine ecosystems. The structure equation model analyses showed that air temperature (Ta) determined the seasonal variations of CO2 fluxes in the shrub-meadow, with NEP and GPP being positively correlated with Ta. By contrast, the seasonal CO22 fluxes in the steppe-meadow were primarily co-regulated by soil water content (SWC) and Ta, and increased with the increase of SWC and Ta. In addition, the changes of Re during the growing season in two ecosystems were directly affected by GPP and soil temperature at 5 cm depth (Ts), while Re during non-growing season were determined by Ts. These results demonstrate that the synergy of soil water and temperature played crucial roles in determining NEP and GPP of the two alpine meadows on the Qinghai-Xizang Plateau. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

3.
Aims Our objective was to explore the vegetation carbon storages and their variations in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau that includes Qinghai Province and Xizang Autonomous Region. Methods Based on forest resource inventory data and field sampling, this paper studied the carbon storage, its sequestration rate, and the potentials in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau. Important findings The vegetation carbon storage in the broad-leaved forest accounted for 310.70 Tg in 2011, with the highest value in the broad-leaved mixed forest and the lowest in Populus forest among the six broad-leaved forests that include Quercus, Betula, Populus, other hard broad-leaved species, other soft broad-leaved species, and the broadleaved mixed forest. The carbon density of the broad-leaved forest was 89.04 Mg•hm2, with the highest value in other hard broad-leaved species forest and the lowest in other soft broad-leaved species forest. The carbon storage and carbon density in different layers of the forests followed a sequence of overstory layer > understory layer > litter layer > grass layer > dead wood layer, which all increased with forest age. In addition, the carbon storage of broad-leaved forest increased from 304.26 Tg in 2001 to 310.70 Tg in 2011. The mean annual carbon sequestration and its rate were 0.64 Tg•a1 and 0.19 Mg•hm2•a1, respectively. The maximum and minimum of the carbon sequestration rate were respectively found in other soft broad-leaved species forest and other hard broad-leaved species forest, with the highest value in the mature forest and the lowest in the young forest. Moreover, the carbon sequestration potential in the tree layer of broad-leaved forest reached 19.09 Mg•hm2 in 2011, with the highest value found in Quercus forest and the lowest in Betula forest. The carbon storage increased gradually during three inventory periods, indicating that the broad-leaved forest was well protected to maintain a healthy growth by the forest protection project of Qinghai Province and Xizang Autonomous Region.  相似文献   

4.
Aims: Xinjiang is located in the hinterland of the Eurasian arid areas, with grasslands widely distributed. Grasslands in Xinjiang provide significant economic and ecological benefits. However, research on evapotranspiration (ET) and water use efficiency (WUE) of the grasslands is still relatively weak. This study aimed to explore the spatio-temporal characteristics on ET and WUE in the grasslands of Xinjiang in the context of climate change. Methods: The Biome-BGC model was used to determine the spatio-temporal characteristics of ET and WUE of the grasslands over the period 1979-2012 across different seasons, areas and grassland types in Xinjiang. Important findings: The average annual ET in the grasslands of Xinjiang was estimated at 245.7 mm, with interannual variations generally consistent with that of precipitation. Overall, the value of ET was lower than that of precipitation. The higher values of ET mainly distributed in the Tianshan Mountains, Altai Mountains, Altun Mountains and the low mountain areas on the northern slope of Kunlun Mountains. The lower values of ET mainly distributed in the highland areas of Kunlun Mountains and the desert plains. Over the period 1979-2012, average annual ET was 183.2 mm in the grasslands of southern Xinjiang, 357.9 mm in the grasslands of the Tianshan Mountains, and 221.3 mm in grasslands of northern Xinjiang. In winter, ET in grasslands of northern Xinjiang was slightly higher than that of Tianshan Mountains. Average annual ET ranked among grassland types as: mid-mountain meadow < swamp meadow < typical grassland < desert grassland < alpine meadow < saline meadow. The highest ET value occurred in summer, and the lowest ET value occurred in winter, with ET in spring being slightly higher than that in autumn. The higher WUE values mainly distributed in the areas of Tianshan Mountains and Altai Mountains. The lower WUE values mainly distributed in the highland areas of Kunlun Mountains and part of the desert plains. The average annual WUE in the grasslands of Xinjiang was 0.56 g kg-1, with the seasonal values of 0.43 g kg-1 in spring, 0.60 g kg-1 in summer, and 0.48 g kg-1 in autumn, respectively. Over the period 1979-2012, the values of WUE displayed significant regional differences: the average values were 0.73 g kg-1 in northern Xinjiang, 0.26 g kg-1 in southern Xinjiang, and 0.69 g kg-1 in Tianshan Mountains. There were also significant differences in WUE among grassland types. The values of WUE ranked in the order of mid-mountain meadow < typical grassland < swamp meadow < saline meadow < alpine meadow < desert grassland.  相似文献   

5.
Aims Little information has been available on the soil nitrogen transformation process of alpine scrubland under global warming and changing climate. This study aimed at clarifying seasonal dynamics of the soil nitrate and ammonium contents and their responses to increased temperature under different plant treatments. Methods We conducted a field experiment including two plant treatments (removal- or unremoval-plant) subjected to two temperature conditions (increased temperature or control) in Sibiraea angustata scrub ecosystem on the eastern Qinghai-Xizang Plateau. The contents of soil nitrate and ammonium were measured at the early, middle and late growing seasons. Important findings The results showed that soil nitrate and ammonium contents exhibited obvious seasonal dynamics. Throughout the entire growing season, the soil nitrate contents increased firstly and then decreased, while the soil ammonium contents increased continually. Particularly, in the early and middle growing season, the soil nitrate contents were significantly higher than those of ammonium, regardless of increased temperature and plant treatments; however, in the late growing season, the soil nitrate contents were significantly lower than those of ammonium. These results implied that soil nitrification was the major process of soil nitrogen transformation in the early and middle growing season; soil ammonification contributed mostly to soil nitrogen transformation in the late growing season. Furthermore, different responses of soil nitrate and ammonium contents to increased temperature and plant removal treatments were observed at the different stages in the growing season. The effects of increased temperature on soil nitrate contents mainly occurred in the middle and late growing season, but the effects varied with plant treatments. Increased temperature only significantly increased soil ammonium contents in the unremoval-plant plots during the middle growing season. The effects of plant treatments on soil nitrate contents only occurred in the control plots (controlled temperature). Plant removal only increased soil nitrate contents in the early and middle growing season, but significantly decreased soil nitrate contents in the late growing season. Plant removal significantly decreased soil ammonium contents in the increased temperature plots during the middle growing season. Probably, in the early and middle growing season, scrub vegetation mainly absorbed soil nitrate and the absorption process was not affected by increased temperature. These results would increase our understanding of the soil nitrogen cycling process in these alpine scrub ecosystems under global warming and changing climate. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

6.
7.
Aims To test the hypothesis that water is the main limiting factor of tree growth at the arid alpine timberline, and to explore the effects of water on growth-climate relationships of Sabina przewalskii along a precipitation gradient in the northeast Qinghai-Xizang Plateau. Methods Three sides were selected to sample the alpine timberline along a precipitation gradient in the northeast Qinghai-Xizang Plateau: Halihatu National Forest Park in Wulan County (HL, annual precipitation 217 mm), Qushigang in Dulan County (QS, 281 mm) and Hebei Forest Farm in Tongde County (HB, 470 mm). The correlation and response analysis at seasonal and extreme climate year scales were used to examine the spatial variations of the growth-climate relationship of S. przewalskii at different timberlines. Important findings Our results do not support the hypothesis that water is the main limiting factor of tree growth at the arid alpine timberline. The effect of precipitation on the radial growth of S. przewalskii were consistent across all three sampling sites, while the effects of temperature were different across sites. At HL site (low precipitation), the winter and summer minimum temperature were the main limiting factor of S. przewalskii radial growth, and this relationship did not significantly change in different extreme climate years. At QS site (middle precipitation), the radial growth of S. przewalskii was mainly limited by the minimum temperature in spring and summer, but its effect was weaker than that at low precipitation site. At HB site (high precipitation), the spring temperature had a significant negative effect on tree growth, and the positive effect of spring precipitation on tree growth was significantly enhanced in comparison with those at low and middle precipitation sites, especially in extreme high temperature and drought years. Summer precipitation did not significantly affect tree growth at high precipitation site. Our results did not support the hypothesis that the radial growth of trees at alpine timberline in arid/humid area is mainly limited by water/temperature. However, precipitation at timberline will affect the relationship between tree growth and temperature at different seasons. With the warming and humidification of the northeastern Qinghai-Xizang Plateau, the climatic limiting factors of tree growth in different timberline areas may be complicated. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

8.
Aims We studied phenological sequences of two dominant plants (Polygonum viviparum and Potentilla leuconota) in an alpine meadow of the Hengduan Mt., western of Sichuan to explore the alpine plants responses on climate change. Methods Open-Top chambers (OTCs) chosen by ITEX were used to monitor the warming in the field. After a four-year experimental warming, in the 5th growing season we recorded the phenological sequences of two dominant species, focusing on plant responses on warming. The sequence was divided into four stages: budding, flowering, withering and ripe seeds. Each stage had three events: first, peak, and last. Important findings Our results showed that: 1) For P. viviparum, experimental warming elicited a shortening of the duration of each stage, advanced all of the phenological events but the first of withering and ripe seeds, shortened the period of each stage and reduced the duration of entire reproduction. 2) For P. leuconota, experimental warming extended the duration of every stage. All phenological events before the end of withering occurred earlier on experimental warming but the peak of flowering. The period of each stage had inconsistent responses on warming and warming prolonged the duration of entire reproduction. The present results indicated that not all phenological events were equally responsive to experimental warming and an entire sequence could be a more accurate way to evaluate the responses on environmental variation. Therefore, the plastic responses to warming of different species would have effects on community composition and structure. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

9.
Background: Alpine plants on the Qinghai–Tibetan Plateau are exposed to an extremely harsh environment, namely severe cold, strong ultraviolet radiation, hypoxia and low CO2 partial pressure. These conditions are sources of oxidative stress, which increase in severity with increasing elevation.

Aims: To examine whether antioxidant capacity and chemical composition of alpine plants change with increasing elevation.

Methods: We measured the Trolox-equivalent antioxidant capacity (TEAC) and chemical composition of five alpine plant species at 3016, 3814 and 4621 m a.s.l.

Results: With increasing elevation: (1) the TEAC increased and total phenols and tannins tended to increase in two forb and two shrub species but not in a sedge species; (2) concentrations of protein and fat increased in all five plant species; (3) polyunsaturated fatty acids (PUFA) increased and (4) mineral concentrations tended to decrease, but trends were inconsistent.

Conclusions: We conclude that with increasing elevation, TEAC and total phenols and tannins increased which we interpreted as an adaptation to higher oxidative stress; and protein and fat contents increased to support high metabolic activity. The increase in PUFA and the trend for minerals to decrease with increasing elevation require further investigation.  相似文献   


10.
Background: Current understanding of treeline or forest-alpine ecotone (FAE) dynamics does not fully explain past and present FAE patterns and their underlying processes, nor allow prediction of their response to climate change.

Aims: We address the overarching hypothesis that the FAE is a mosaic of distinct landscape units of vegetation and landforms that result in differential responses to climate change. We focus on climate-related, landscape and vegetation characteristics, but also consider the effect of landscape heterogeneity on biogeochemistry and overall resilience of the FAE to climate change.

Results: There are three distinct FAE land units at Niwot Ridge, generated by different interactions of climate with vegetation, landforms and topography. Within these FAEs, a process of self-organisation takes place from organism to patch to landscape scales, and is modulated by positive and negative feedback loops along an elevation gradient. The underlying controls cannot be attributed solely to temperature, but to a combination of interactions along a physical/biotic gradient.

Conclusions: FAE dynamics result from interactions among mechanisms and processes at the microsite, patch and landscape scales: (1) tree persistence; (2) forest patch establishment; (3) drivers of patch forest configurations and (4) resilience, increasing along a gradient of biotic control.  相似文献   

11.
Aims Gross caloric value (GCV) reflected plants' capability of converting solar energy. It provided a reliable indicator of plants' adaptations to environments in perspective of energy conversion and fixation. The aims of this study were (1) to illustrate the characteristics of GCV of aquatic plants on the Qinghai-Xizang Plateau, (2) to explore the geographical and environmental patterns and (3) to discuss the underlying mechanisms in forming the patterns. Methods In July and August 2015, we collected 533 samples of aquatic plants' leaves in 143 field sites on the Qinghai-Xizang Plateau, and measured their GCV using SDACM-4000 oxygen bomb calorimeter. Together with mean annual temperature (MAT) of climatic factor and properties of water body, this study compared the differences of GCV among submerged, emergent and floating-leaved plants by analysis of variance (ANOVA) and Tukey's HSD. We further regressed GCV of submerged and emergent plants against geographical and climatic factors and properties of water body by simple regression to explore the relative effects of environmental factors on GCV. Important findings On the Qinghai-Xizang Plateau, the mean GCV was (15.95 ± 3.90) kJ·g-1. Among the three life forms, the rank of GCV was the emergent plants (18.10 kJ·g-1) > the floating-leaved plants (16.77 kJ·g-1) > the submerged plants (14.31 kJ·g-1). With an increasing latitude, the GCV of emergent and submerged plants increased. Only GCV of emergent plants decreased with increasing altitude and temperature. The GCV of emergent and submerged plants increased with increased water salinity. Dissolved oxygen had significant negative effects on emergent plants, while pH value had no significant effects.  相似文献   

12.
Researches on rhizosphere ecological processes and the underlying mechanisms have become one of the most active and sensitive hotspots in soil science. Root exudates have specialized roles in mediating the nutrient cycling and signal transduction within root-soil-microbe interactions. They are the key driving factors in regulating the functions of rhizosphere micro-ecosystem, and serve as a major premise for the concept and ecological processes in rhizosphere. However, due to the instinctive advantages of crops, such as short life cycles and convenient operation, most previous studies on root exudation mainly focused on agricultural ecosystems and were primarily targeted at providing practical guidelines. In contrast, there have been relatively few investigations on root exudates of trees, which highly limited the comprehensive knowledge of the potential mechanisms of root exudates in mediating soil biogeochemical processes in forest ecosystems. Hence, in this review, based on the main findings in our previous studies and the emerging frontiers in rhizosphere ecology, we specifically reviewed the ecological consequences and key remaining challenges in researches on root exudation in forests. Finally, we identify several topics and research outlooks for guiding future work to facilitate studies on root exudation and its ecological consequences in forest ecosystems. © Chinese Journal of Plant Ecology  相似文献   

13.
Aims Our aim was to characterize the effects of nitrogen (N) addition on plant root standing crop, production, mortality and turnover in an alpine meadow on the Northwestern plateau of Sichuan Province, China. Methods A N addition experiment was conducted in an alpine meadow on the Northwestern plateau of Sichuan Province since 2012. Urea was applied at four levels: 0, 10, 20 and 30 g·m-2·a-1, referred to as CK, N10, N20 and N30. Root samples in surface (0-10 cm) and subsurface layers (10-20 cm) were observed using Minirhizotron from May 10th to Sept. 27th in 2015. The root standing crop, production, mortality and turnover rate were estimated using WinRHZIO Tron MF software. Repeated-measure ANOVA, one-way ANOVA and Pearson correlation were performed to analyze the effect of N addition on soil and root characteristics. Important findings N addition significantly increased soil available N content and decreased soil pH value, but did not alter soil total N and SOM contents under all treatments. N addition did not exhibit any significant effects on the mean root standing crop and cumulative root production in the 0-10 cm, but significantly reduced mean root standing crop and cumulative root production in 10-20 cm soil layer by 195.3 and 142.3 g·m-2 (N10), 235.8 and 212.1 g·m-2 (N20) and 198.0 and 204.4 g·m-2 (N30), respectively. The cumulative root mortality was significantly decreased by 206.1 g·m-2 in N10 treatment and root turnover rate was significantly increased with 17% for N30 treatment at the 0-10 cm soil depth, but the cumulative root mortality and root turnover rate was not significantly different at 10-20 cm soil depth. In addition, cumulative root production, mortality and turnover rate in 0-10 cm soil layer were significantly correlated with the soil available N content, whereas no significant associations were observed in 10-20 cm soil. Taken together, these results demonstrate that N addition alters the soil N availability and thus induces the root dynamics and changes in root distribution as well as C allocation in alpine meadow. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

14.
Aims The alpine meadow degradation could have profound effects on the grassland productivity. The aim of our study is to clarify the dynamic response of community productivity and species diversity in the process of alpine meadow degradation. Methods In the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Northern Tibetan Grassland Ecosystem Research Station (Nagqu station), we conducted stages experiments with multiple degradation levels: control, mild degraded meadow, moderate degraded meadow, severe degraded meadow and serious sandy meadow. Important findings The response of aboveground biomass to alpine meadow degradation showed a linear or nonlinear increased response patterns, but the belowground biomass and total biomass decreased nonlinearly. As observed in measurement of aboveground biomass, Margalef index, Simpson index, Shannon-Wiener index and Pielou evenness index also exhibit a nonlinear increased response to degradation. The results of structural equation models showed that belowground biomass has a positive relationship with soil carbon content (p < 0.05) and volume water content (p < 0.1). However, soil nutrient and soil physical properties had no significant impact on aboveground biomass (p < 0.1). Compared with soil physical properties, soil nutrition is an important factor influencing the diversity index. In our study, the nonlinear responses of productivity and diversity of alpine meadow were described by using the multiple levels of degradation in space. The results suggested that aboveground productivity cannot interpret the degree of degradation of alpine meadow, and by contrast, alpine meadow degradation should be measured by the change of plant functional groups, such as edible grasses and poisonous forbs. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

15.
Aims: Darwin's naturalization conundrum describes the paradox that the relationship of exotic species to native residents could either promote or hinder invasion success through opposing mechanisms: niche pre-adaptation or competitive interactions. Previous Darwin's naturalization studies have showed invasion success could vary at stages, sites, and spatial and phylogenetic scales. Our objective was to assess the effects of exotic-native species relationship on invasion process of exotic plant species in China, where related research is still lacking. Methods: Generalized linear mixed models were used to examine relationship between exotic-native species relationship and performance of exotic species at different spatial scale (provincial, municipal and community) and invasion stages (naturalization, dispersal and invasion). At community scale, we measured environmental factors of communities we investigated to control the effect of habitat heterogeneity among them. Important findings: At the provincial and municipal scales, exotic species closely related to native flora were more likely to be naturalized and distributed, which is more consistent with the expectation of the pre-adaptation hypothesis. On the community scale, the exotic-native species relationship was not related to establishment and abundance of exotic species in the community. The results suggested that exotic species did not strongly compete with their close native relatives in communities, but were better adapted to areas where their close relatives had lived. Considering their high potential of naturalization and invasion, special attention should be paid to those exotic species that closely related to the native flora in the management of invasive species. © Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

16.
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

17.
Aims As an endangered wild species with extremely small populations, Ferrocalamus strictus is narrowly distributed in South Yunnan with a small number of individuals. The survey of population structure and community characteristics of the wild population of F. strictus can facilitate understanding its endangered system and mechanisms and provide preliminary research basis for its protection. Methods We investigated the community and population structure of F. strictus, including species composition, population density, population survivorship curve and death factors by plot surveying and sampling. Important findings The community in which population of F. strictus is located in Mojiang has some characteristics of mountain rainforests in terms of appearance and species composition. The population density of F. strictus was 2.04 ind.·m–2. The survivorship curve of F. strictus was between Deevey-I and Deevey-II. The net proliferation rate (R0) of F. strictus population was 1.10, which indicates an expanding population of F. strictus. The death of F. strictus is caused by human logging, natural death, shoot degradation and insects feeding. Among them, artificial cutting accounts for the largest proportion. Ferrocalamus strictus is a species of forest bamboos distributed in the South Asian subtropics, which is a medium-sized bamboo species. Its internode length change suddenly from the base 3–4 nodes. The longest ones exceed 1 m, which ranks at the top of all bamboo species and is closely related to its adaptation to the tropical mountain rainforest environment. © Chinese Journal of Plant Ecology.  相似文献   

18.
Thymus mongolicus steppe was a vegetation formation dominated by typical dwarf semi-shrub of Lamiaceae. Based on the previous literatures and primary plot data sampled during the growing seasons from 2015 to 2017, the distribution, ecological features, community characteristics and classification of Thymus mongolicus steppe were summarized. (1) Thymus mongolicus steppe is mainly distributed on the loess hills of Xar Moron River Watershed, Bashang region in the northwest of Hebei Province, the hills surrounding the Yinshan Mountains, the east part of Erdos Plateau and the northern Loess Plateau. This formation occurrs mainly on the stony slopes or loess hills with severe soil erosion. (2) In total, 167 seed plant species belonging to 101 genera of 34 families were recorded in the 91 sample sites, and families of Compositae, Leguminosae and Gramineae played crucial roles in the species composition. Eight of these families were semi-shrub and dwarf semi-shrub species, and 112 were perennial forb species. Typical xerophytes (58 species) and Meso-xerophytes (45 species) account for more than half part of all species. Eight geographic elements were involved. East Palaearctic (70 species) and East Asia (46 species) were the two major floristic elements. (3) Based on life form and dominance of species in the community, the formation was classified into 6 association groups (Thymus mongolicus, dwarf shrubs/dwarf semi-shurbs association group; Thymus mongolicus association group; Thymus mongolicus, bunchgrasses association group; Thymus mongolicus, rhizomatous grasses association group; Thymus mongolicus, Carex association group; Thymus mongolicus, forbs association group), consisting of 28 associations. © Chinese Journal of Plant Ecology.  相似文献   

19.
The anatomical traits of xylem are the characteristics of tree rings at the cellular and subcellular scales, and are often reflection of environmental signals. Studying the relationships between anatomical traits of xylem and environmental change not only provide physiological explanations to the statistics in dendroclimatology, but can also provide a new vision for studying the adaptation process and response strategies of tree growth to climate change. In this paper, with the relationships between the anatomical characteristics of xylem in tree-rings (cell chronology) and climate change as a main thread, we first outline the basic principles and mechanisms of wood anatomical features to record environmental signals, and expounded the basic methods involved in the process of xylem anatomy. Secondly, we discuss the relationship between the anatomical features of xylem and climate factors. We then propose the following as possible directions of future research based on the existing knowledge gap in the topical area: (1) to explore the temporal and spatial variations in the anatomical characteristics of xylem in tree-rings along radial and tangential directions and the relationships with environmental changes; (2) to explore the threshold of tree growth response to environmental plasticity and adaptation processes; (3) to assess the synergistic and antagonistic effects as well as the formation mechanisms of climate response among different tree-ring proxies, and to determine the specific roles and contributions of major climatic factors during different periods of tree-ring formation.  相似文献   

20.
Constraints and evolution are central for the resolution of conflicts between mutualism species and for the stability of mutualisms. Dioecious fig species and their specific pollinators are also in conflict on the use of fig ovaries. Here, our experiments provided some data on the female florets allocation in two dioecious fig trees. The results showed that: (1) there is a bimodal distribution in the style–length of two fig trees’ female florets, moreover, the style–lengths are fairly similar and narrowly distributed in gall figs and more variation seems to occur in seed figs; (2) the styles in seed figs are a little longer than those in gall figs; (3) the pollinator's ovipositor lengths are shorter than the style–lengths in seed figs, but they are very similar to those in gall figs so that pollinators can only lay their eggs into the ovaries of gall figs, but not in seed figs; (4) the stigmas stick together, and the style is curly and flexible in seed syconia of the two fig species studied, so it is very difficult for the pollinators to find suitable ovipositing sites and lay their eggs in seed figs; (5) the variations of style-lengths are bigger in seed figs than gall figs, but they are smaller in dioecious figs than monoecious figs; (6) for Ficus cyrtophylla, about 10% styles are shorter in seed figs than those in gall figs, even shorter than ovipositor. In contrast, about 2% styles in gall figs of Ficus hispida are longer than its corresponding pollinator's ovipositor. In a word, our study suggests that the female floret's fate in these two fig species is mainly dependent on its style–length, but not all. The stigma shape and the floral organization can both also attribute to their fate in the two fig species studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号