首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Clonal integration contributes greatly to the adaption of clonal plants to heterogeneous habitats. However, effects of transportation direction of photosynthate on microbial processes need to be further investigated in the rhizosphere. The purpose of this study is to determine the effects of directional differences in photosynthate transport on microbial processes in the rhizosphere of clonal plant Phyllostachys bissetii. Methods By removing the aboveground parts of the ramets, acropetal treatment and basipetal treatment were applied in this study to control the transportation direction of photosynthate. In acropetal treatment, aboveground parts of distal ramets were cut off (with 20 cm above ground kept), and proximal ramets were left intact. While in basipetal treatment, aboveground parts of proximal ramets were cut off (with 20 cm above ground kept), and distal ramets were left intact. Rhizomes between the two ramets were either connected or severed. Carbon (C) and nitrogen (N) availabilities, and enzyme activities in the rhizosphere soils were measured. Important findings In acropetal treatment, total organic carbon (TOC), dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and soil inorganic nitrogen (NH4 +-N and NO3 --N) content in the rhizosphere soil of distal ramets with connected rhizomes were significantly higher than those with severed rhizome. The activities of urease, polyphenol oxidase (POXase), N-acetyl-β-D-Glucosaminidase (NAGase) were significantly enhanced. Further, clonal integration had a significant effect on C and N availability, and microbial processes in the rhizosphere soil of neighbouring ramets. In basipetal treatment, clonal integration did not show a significant effect on C availability in the rhizosphere soil of proximal ramets, but microbial processes along with soil enzyme activities were altered accordingly. Effects of transportation direction of photosynthate on microbial processes in the rhizosphere of P. bissetii provides insights into the adaptation mechanisms of clonal plant populations. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

2.
Aims: Darwin's naturalization conundrum describes the paradox that the relationship of exotic species to native residents could either promote or hinder invasion success through opposing mechanisms: niche pre-adaptation or competitive interactions. Previous Darwin's naturalization studies have showed invasion success could vary at stages, sites, and spatial and phylogenetic scales. Our objective was to assess the effects of exotic-native species relationship on invasion process of exotic plant species in China, where related research is still lacking. Methods: Generalized linear mixed models were used to examine relationship between exotic-native species relationship and performance of exotic species at different spatial scale (provincial, municipal and community) and invasion stages (naturalization, dispersal and invasion). At community scale, we measured environmental factors of communities we investigated to control the effect of habitat heterogeneity among them. Important findings: At the provincial and municipal scales, exotic species closely related to native flora were more likely to be naturalized and distributed, which is more consistent with the expectation of the pre-adaptation hypothesis. On the community scale, the exotic-native species relationship was not related to establishment and abundance of exotic species in the community. The results suggested that exotic species did not strongly compete with their close native relatives in communities, but were better adapted to areas where their close relatives had lived. Considering their high potential of naturalization and invasion, special attention should be paid to those exotic species that closely related to the native flora in the management of invasive species. © Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

3.
Aims Ligularia virgaurea is an indicator species of alpine meadow degradation. Recently, the vast spreading of L. virgaurea has brought the serious economic loss of grassland ecosystem, but it remains unclear whether soil microbes involve in the spreading of L. virgaurea. Methods We chose four patches with different density of L. virgaurea to measure the influence of spreading of L. virgaurea on the functional diversity of soil microbial community in the Qinghai-Xizang Plateau. Important findings The spreading of L. virgaurea increased soil microbial activity, but reduced soil available nitrogen concentration. The Shannon index, utilization number of carbon resource and evenness index of soil microbial community displayed no significant differences among patches, but the utilization structure of carbon resource in high density patch was significantly different from control patch. Our findings indicate that the limitation of soil nitrogen caused by the changing functional diversity of soil microbial community in the distributed sites is one of the mechanisms for the vast spreading of L. virgaurea in alpine meadow ecosystem. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

4.
To investigate how the level of microbial activity in grassland soils affects plant–microbial competition for different nitrogen (N) forms, we established microcosms consisting of a natural soil community and a seedling of one of two co-existing grass species, Anthoxanthum odoratum or Festuca rubra. We then stimulated the soil microbial community with glucose in half of the microcosms and followed the transfer of added inorganic (15NH415NO3) and organic (glycine-2-13C-15N) N into microbial and plant biomass. We found that microbes captured significantly more 15N in organic than in inorganic form and that glucose addition increased microbial 15N capture from the inorganic source. Shoot and root biomass, total shoot N content and shoot and root 15N contents were significantly greater for A. odoratum than F. rubra, whereas F. rubra had higher shoot and root N concentrations. Where glucose was not added, A. odoratum had higher shoot 15N content with organic than with inorganic 15N addition, whereas where glucose was added, both species had higher shoot 15N content with inorganic than with organic 15N. Glucose addition had equally negative effects on shoot growth, total shoot N content, shoot and root N concentrations and shoot and root 15N content for both species. Both N forms produced significantly more shoot biomass and higher shoot N content than the water control, but the chemical form of N had no significant effect. Our findings suggest that plant species that are better in capturing nutrients from soil are not necessarily better in tolerating increasing microbial competition for nutrients. It also appears that intense microbial competition has more adverse effects on the uptake of organic than inorganic N by plants, which may potentially have significant implications for interspecific plant–plant competition for N in ecosystems where the importance of organic N is high and some of the plant species specialize in use of organic N.  相似文献   

5.
Aims Global nitrogen (N) deposition not only alters soil N and phosphorus (P) availability, but also changes their ratio. The levels and ratios of N and P supply and their interaction may simultaneously influence plant seed traits. However, so far there has been no experiments to distinguish these complex impacts on plant seed traits in the field. Methods A pot experiment with a factorial design of three levels and ratios of N and P supply was conducted in the Nei Mongol grassland to explore the effects of levels and ratios of N and P supply and their interaction on seed traits of Chenopodium glaucum. Important findings We found that the relative contribution (15%–24%) of N and P supply levels in affecting the N concentrations, P concentrations and germination rates of seeds was larger than that (3%–7%) of N:P supply ratios, whereas seed size was only significantly influenced by N:P. Simultaneously, seed N and P concentrations were impacted by the interaction of N and P supply levels and ratios. At the same N:P, decrease in nutrient supply levels increased seed N concentrations, P concentrations and germination rates. N:P supply ratios only had a significant effect on seed size and germination rates under low nutrient levels. Overall, these results indicate that different seed traits of C. glaucum show different sensitivities to N or P limitations, leading to adaptive and passive responses under different nutrient limitations. This study presents the the first field experiment to distinguish the effects of nutrient supply levels, ratios and their interactions on plant seed traits, which provides a new case study on the influences of global N deposition on future dynamics of plant population and community. © Chinese Journal of Plant Ecology.  相似文献   

6.
Aims There have been a large number of studies on the independent separate responses of fine roots to warming and nitrogen deposition, but with contradictory reporting. Fine root production plays a critical role in ecosystem carbon, nutrient and water cycling, yet how it responds to the interactive warming and nitrogen addition is not well understood. In the present study, we aimed to examine the interactive effects of soil warming and nitrogen addition on fine root growth of 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in subtropical China. Methods A mesocosm experiment, with a factorial design of soil warming (ambient, +5 °C) and nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1, ambient + 80 kg·hm-2·a-1), was carried out in the Chenda State-owned Forest Farm in Sanming City, Fujian Province, China. Fine root production (indexed by the number of fine roots emerged per tube of one year) was measured biweekly using minirhizotrons from March of 2014 to February of 2015. Important findings (1) The two-way ANOVA showed that soil warming had a significant effect on fine root production, while nitrogen addition and soil warming × nitrogen addition had no effect. (2) The three-way ANOVA (soil warming, nitrogen addition and diameter class) showed that soil warming, diameter class and soil warming × diameter class had significant effects on fine root production, especially for the number of fine roots in 0-1 mm diameter class that had been significantly increased by soil warming. Compared with the 1-2 mm roots, the 0-1 mm roots seemed more flexible. (3) Repeated measures of ANOVA (soil warming, nitrogen addition and season) showed that soil warming, season, soil warming × season, and soil warming × nitrogen addition × season had significant effects on fine root production. In spring, the number of fine roots was significantly increased both by soil warming and soil warming × season, while soil warming, nitrogen addition, soil warming × nitrogen addition significantly decreased fine root production in the summer. (4) Soil warming, soil layer, soil warming × soil layer had significant effects on fine root production. The number of in-growth fine roots was significantly increased by soil warming at the 20-30 cm depth only. It seemed that warming forced fine roots to grow deeper in the soil. In conclusion, soil warming significantly increased fine root production, but they had different responses and were dependent of different diameter classes, seasons and soil layers. Nitrogen addition had no effect on fine root production. Only in spring and summer, soil warming and nitrogen addition had significant interactive effects.  相似文献   

7.
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

8.
Zhu J.-T. 《植物生态学报》2016,(10):1028-1036
Aims: Climate warming strongly influences reproductive phenology of plants in alpine and arctic ecosystems. Here we focus on phenological shifts caused by warming in a typical alpine meadow on the Qinghai-Xizang Plateau. Our objective was to explore phenological responses of alpine plant species to experimental warming. Methods: Passive warming was achieved using open-top chambers (OTCs). The treatments included control (C), and four levels of warming (T1, T2, T3, T4). We selected Kobresia pygmaea, Potentilla saundersiana, Potentilla cuneata, Stipa purpurea, Festuca coelestis and Youngia simulatrix as the focal species. Plant phenology was scored every 3-5 days in the growing season. The reproductive phenology phases of each species were estimated through fitting the phenological scores to the Richards function. Important findings: Under soil water stress caused by warming, most plants in the alpine meadow advanced or delayed their reproductive events. As a result, warming significantly delayed phenological development of K. pygmaea. Warming significantly advanced reproductive phenology of P. saundersiana, S. purpurea and F. coelestis, but not of P. cuneata and Y. simulatrix. In addition, warming significantly shortened the average flowering duration of alpine plant species. The potentially warmer and drier growing seasons under climate change may shift the reproductive phenology of the alpine systems in similar pattern.  相似文献   

9.
Aims: Recent studies have shown that artificial addition of biochar is an effective way to mitigate atmospheric carbon dioxide concentrations. However, it is still unclear how biochar addition influences soil respiration in Phyllostachys edulis forests of subtropical China. Our objectives were to examine the effects of biochar addition on the dynamics of soil respiration, soil temperature, soil moisture, and the cumulative soil carbon emission, and to determine the relationships of soil respiration with soil temperature and moisture. Methods: We conducted a two-year biochar addition experiment in a subtropical P. edulis forest from 2014.05 to 2016.04. The study site is located in the Miaoshanwu Nature Reserve in Fuyang district of Hangzhou, Zhejiang Province, in southern China. The biochar addition treatments included: control (CK, no biochar addition), low rate of biochar addition (LB, 5 t·hm-2), medium rate of biochar addition (MB, 10 t·hm-2), and high rate of biochar addition (HB, 20 t·hm-2). Soil respiration was measured by using a LI-8100 soil CO2 efflux system. Important findings: Soil respiration was significantly reduced by biochar addition, and exhibited an apparent seasonal pattern, with the maximum occurring in June or July (except LB in one of the replicated stand) and the minimum in January or February. There were significant differences in soil respiration between the CK and the treatments. Annual mean soil respiration rate in the CK, LB, MB and HB were 3.32, 2.66, 3.04 and 3.24 μmol·m-2·s-1, respectively. Compared with CK, soil respiration rate was 2.33%-54.72% lower in the LB, 1.28%-44.21% lower in the MB, and 0.09%-39.22% lower in the HB. The soil moisture content was increased by 0.97%-75.58% in LB, 0.87%-48.18% in MB, and 0.68%-74.73% in HB, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature and a significant linear relationship with combination of soil temperature and moisture at the depth of 5 cm; no significant relationship was found between soil respiration and soil moisture alone. The temperature sensitivity (Q10) value was reduced in LB and HB. Annual accumulative soil carbon emission in the LB, MB and HB was reduced by 7.98%-35.09%, 1.48%-20.63%, and -4.71%-7.68%, respectively. Biochar addition significantly reduced soil carbon emission and soil temperature sensitivity, highlighting its role in mitigating climate change.  相似文献   

10.
Aims Soil microbe plays key role in mediating terrestrial carbon cycles. It has been suggested that climate warming may affect the microbial community, which may accelerate carbon release and induce a positive feedback to soil climate warming. However, there is still controversy on how microbial community responds to experimental warming, especially in cold and drought environment. Methods We conducted an open top chambers (OTCs) experiment to explore the effects of warming on soil microbial community in an alpine steppe on Qinghai-Xizang Plateau. During the maximum of the growing seasons (August) of 2015 and 2016, we monitored the biomass and structure of soil microbial community in warming and control plots using phospholipid fatty acids (PLFA) as biomarkers. Important findings Short-Term warming treatment significantly increased the soil temperature by 1.6 and 1.6 C and decreased soil moisture by 3.4% and 2.4% (volume fraction) respectively, but did not alter either soil properties or normalized difference vegetation index (NDVI) during the growing season (from May to October) in 2015 and 2016. During the maximum of growing seasons (August) of 2015 and 2016, the magnitude of microbial biomass carbon (MBC) were 749.0 and 844.3 mg·kg-1, microbial biomass nitrogen (MBN) were 43.1 and 102.1 mg·kg-1, and the microbial biomass C:N ranged between 17.9 and 8.4. Moreover, all three showed no significant differences between warming and control treatments. The abundance of bacteria was the most in microbial community, while arbuscular mycorrhizal fungi was the least, and warming treatment did not alter the abundance of different microbial group and the microbial community structure. Nonetheless, our result revealed that warming-induced changes in MBC had significant positive correlation with changes in soil temperature and soil moisture. These patterns indicate that, microbial community in this alpine steppe may not respond substantially to future climate warming due to the limitation of soil drought. Therefore, estimation of microbial community response to climate change calls for consideration on the combined effect of warming and drought. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

11.
Zou J  Rogers WE  DeWalt SJ  Siemann E 《Oecologia》2006,150(2):272-281
The EICA hypothesis predicts that shifts in allocation of invasive plants give rise to higher growth rates and lower herbivore defense levels in their introduced range than conspecifics in their native range. These changes in traits of invasive plants may also affect ecosystem processes. We conducted an outdoor pot experiment with Chinese tallow tree (Sapium sebiferum, Euphorbiaceae) seedlings from its native (Jiangsu, China, native ecotype) and introduced ranges (Texas, USA, invasive ecotype) to compare their relative performances in its native range and to examine ecotype effects on soil processes with and without fertilization. Consistent with predictions, plant (shoot and root) mass was significantly greater and leaf defoliation tended to be higher, while the root:shoot ratio was lower for the invasive ecotype relative to the native ecotype. Seasonal amounts of soil–plant system CO2 and N2O emissions were higher for the invasive ecotype than for the native ecotype. Soil respiration rates and N2O emission increases from fertilization were also greater for the invasive ecotype than for the native ecotype, while shoot-specific respiration rates (g CO2–C g−1 C day−1) did not differ between ecotypes. Further, soil inorganic N (ammonium and nitrate) was higher, but soil total N was lower for soils with the invasive ecotype than soils with the native ecotype. Compared with native ecotypes, therefore, invasive ecotypes may have developed a competition advantage in accelerating soil processes and promoting more nitrogen uptake through soil–plant direct interaction. The results of this study suggest that soil and ecosystem processes accelerated by variation in traits of invasive plants may have implications for their invasiveness.  相似文献   

12.
Aims: To enhance the understanding on nitrogen (N) and phosphorus (P) physiological responses to different light environments in shade-enduring plants and provide references to improve the stand structure and ecosystem functions of plantation forests. Methods: We selected seedlings of five shade-enduring species with high ecological and economic value in subtropical area of China to study the effects of light intensity on leaf N and P contents, allocation and nutrient limitation in shade-enduring plants. A light intensity gradient of five different levels was set to simulate the varying understory light environment. Important findings: With decreasing light intensity, the total biomass and total N and P accumulation of five shade-enduring plants all showed a decreasing trend, but N, P contents in different organs increased. Among them, Gardenia jasminoides (GJ) had the highest while Illicium henryi (IH) had the lowest N content; The P contents of Quercus phillyraeoides (QP) and GJ were significantly higher than Elaeocarpus sylvestris (ES), Ardisia crenata (AC) and IH. QP and GJ had the highest N, P contents under extremely low light intensity (6% natural light intensity) condition (LIC), while AC and IH had the highest N and P contents in low (15% natural light intensity) and moderate (33% and 52% natural light intensity) LIC. ES demanded differently for LIC on N and P, which were 52% and 6% natural light intensity, respectively. N and P allocation of ES, AC and IH followed leaf < root < stem, but for QP and GJ were root < leaf < stem. Decreasing LIC significantly affected N and P allocation. N content variations shown good consistency among different organs under higher LIC (100% natural light intensity) while distinct variability under lower LIC (15% and 6% natural light intensity) in all five species. Phosphorus contents exhibited good consistency in IH, QP and GJ but varied in ES and AC. Decreasing LIC significantly affected organ N/P ratios of shade-enduring plants, but the fundamental growth restriction patterns remained. Light intensity variation and tree species co-regulated N, P utilization and allocation in shade-enduring plants, and then affected the total biomass and total N, P accumulation, which might result from the change of N and P utilization strategy. Therefore, light intensity preference and N, P nutrient balances in shade-enduring plants should be taken into account when constructing multiple layer and uneven-aged forests.  相似文献   

13.
Aims Our aim was to characterize the effects of nitrogen (N) addition on plant root standing crop, production, mortality and turnover in an alpine meadow on the Northwestern plateau of Sichuan Province, China. Methods A N addition experiment was conducted in an alpine meadow on the Northwestern plateau of Sichuan Province since 2012. Urea was applied at four levels: 0, 10, 20 and 30 g·m-2·a-1, referred to as CK, N10, N20 and N30. Root samples in surface (0-10 cm) and subsurface layers (10-20 cm) were observed using Minirhizotron from May 10th to Sept. 27th in 2015. The root standing crop, production, mortality and turnover rate were estimated using WinRHZIO Tron MF software. Repeated-measure ANOVA, one-way ANOVA and Pearson correlation were performed to analyze the effect of N addition on soil and root characteristics. Important findings N addition significantly increased soil available N content and decreased soil pH value, but did not alter soil total N and SOM contents under all treatments. N addition did not exhibit any significant effects on the mean root standing crop and cumulative root production in the 0-10 cm, but significantly reduced mean root standing crop and cumulative root production in 10-20 cm soil layer by 195.3 and 142.3 g·m-2 (N10), 235.8 and 212.1 g·m-2 (N20) and 198.0 and 204.4 g·m-2 (N30), respectively. The cumulative root mortality was significantly decreased by 206.1 g·m-2 in N10 treatment and root turnover rate was significantly increased with 17% for N30 treatment at the 0-10 cm soil depth, but the cumulative root mortality and root turnover rate was not significantly different at 10-20 cm soil depth. In addition, cumulative root production, mortality and turnover rate in 0-10 cm soil layer were significantly correlated with the soil available N content, whereas no significant associations were observed in 10-20 cm soil. Taken together, these results demonstrate that N addition alters the soil N availability and thus induces the root dynamics and changes in root distribution as well as C allocation in alpine meadow. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

14.
Aims Two-year-old seedlings of Phoebe zhennan were used in this study to explore the responses of osmotic adjustment and active oxygen metabolism to drought stress and the mitigation effect of nitrogen application. Methods The soil water content was firstly adjusted to four treatment levels, i.e. 80% of field water holding capacity (80% FC), 50% FC, 30% FC and 15% FC, respectively. The physiological variables of plants were measured after one week, and then three nitrogen application rates, control (N0), medium nitrogen (MN) and high nitrogen (HN) were performed at an interval of 7 days for four times (7 d, 14 d, 21 d and 28 d, respectively). The same physiological variables were determined again one month after the accomplishment of nitrogen application. Important findings 1) The free proline (Pro) and soluble sugar (SS) contents in the leaves increased significantly with the aggravation of drought stress after 7 days of drought, but the content of soluble protein (SP) was firstly increased and then declined. The increase of Pro content was especially obvious under severe drought (15% FC). After nitrogen application, the content of Pro raise further, but the values varied in drought treatment. The SS contents under sufficient water supply (80% FC) and mild drought (50% FC) were decreased by MN, but it did not change significantly when supplied with HN despite the soil water content. After nitrogen application, the SP contents under 80% FC and 50% FC were lower than those of no exogenous N, while they were opposite response under 30% FC and 15% FC. 2) Before nitrogen application, with the aggravation of drought stress, the hydrogen peroxide (H2O2) content, superoxide dismutase (SOD) activity, catalase (CAT) activity increased significantly, and the peroxidase (POD) activity showed an up-down trend. After nitrogen application, the content of H2O2 was generally deceased at each water condition, with the maximum decrease at MN, while the HN treatment was not conducive to reduce the content of H2O2. The activities of three kinds of enzymes responded differently to the severity of drought and the level of nitrogen application. 3) Before nitrogen application, the content of malondial-dehyde (MDA) in leaves increased significantly when the soil water content declined to and below 50% FC. The relative electrical conductivity (REC) was decreased at first, and followed by significant increase. Except severe drought (15% FC) stress, the MDA content showed a decreasing trend at MN, but a rebound at HN. As regards severe drought stress, however, the content of MDA increased at both MN and HN, indicating that nitrogen application is not a good choice to alleviate the damage caused by severe drought stress. 4)Two-factor ANOVA revealed an obvious interaction between nitrogen application and drought stress. In conclusion, a proper amount of nitrogen (1.35 g·a–1 for each sapling) could somewhat alleviate drought stress no severer than 15% FC on seedlings of Phoebe zhennan, but excessive nitrogen at rate of or more than 2.70 g·a–1 per sapling is not recommended. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

15.
Aims The shape plasticity of plant leaves is an important survival strategy to high temperature and drought in arid region, yet reliable evidences are insufficient to validate the fundamental concepts. Our objective was to demonstrate the specific effects of leaf morphology on leaf surface temperature. Methods Infrared thermal images were processed to determine the leaf temperature and shape parameters of simulated and actual leaf shape. Microclimatic conditions were recorded using a automatic weather station near the sampling plot, including wind speed, radiation and air temperature. Important findings Under the drought and high temperature, the plasticity of leaf shape appeared an important measure to regulate leaf temperature, except leaf transpiration. The exchange rates of matter and energy between leaves and the environment were enhanced by smaller leaves that effectively decreased leaf temperature. With low wind speed and high temperature, leaf surface temperature decreased 2.1 °C per 1 cm reduction in leaf width. However, leaf surface temperature of a simulated leaf decreased 0.60–0.86 °C per 1 cm reduction in leaf width. Results from this study will help us to understand plant adaptability and survival strategy in arid region. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

16.
17.
18.
Aims The increased atmospheric nitrogen (N) deposition due to human activity and climate change greatly causes grassland ecosystems shifting from being naturally N-limited to N-eutrophic or N-saturated, and further affecting the growth of grass species. The aims of this study are: 1) to evaluate the effects of different N addition levels on morphology and photosynthetic characteristics of Leymus chinensis; 2) to determine the critical N level to facilitate L. chinensis growth. Methods We conducted a different N addition levels experiment in dominant species in the temperate steppe of Nei Mongol. The aboveground biomass, morphological and leaf physiological traits, pigment contents, chlorophyll a fluorescence parameters and biochemical parameters of L. chinensis were investigated. Important findings Our results showed that aboveground biomass first increased and then decreased with the increased N, having the highest values at the 10 g N·m-2·a?1 treatment, but the 25 g N·m-2·a?1 still significantly increased the aboveground biomass relative to 0 g N·m-2·a?1. Leymus chinensis accommodate low N situation through allocating less N to carboxylation system and decreasing leaf mass per area (LMA) in order to get more light energy. Moderate N addition captured more light energy through increasing total chlorophyll (Chl) contents and decreasing the ratio of Chl a/b. Moderate N addition increased LMA, carboxylation efficiency, maximum car boxylation rate (Vcmax), maximum electron transport rate (Jmax) and decreased Jmax/Vcmax, thus allocating more N to carboxylation system to enhance carboxylation capability. Moreover, the photochemical activity of PSII was increased through higher effective quantum yield of PSII photochemistry, electron transport rate and photochemical quenching coefficient. Excessive N addition had negative effects on physiological variables of L. chinensis due to lower carboxylation capability and photochemical activity of PSII, further leading to decreased net photosynthetic rate, whereas increased non-photochemical quenching coefficient and carotenoids played the role in the dissipation of excess excitation energy. Overall, moderate N addition facilitated the photosynthetic characteristics of dominant species, but excessive N addition inhibited photosynthetic characteristics. The most appropriate N addition for the growth of L. chinensis was 5-10 g N·m-2·a?1 in the temperate steppe of Nei Mongol, China.  相似文献   

19.
Aims Little information has been available on the soil nitrogen transformation process of alpine scrubland under global warming and changing climate. This study aimed at clarifying seasonal dynamics of the soil nitrate and ammonium contents and their responses to increased temperature under different plant treatments. Methods We conducted a field experiment including two plant treatments (removal- or unremoval-plant) subjected to two temperature conditions (increased temperature or control) in Sibiraea angustata scrub ecosystem on the eastern Qinghai-Xizang Plateau. The contents of soil nitrate and ammonium were measured at the early, middle and late growing seasons. Important findings The results showed that soil nitrate and ammonium contents exhibited obvious seasonal dynamics. Throughout the entire growing season, the soil nitrate contents increased firstly and then decreased, while the soil ammonium contents increased continually. Particularly, in the early and middle growing season, the soil nitrate contents were significantly higher than those of ammonium, regardless of increased temperature and plant treatments; however, in the late growing season, the soil nitrate contents were significantly lower than those of ammonium. These results implied that soil nitrification was the major process of soil nitrogen transformation in the early and middle growing season; soil ammonification contributed mostly to soil nitrogen transformation in the late growing season. Furthermore, different responses of soil nitrate and ammonium contents to increased temperature and plant removal treatments were observed at the different stages in the growing season. The effects of increased temperature on soil nitrate contents mainly occurred in the middle and late growing season, but the effects varied with plant treatments. Increased temperature only significantly increased soil ammonium contents in the unremoval-plant plots during the middle growing season. The effects of plant treatments on soil nitrate contents only occurred in the control plots (controlled temperature). Plant removal only increased soil nitrate contents in the early and middle growing season, but significantly decreased soil nitrate contents in the late growing season. Plant removal significantly decreased soil ammonium contents in the increased temperature plots during the middle growing season. Probably, in the early and middle growing season, scrub vegetation mainly absorbed soil nitrate and the absorption process was not affected by increased temperature. These results would increase our understanding of the soil nitrogen cycling process in these alpine scrub ecosystems under global warming and changing climate. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

20.
Temporal heterogeneity of water supply can alter the biomass growth of plants, even when the same total amount of water is provided. Most studies of heterogeneous watering have focused on responses of whole populations rather than individuals in a population. The effects of water supply heterogeneity may also depend on nutrient levels. Thus, we investigated the integrated effects of water supply heterogeneity and nutrient levels on plants within a population. Six plants of Perilla frutescens per pot were grown under different combinations of frequency of water supply and nutrient level. The effects on yield per pot, individual biomass, and allocation to roots were analyzed after a 44-day watering regime. A homogeneous water supply resulted in a greater yield per pot and greater biomass of individual plants than a heterogeneous supply. However, the interaction between water supply heterogeneity and nutrient level was significant only in larger individuals, not in smaller plants or at the p. Water supply heterogeneity affected the growth of all plants, but the effects differed among individuals depending on their relative size within their population. It is therefore important to focus not only on whole-population characteristics such as yield but also on individuals in a population in order to reveal the detailed effects of water supply heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号