首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor-host interactions: the role of inflammation   总被引:1,自引:0,他引:1  
It is well established that interactions between tumor cells and the host tissue stroma play a key role in determining whether and how any given solid malignancy will develop. In most cases, tumor cells hijack stromal cell functions for their own benefit and ultimately dictate the rules of engagement to the host tissue microenvironment. However, the contribution of the different stromal cell components to tumor growth remains to be clarified. Because most solid tumors are accompanied by a local inflammatory response, it has long been thought that inflammation and carcinogenesis are related. If formal proof that cancer can be initiated by inflammation in the absence of exogenous carcinogens is still lacking, there is abundant evidence that the inflammatory response can play a central role in modulating tumor growth and progression. This review will discuss some of the mechanisms whereby inflammation can both enhance and inhibit tumor growth.  相似文献   

2.
The stroma is a main driver of metastasis and aggressiveness in pancreatic cancer (PC), one of the deadliest malignancies worldwide. Pancreatic stellate cells (PSCs) form approximately 50% of the pancreatic tumor stroma, causing desmoplasia, extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT) and metastatic spread. Furthermore, activated PSCs can remodel the pancreatic tumor microenvironment (TME) via dynamic and complex interactions and feedback loops with PC cells, thus facilitating tumor growth through various signalling and immune pathways. Hence, increased understanding of these cellular cross-talks and how they shape the TME in PC might guide the development of novel treatment approaches against this stubborn and deadly malignancy that has so far resisted therapeutic advances. In this review, we will explore the role of the stroma and PSCs in PC development, invasion and metastasis, examine their interaction with PC cells and discuss potential treatment approaches aimed at targeting PSCs in order to reprogram the pancreatic tumor environment.  相似文献   

3.
Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development.In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.  相似文献   

4.
Cancer cells exist in a mechanically and chemically heterogeneous microenvironment which undergoes dynamic changes throughout neoplastic progression. During metastasis, cells from a primary tumor acquire characteristics that enable them to escape from the primary tumor and migrate through the heterogeneous stromal environment to establish secondary tumors. Despite being linked to poor prognosis, there are no direct clinical tests available to diagnose the likelihood of metastasis. Moreover, the physical mechanisms employed by metastatic cancer cells to migrate are poorly understood. Because metastasis of most solid tumors requires cells to exert force to reorganize and navigate through dense stroma, we investigated differences in cellular force generation between metastatic and non-metastatic cells. Using traction force microscopy, we found that in human metastatic breast, prostate and lung cancer cell lines, traction stresses were significantly increased compared to non-metastatic counterparts. This trend was recapitulated in the isogenic MCF10AT series of breast cancer cells. Our data also indicate that increased matrix stiffness and collagen density promote increased traction forces, and that metastatic cells generate higher forces than non-metastatic cells across all matrix properties studied. Additionally, we found that cell spreading for these cell lines has a direct relationship with collagen density, but a biphasic relationship with substrate stiffness, indicating that cell area alone does not dictate the magnitude of traction stress generation. Together, these data suggest that cellular contractile force may play an important role in metastasis, and that the physical properties of the stromal environment may regulate cellular force generation. These findings are critical for understanding the physical mechanisms of metastasis and the role of the extracellular microenvironment in metastatic progression.  相似文献   

5.
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.  相似文献   

6.
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.  相似文献   

7.
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called "tumor-educated platelets." Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.  相似文献   

8.
Within the tumor microenvironment is a dynamic exchange between cancer cells and their surrounding stroma. This complex biologic system requires carefully designed models to understand the role of its stromal components in carcinogenesis, tumor progression, invasion, and metastasis. Secreted protein acidic and rich in cysteine (SPARC) is a prototypic matricellular protein at the center of this exchange. Two decades of basic science research combined with recent whole genome analyses indicate that SPARC is an important player in vertebrate evolution, normal development, and maintenance of normal tissue homeostasis. Therefore, SPARC might also play an important role in the tumor microenvironment. Clinical evidence indicates that SPARC expression correlates with tumor progression, but tightly controlled animal models have shown that the role of SPARC in tumor progression is dependent on tissue and tumor cell type. In this Prospectus, we review the current understanding of SPARC in the tumor microenvironment and discuss current and future investigations of SPARC and tumor-stromal interactions that require careful consideration of growth factors, cytokines, proteinases, and angiotropic factors that might influence SPARC activity and tumor progression.  相似文献   

9.
The stroma in human carcinomas consists of extracellular matrix and various types of non-carcinoma cells, mainly leukocytes, endothelial cells, fibroblasts, myofibroblasts and bone marrow-derived progenitors. The tumor-associated stroma actively supports tumor growth by stimulating neo-angiogenesis, as well as proliferation and invasion of apposed carcinoma cells. It has long been accepted that alterations within carcinoma cells mediate metastasis in a cell-autonomous fashion. Recent studies have, however, suggested an additional notion that cancer cells instigate local and systemic changes in the tumor microenvironment and contribute to niche formation for metastasis. Research, aiming to establish the roles of the tumor-associated stroma in facilitating the spread of carcinoma cells into distant organs, has provided an abundance of data and greater knowledge of the biology of metastatic carcinoma cells and associated stromal cells. This has stimulated further advances in the development of novel therapeutic approaches targeting tumor metastasis.  相似文献   

10.
Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer.  相似文献   

11.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME.  相似文献   

12.
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers.  相似文献   

13.
The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the “Autophagy Paradox”. We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm “The Autophagic Tumor Stroma Model of Cancer Cell Metabolism” or “Battery-Operated Tumor Growth”. In this sense, autophagy in the tumor stroma serves as a “battery” to fuel tumor growth, progression, and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients—both effectively “starving” cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the up-regulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression, and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a “lethal” aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy, and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia.  相似文献   

14.
As cells undergo oncogenic transformation and as malignant cells arrive at metastatic sites, a complex interplay occurs with the surrounding stroma. This dialogue between the tumor and stroma ultimately dictates the success of the tumor cells in the given microenvironment. As a result, understanding the molecular mechanisms at work is important for developing new therapeutic modalities. Proteases are major players in the interaction between tumor and stroma. This review will focus on the role of proteases in modulating tumor–stromal interactions of both primary breast and prostate tumors as well as at bone metastatic sites in a way that favors tumor growth.  相似文献   

15.
Around 95% of patients diagnosed with pancreatic cancer will die of their disease within 5 years, three quarters within a year. The major hurdle in improving prognosis is the lack of a therapeutic time window. Early cancerous lesions are far beneath our threshold of detection. Therefore, at the time of diagnosis even early (T1) tumors can be metastatic and resistant to conventional treatments. Several therapies targeting epithelial tumor cells-all showing impressive results in vitro and in animal experiments-have failed to show relevant effects in clinical trials. This discrepancy between experimental data and clinical reality results mostly from the inefficiency of our current experimental setups in recreating the tumor microenvironment. Forming more than 80% of the tumor mass, the fibrotic stroma of pancreatic ductal adenocarcinoma is not a passive scaffold for the malignant cells but an active player in carcinogenesis. This component is mostly missing in the xeno-/allograft- mouse models. Although tumors are bigger if stellate cells are co-implanted, due to the disproportionate cancer/stromal cell ratio and -possibly- too rapid tumor growth, the stromal reaction is much smaller than in human pancreatic cancer. One the other hand, desmoplasia is present only in some of the genetically engineered mouse models. Clinically, stromal activity of the pancreatic ductal adenocarcinoma has as great an impact on patient prognosis as the lymph node status of the tumor. The exact molecular mechanisms behind this observation remain obscure. However, one possible fundamental biologic explanation could be that selective pressure applied by the stroma leads to the evolution of cancer cells. Consequently, somatic evolution of invasive cancer could be viewed as a sequence of phenotypical adaptations to this barrier, highlighting the importance of the fibrotic tumor microenvironment in the behavior of pancreatic cancer. In this review, the interaction of the epithelial tumor cells with the stroma in humans and in various animal models is scrutinized, and novel therapeutic options for uncoupling cancer-stroma interactions are discussed.  相似文献   

16.
Tumor progression is a multistep phenomenon in which tumor-associated stromal cells perform an intricate cross-talk with tumor cells, supplying appropriate signals that may promote tumor aggressiveness. Among several cell types that constitute the tumor stroma, the discovery that bone marrow-derived mesenchymal stem cells (BM-MSC) have a strong tropism for tumors has achieved notoriety in recent years. Not only are the BM-MSC recruited, but they can also engraft at tumor sites and transdifferentiate into cells such as activated fibroblasts, perivascular cells and macrophages, which will perform a key role in tumor progression. Whether the BM-MSC and their derived cells promote or suppress the tumor progression is a controversial issue. Recently, it has been proposed that proinflammatory stimuli can be decisive in driving BM-MSC polarization into cells with either tumor-supportive or tumor-repressive phenotypes (MSC1/MSC2). These considerations are extremely important both to an understanding of tumor biology and to the putative use of BM-MSC as “magic bullets” against tumors. In this review, we discuss the role of BM-MSC in many steps in tumor progression, focusing on the factors that attract BM-MSC to tumors, BM-MSC differentiation ability, the role of BM-MSC in tumor support or inhibition, the immunomodulation promoted by BM-MSC and metastatic niche formation by these cells.  相似文献   

17.
Beyond tumorigenesis: cancer stem cells in metastasis   总被引:38,自引:0,他引:38  
The importance of cancer stem cells (CSCs) in tumor-initiation has been firmly established in leukemia and recently reported for a variety of solid tumors. However, the role of CSCs in multistage cancer progression, particularly with respect to metastasis, has not been well-defined. Cancer metastasis requires the seeding and successful colonization of specialized CSCs at distant organs. The biology of normal stem cells and CSCs share remarkable similarities and may have important implications when applied to the study of cancer metastasis. Furthermore, overlapping sets of molecules and pathways have recently been identified to regulate both stem cell migration and cancer metastasis. These molecules constitute a complex network of cellular interactions that facilitate both the initiation of the pre-metastasis niche by the primary tumor and the formation of a nurturing organ microenvironment for migrating CSCs. In this review, we surveyed the recent advances in this dynamic field and propose a unified model of cancer progression in which CSCs assume a central role in both tumorigenesis and metastasis. Better understanding of CSCs as a fundamental component of the metastatic cascade will lead to novel therapeutic strategies against metastatic cancer.  相似文献   

18.
The extracellular matrix (ECM) molecule tenascin-C (TNC) promotes tumor progression. This has recently been demonstrated in the stochastic murine RIP1-Tag2 insulinoma model, engineered to either express TNC abundantly or to be devoid of TNC. However, our knowledge about organization of the TNC microenvironment is scant. Here we determined the spatial distribution of TNC together with other ECM molecules in murine RIP1-Tag2 insulinoma and human cancer tissue (insulinoma and colorectal carcinoma). We found that TNC is organized in matrix tracks together with other ECM molecules of the AngioMatrix signature, a previously described gene expression profile that characterizes the angiogenic switch. Moreover, stromal cells including endothelial cells, fibroblasts and leukocytes were enriched in the TNC tracks. Thus, TNC tracks may provide niches for stromal cells and regulate their behavior. Given similarities of TNC rich niches for stromal cells in human insulinoma and colon cancer, we propose that the RIP1-Tag2 model may be useful for providing insights into the contribution of the tumor stroma specific ECM as promoter of cancer progression.  相似文献   

19.
《Cytotherapy》2022,24(7):699-710
Pancreatic cancer is a highly lethal cancer characterized by local invasiveness, early metastasis, recurrence and high resistance to current therapies. Extensive stroma or desmoplasia is a key histological feature of the disease, and interactions between cancer and stromal cells are critical for pancreatic cancer development and progression. Mesenchymal stromal cells [MSCs] exhibit preferential tropism to primary and metastatic tumor sites and may either suppress or support tumor growth. Although MSCs represent a potential source of pancreatic cancer stroma, their contribution to pancreatic tumor growth remains poorly known. Here, we show that bone marrow MSCs significantly contribute to pancreatic cancer growth in vitro and in vivo. Furthermore, MSCs create a pro-carcinogenic microenvironment through the release of key factors mediating growth and angiogenesis, including interleukin (IL)-6, IL-8, vascular endothelial growth factor and activation of STAT3 signaling in tumor cells. IL-6 released by MSCs was largely responsible for the pro-tumorigenic effects of MSCs. Knockdown of IL-6 expression in MSCs by small interfering RNA (siRNA) abolished the MSC growth-promoting effect in vitro, reducing tumor cell proliferation and clonogenic potential. In addition, in a heterotopic nude mouse model of human pancreatic tumor xenografts, blockade of IL-6 with the anti-IL-6 receptor antibody, tocilizumab, or of its downstream effector STAT3 with the small molecule STAT3 inhibitor S3I-201, abrogated MSC-mediated tumor promotion and delayed tumor formation significantly. Our data demonstrate that MSCs promote pancreatic cancer growth, with IL-6 produced by MSCs playing a pivotal role.  相似文献   

20.
Cholangiocarcinoma (CCA) is a relatively rare malignant and lethal tumour derived from bile duct epithelium and the morbidity is now increasing worldwide. This disease is difficult to diagnose at its inchoate stage and has poor prognosis. Therefore, a clear understanding of pathogenesis and major influencing factors is the key to develop effective therapeutic methods for CCA. In previous studies, canonical correlation analysis has demonstrated that tumour microenvironment plays an intricate role in the progression of various types of cancers including CCA. CCA tumour microenvironment is a dynamic environment consisting of authoritative tumour stromal cells and extracellular matrix where tumour stromal cells and cancer cells can thrive. CCA stromal cells include immune and non‐immune cells, such as inflammatory cells, endothelial cells, fibroblasts, and macrophages. Likewise, CCA tumour microenvironment contains abundant proliferative factors and can significantly impact the behaviour of cancer cells. Through abominably intricate interactions with CCA cells, CCA tumour microenvironment plays an important role in promoting tumour proliferation, accelerating neovascularization, facilitating tumour invasion, and preventing tumour cells from organismal immune reactions and apoptosis. This review summarizes the recent research progress regarding the connection between tumour behaviours and tumour stromal cells in CCA, as well as the mechanism underlying the effect of tumour stromal cells on the growth of CCA. A thorough understanding of the relationship between CCA and tumour stromal cells can shed some light on the development of new therapeutic methods for treating CCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号