首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The bile salt export pump (BSEP) plays an integral role in lipid homeostasis by regulating the canalicular excretion of bile acids. Induction of BSEP gene expression is mediated by the farnesoid X receptor (FXR), which binds as a heterodimer with the retinoid X receptor (RXR) to the FXR response element (FXRE) located upstream of the BSEP gene. RXR ligands mimic several partner ligands and show additive effects upon coadministration. Using real-time quantitative PCR and cotransfection reporter assays, we demonstrate that the RXR agonist LG100268 antagonizes induction of BSEP expression mediated by endogenous and synthetic FXR ligands, CDCA and GW4064, respectively. Moreover, this antagonism is a general feature of RXR agonists and is attributed to a decrease in binding of FXR/RXR heterodimers to the BSEP-FXRE coupled with the inability of RXR agonists to recruit coactivators to FXR/RXR. Our data suggest that FXR/RXR is a conditionally permissive heterodimer and is the first example of RXR ligand-mediated antagonism of FXR activity. Because FXR agonists lower triglyceride levels, our results suggest a novel role for RXR-mediated antagonism of FXR activity in the development of hypertriglyceridemia observed with RXR agonists in rodents and humans.  相似文献   

4.
5.
6.
7.
Dehydroepiandrosterone sulfotransferase (STD) is a hydroxysteroid sulfo-conjugating enzyme with preferential substrate specificity for C-19 androgenic steroids and C-24 bile acids. STD is primarily expressed in the liver, intestine and adrenal cortex. Earlier studies have shown that androgens inhibit the rat Std promoter function through a negative androgen response region located between -235 and -310 base pair positions (Song, C. S., Jung, M. H., Kim, S. C., Hassan, T., Roy, A. K., and Chatterjee, B. (1998) J. Biol. Chem. 273, 21856-21866). Here we report that the primary bile acid chenodeoxycholic acid (CDCA) also acts as an important regulator of the Std gene promoter. CDCA is a potent inducer of the Std gene, and its inducing effect is mediated through the bile acid-activated farnesoid X receptor (FXR), a recently characterized member of the nuclear receptor superfamily. The ligand-activated FXR acts as a heterodimer with the 9-cis-retinoic acid receptor (RXR) and regulates the Std gene by binding to an upstream region at base pair positions -169 to -193. This specific binding region was initially identified by bile acid responsiveness of the progressively deleted forms of the Std promoter in transfected HepG2 hepatoma and enterocyte-like Caco-2 cells. Subsequently, the precise RXR/FXR binding position was established by protein-DNA interaction using in vitro footprinting and electrophoretic mobility shift analyses. Unlike all other previously characterized FXR target genes, which contain an inverted repeat (IR) of the consensus hexanucleotide half-site (A/G)G(G/T)TCA with a single nucleotide spacer (IR-1), the bile acid response element of the Std promoter does not contain any spacer between the two hexanucleotide repeats (IR-0). A promoter-reporter construct carrying three tandem copies of the IR-0 containing -169/-193 element, linked to a minimal thymidine kinase promoter, can be stimulated more than 70-fold in transfected Caco-2 cells upon CDCA treatment. Autoregulation of the STD gene by its bile acid substrate may provide an important contributing role in the enterohepatic bile acid metabolism and cholesterol homeostasis.  相似文献   

8.
9.
Human kininogen gene is transactivated by the farnesoid X receptor   总被引:3,自引:0,他引:3  
Human kininogen belongs to the plasma kallikreinkinin system. High molecular weight kininogen is the precursor for two-chain kinin-free kininogen and bradykinin. It has been shown that the two-chain kinin-free kininogen has the properties of anti-adhesion, anti-platelet aggregation, and anti-thrombosis, whereas bradykinin is a potent vasodilator and mediator of inflammation. In this study we show that the human kininogen gene is strongly up-regulated by agonists of the farnesoid X receptor (FXR), a nuclear receptor for bile acids. In primary human hepatocytes, both the endogenous FXR agonist chenodeoxycholate and synthetic FXR agonist GW4064 increased kininogen mRNA with a maximum induction of 8-10-fold. A more robust induction of kininogen expression was observed in HepG2 cells, where kininogen mRNA was increased by chenodeoxycholate or GW4064 up to 130-140-fold as shown by real time PCR. Northern blot analysis confirmed the up-regulation of kininogen expression by FXR agonists. To determine whether kininogen is a direct target of FXR, we examined the sequence of the kininogen promoter and identified a highly conserved FXR response element (inverted repeat, IR-1) in the proximity of the kininogen promoter (-66/-54). FXR/RXRalpha heterodimers specifically bind to this IR-1. A construct of a minimal promoter with the luciferase reporter containing this IR-1 was transactivated by FXR. Deletion or mutation of this IR-1 abolished FXR-mediated promoter activation, indicating that this IR-1 element is responsible for the promoter transactivation by FXR. We conclude that kininogen is a novel and direct target of FXR, and bile acids may play a role in the vasodilation and anti-coagulation processes.  相似文献   

10.
11.
12.
13.
Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.  相似文献   

14.
Farnesoid X receptor activates transcription of the phospholipid pump MDR3   总被引:13,自引:0,他引:13  
The human multidrug resistance gene MDR3 encodes a P-glycoprotein that belongs to the ATP-binding cassette transporter family (ABCB4). MDR3 is a critical trans-locator for phospholipids across canalicular membranes of hepatocytes, evidenced by the fact that human MDR3 deficiencies result in progressive familial intrahepatic cholestasis type III. It has been reported previously that MDR3 expression is modulated by hormones, cellular stress, and xenobiotics. Here we show that the MDR3 gene is trans-activated by the farnesoid X receptor (FXR) via a direct binding of FXR/retinoid X receptor alpha heterodimers to a highly conserved inverted repeat element (a FXR response element) at the distal promoter (-1970 to -1958). In FXR trans-activation assays, both the endogenous FXR agonist chenodeoxycholate and the synthetic agonist GW4064 activated the MDR3 promoter. Deletion or mutation of this inverted repeat element abolished FXR-mediated MDR3 promoter activation. Consistent with these data, MDR3 mRNA was significantly induced by both chenodeoxycholate and GW4064 in primary human hepatocytes in time- and dose-dependent fashions. In conclusion, we demonstrate that MDR3 expression is directly up-regulated by FXR. These results, together with the previous report that the bile salt export pump is a direct FXR target, suggest that FXR coordinately controls secretion of bile salts and phospholipids. Results of this study further support the notion that FXR is a master regulator of lipid metabolism.  相似文献   

15.
The nuclear receptor Farnesoid x receptor (FXR) is a critical regulator of multiple genes involved in bile acid homeostasis. The coactivators attracted to promoters of FXR target genes and epigenetic modifications that occur after ligand binding to FXR have not been completely defined, and it is unknown whether these processes are disrupted during cholestasis. Using a microarray, we identified decreased expression of mixed lineage leukemia 3 (MLL3), a histone H3 lysine 4 (H3K4) lysine methyl transferase at 1 and 3 days of post-common bile duct ligation (CBDL) in mice. Chromatin immunoprecipitation analysis (ChIP) analysis revealed that H3K4me3 of transporter promoters by MLL3 as part of activating signal cointegrator-2 -containing complex (ASCOM) is essential for activation of bile salt export pump (BSEP), multidrug resistance associated protein 2 (MRP2), and sodium taurocholate cotransporting polypeptide (NTCP) genes by FXR and glucocorticoid receptor (GR). Knockdown of nuclear receptor coactivator 6 (NCOA6) or MLL3/MLL4 mRNAs by small interfering RNA treatment led to a decrease in BSEP and NTCP mRNA levels in hepatoma cells. Human BSEP promoter transactivation by FXR/RXR was enhanced in a dose-dependent fashion by NCOA6 cDNA coexpression and decreased by AdsiNCOA6 infection in HepG2 cells. GST-pull down assays showed that domain 3 and 5 of NCOA6 (LXXLL motifs) interacted with FXR and that the interaction with domain 5 was enhanced by chenodeoxycholic acid. In vivo ChIP assays in HepG2 cells revealed ligand-dependent recruitment of ASCOM complex to FXR element in BSEP and GR element in NTCP promoters, respectively. ChIP analysis demonstrated significantly diminished recruitment of ASCOM complex components and H3K4me3 to Bsep and Mrp2 promoter FXR elements in mouse livers after CBDL. Taken together, these data show that the "H3K4me3" epigenetic mark is essential to activation of BSEP, NTCP, and MRP2 genes by nuclear receptors and is downregulated in cholestasis.  相似文献   

16.
Farnesoid X receptor (FXR) serves as a receptor for chenodeoxycholic acid (CDCA) and other bile acids, and it coordinates cholesterol and lipid metabolism. Because targeting the FXR-CDCA interaction might provide a way to regulate lipid homeostasis, we developed an FXR binding assay based on fluorescence polarization. Employing a fluorescently labeled CDCA (CDCA-F), we showed that CDCA-F selectively bound to the ligand binding domain of FXR (FXR-LBD) among nuclear receptors. The assay was then used for screening inhibitors against the FXR-CDCA interaction, thereby discovering four relatively potent inhibitors. The selected inhibitors were further studied for changes in intrinsic tryptophan fluorescence of FXR-LBD to gain structural insights into the interaction. Furthermore, transactivation effects of the inhibitors on the human bile salt excretory pump (BSEP) promoter were examined to reveal their cellular activities in the FXR-mediated pathway. Therefore, we demonstrated that the developed assay would offer an efficient primary screening tool for identifying FXR modulators.  相似文献   

17.
18.
In this study we demonstrate that the class II nuclear hormone receptor, farnesoid X-receptor (FXR), incorporates histone methyltransferase activity within the gene locus for bile salt export pump (BSEP), a well established FXR target gene that functions as an ATP-dependent canalicular bile acid transporter. This methyltransferase activity is directed specifically to arginine 17 of histone H3. We demonstrate that FXR is directly associated with co-activator-associated arginine methyltransferase 1 (CARM1) activity. Furthermore, we show by chromatin immunoprecipitation that the ligand-dependent activation of the human BSEP locus is associated with a simultaneous increase of FXR and CARM1 occupation. The increased occupation of the BSEP locus by CARM1 also corresponds with the increased deposition of Arg-17 methylation and Lys-9 acetylation of histone H3 within the FXR DNA-binding element of BSEP. Consistent with these findings, CARM1 led to increased BSEP promoter activity with an intact FXR regulatory element, whereas CARM1 failed to transactivate the BSEP promoter with a mutated FXRE. Induction of endogenous BSEP mRNA and Arg-17 methylation by FXR regulatory element ligand, CDCA, requires CARM1 activity. Therefore, histone methylation at Arg-17 by CARM1 is a downstream target of signaling through ligand-mediated activation of FXR. Our studies provide evidence that FXR directly recruits specific chromatin modifying activity of CARM1 necessary for full potentiation of the BSEP locus in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号