首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botulinum toxin injection into the pylorus is reported to improve gastric emptying in gastroparesis. Classically, botulinum toxin inhibits ACh release from cholinergic nerves in skeletal muscle. The aim of this study was to determine the effects of botulinum toxin on pyloric smooth muscle. Guinea pig pyloric muscle strips were studied in vitro. Botulinum toxin type A was added; electric field stimulation (EFS) was performed every 30 min for 6 h. ACh (100 microM)-induced contractile responses were determined before and after 6 h. Botulinum toxin caused a concentration-dependent decrease of pyloric contractions to EFS. At a low concentration (2 U/ml), botulinum toxin decreased pyloric contractions to EFS by 43 +/- 9% without affecting ACh-induced contractions. At higher concentrations (10 U/ml), botulinum toxin decreased pyloric contraction to EFS by 75 +/- 7% and decreased ACh-induced contraction by 79 +/- 9%. In conclusion, botulinum toxin inhibits pyloric smooth muscle contractility. At a low concentration, botulinum toxin decreases EFS-induced contractile responses without affecting ACh-induced contractions suggesting inhibition of ACh release from cholinergic nerves. At higher concentrations, botulinum toxin directly inhibits smooth muscle contractility as evidenced by the decreased contractile response to ACh.  相似文献   

2.
The physiological and pharmacological properties of contraction and the ultrastructure of buccal mass retractor muscle (I4) and gill-pinnule closure muscle (GPCM) in Aplysia kurodai were studied to learn more about the sources of activator Ca2+ in molluscan smooth muscle. Acetylcholine (ACh) and high K+-induced contractions were reduced by lowering the external Ca2+ concentration, and eliminated by the removal of extracellular Ca2+. Nifedipine appreciably reduced ACh- and high K+-induced contractions, while amiloride decreased only ACh-induced contractions and had no significant effect on high K+-induced contractions. When nifedipine and amiloride were applied together, either type of contraction was still appreciable. Serotonin (5-HT) could potentiate subsequent ACh- and high K+-induced contractions in I4; potentiated tension was significantly reduced by nifedipine and amiloride, whereas 5-HT inhibited ACh-and high K+-induced contractions in GPCM. The potentiating effects of 5-HT may be mediated by the activation of the Ca2+-channel to increase the influx from extracellular Ca2+. Caffeine caused contractions in Ca2+-free solution in both muscles. Electron microscopy revealed sarcolemmal vesicles underneath the plasma membrane in both muscle fibers. Electron microscopical cytochemistry demonstrated that pyroantimonate precipitates were localized in the sarcolemmal vesicles and in the inner surface of plasma membranes in the resting fibers. Present results indicate that the contractions of I4 and GPCM fibers are caused not only by Ca2+-influx but also by Ca2+ release from the intracellular storage sites, such as the sarcolemmal vesicles and the inner surface of plasma membranes.  相似文献   

3.
Experiments were designed to determine whether the airway epithelium affects the membrane potential of the underlying smooth muscle. The effect of epithelium removal (by gentle rubbing) on the responsiveness of isolated canine bronchi was studied. Simultaneous recordings of mechanical and electrical activity were made in paired circumferential strips (with and without epithelium) of third-order bronchi. Changes in tension were recorded with a force transducer, and changes in membrane potential were measured with a microelectrode. The cell membrane potential and resting tension of the bronchial smooth muscle were stable over a 150-min period and were not affected by removal of the epithelium. In the presence of antagonists at muscarinic and adrenergic receptors, the resting tension and membrane potential were comparable in preparations with and without epithelium. By contrast, the anticholinesterase, echothiophate, caused depolarization in bronchi without epithelium. Exposure to high potassium induced similar levels of depolarization and contraction in tissues with and without epithelium. No significant differences in threshold for depolarization or for mechanical activation in the membrane potential-tension relationship were noted in the presence or absence of epithelium. In the presence of echothiophate, removal of the epithelium augmented the contraction of the bronchi to acetylcholine; the depolarization of the cell membrane induced by the cholinergic transmitter was significantly larger than in control tissues, even when matched contractions were compared. These observations indicate that the respiratory epithelium generates an inhibitory substance that dampens depolarization and contraction of bronchial smooth muscle caused by acetylcholine.  相似文献   

4.
The tracheobronchial epithelium produces inhibitory substance(s) that alter the tracheal smooth muscle tension. This study examined the effect of changes in extracellular Ca2+ and temperature in vitro on the tension response of rabbit trachealis muscle to mechanical removal of the epithelium. Tension during acetylcholine- and KCl-induced contractions was examined at 0, 0.75, 1.5, 2.5, and 5 mM bath Ca2+ concentrations and at 37, 30, 23, and 41 degrees C bath temperature. At most extracellular Ca2+ concentrations (i.e., 0.75, 1.5, 2.5, and 5 mM), epithelial removal shifted the acetylcholine concentration response approximately one-half log to the left (P less than 0.001 for each condition) but had no effect on the responses to KCl (P = NS). Reductions in bath Ca2+ to 0 mM eliminated the epithelial inhibitory effect on the acetylcholine response. In contrast to the effects of reductions in Ca2+, cooling the airway to 30 and 23 degrees C progressively diminished the magnitude of the epithelial inhibitory effect. Our results indicate that the influence of the tracheal epithelium on tracheal smooth muscle responses to constrictor agonists is substance specific and can be diminished by reductions in tracheal temperature and extracellular Ca2+ concentration.  相似文献   

5.
Contractions of an echinoderm (sp. Sclerodactyla briareus) smooth muscle, the longitudinal muscle of the body wall (LMBW), were evoked by acetylcholine (ACh) and agonists: epibatidine, muscarine and nicotine (in order of force generation: ACh>muscarine=epibatidine>nicotine). ACh-induced contractions were blocked by atropine by 50%, and methoctramine, by 30%. ACh responses were also blocked by 25% by methyllycaconitine (MLA) but not by d-tubocurarine (dTC). Muscarine initiated large contractions that were completely blocked by atropine. To elucidate possible muscarinic ACh receptor (mAChR) subtypes, muscarinic agonists (oxotremorine, pilocarpine) and antagonists (methoctramine, pirenzepine) were tested. Oxotremorine, pilocarpine, and pirenzepine each enhanced resting tonus and potentiated ACh-induced contractions (order of potency: pilocarpine>oxotremorine=pirenzepine). Muscarine, oxotremorine or pirenzepine generated phasic, rhythmic contractions. Nicotine-induced contractions were almost completely blocked by dTC but were not altered by atropine. Large contractions evoked by epibatidine were potentiated by dTC whereas atropine had no effect on them. MLA blocked spontaneous rhythmicity. Cholinesterase inhibitors, neostigmine or physostigmine, caused marked potentiation of ACh-induced contractions and initiated rhythmic slow wave contractions in previously quiescent muscles. The present pharmacological evidence points to the co-existence of excitatory nicotinic ACh receptor (nAChRs) and mAChRs where nAChRs possibly modulate tone, and the mAChRs initiate and enhance rhythmicity.  相似文献   

6.
To determine whether airway smooth muscle undergoes a maturational change regarding force generation, length-tension relationships were determined in isolated trachealis strips from adult and preterm sheep. At the length of maximum force generation, passive active and total tensions of the adult muscle were 2.5 times greater than preterm values (P less than 0.001). KCl stimulation yielded a greater peak tension in the adult strips than in the preterm strips (P less than 0.01). Preterm strips required higher concentrations of KCl to initiate contractions and higher concentrations to reach peak tension. Acetylcholine- (ACh) induced contraction resulted in greater force development at each dose in the adult strips compared with preterm strips (P less than 0.001). The dose of ACh required to reach a half-maximal response was significantly less for the adult strips than for the preterm strips (P less than 0.005). These data demonstrate that both force generation and receptor sensitivity increase with age. This inability of immature smooth muscle to generate as much force as adult smooth muscle may help explain why very preterm neonates requiring intermittent positive-pressure ventilation are at risk for developing structural airway problems.  相似文献   

7.
This study provides pharmacological evidence for the presence of GABAergic neurons innervating the longitudinal muscle of the body wall (LMBW) of holothurians. Gamma-aminobutyric acid (GABA) A and B receptor subtypes were both present in this system and regulated spontaneous contractions as well as responses to acetylcholine (ACh) that stimulated contraction of the LMBW. GABA dose-dependently relaxed the resting tone of the LMBW. GABA (10(-5) M) inhibited ACh-induced (10(-4) M) contractions by 20%. The GABA B agonist, baclofen, relaxed the LMBW, an effect potentiated by GABA. Pretreatment with baclofen (10(-4) M) inhibited ACh (10(-4) M) contractions of the LMBW by 50%. Phaclofen, a GABA receptor B antagonist, caused a dose-dependent increase in resting tension. Phaclofen-induced (10(-5) M) contractions were reversed by the addition of GABA or baclofen (10(-4) M) and potentiated by the addition of another GABA B receptor antagonist, 2-hydroxy-saclofen (10(-5) M). Pretreatment with phaclofen (10(-5) M) caused a marked potentiation of ACh-induced (10(-4) M) contractions by 101%. 2-Hydroxy-saclofen (10(-5) M) had a toxic effect on the LMBW, rendering it completely unresponsive either to ACh or to a second exposure to GABA, and so exhibiting cross-desensitization. Muscimol, a GABA A receptor agonist, had no effect on the resting tension of the LMBW. Curiously, pretreatment of the muscle with muscimol (10(-5) M) potentiated ACh-evoked (10(-4) M) contractions by nearly 20%. Bicuculline (10(-5) M), a GABA A receptor antagonist, generated large, sustained contractions and partially blocked GABA-induced (10(-4) M) relaxation. Like 2-hydroxy-saclofen, bicuculline (10(-5) M) had a profound cross-desensitizing effect on the LMBW to subsequent exposures to GABA and ACh. ACh was unable to potentiate the sustained contractions induced by bicuculline.  相似文献   

8.
We studied the effect of epithelial removal and intraepithelial administration of human eosinophil granule major basic protein (MBP) on the contraction of underlying canine tracheal smooth muscle in 23 dogs in vivo. A dual in situ tracheal preparation was utilized that allowed sharp excision of epithelium. The response to intra-arterial acetylcholine (ACh) was augmented substantially in five dogs receiving 200 micrograms MBP by intraepithelial instillation. Active tension elicited by 10(-8) mol intra-arterial ACh was 34.0 +/- 2.2 g/cm before and 46.1 +/- 2.6 g/cm 30 min after MBP (P less than 0.002). There was no change in active tension in the control segment in the same dogs after intraepithelial instillation of vehicle only (34.7 +/- 3.2 vs. 34.4 +/- 2.3 g/cm; P = NS). Instillation of MBP directly into the subepithelial tracheal smooth muscle did not alter contraction. To assess whether this augmentation was caused by inhibition of an epithelial-derived relaxant factor, additional studies were performed in nine other dogs in which the epithelium was excised discretely from one of the two tracheal segments. No significant differences in contractile response to ACh or relaxation response to isoproterenol were observed at 2, 15, 30, or 60 min after epithelial excision. We demonstrate that intraepithelial administration of MBP augments the contraction of underlying canine tracheal smooth muscle elicited by ACh. This augmentation is a direct effect of MBP and does not require antagonism of epithelial inhibition.  相似文献   

9.
The airway epithelium is responsible for the production of a number of arachidonic acid and non-prostanoid inhibitory factors. Epithelium synthesises nitric oxide (NO) which may be important in regulating the function of airways smooth muscles. We studied in vitro the effect of histamine (100 nM-100 microM) which increases the NO release on rabbit airway smooth muscles induced by 80 mM KC1 in the presence or not of 10(-5) Methylene blue (MB) (inactivator of guanylate cyclase) or N(G)-monomethyl L-arginine (L-NMMA), a NOS inhibitor. All experiments were done in tracheal muscle strips from 28 rabbits with epithelium and after epithelium removal. The additional use of histamine (1 microM) on KC1 contraction induced a relaxation of 10% of the initial contraction. The additional use of L-NMMA decreased the relaxation to 5% of initial contraction. MB rather than L-NMMA increased the contraction significantly (p<0.01). Epithelium removal increased the contraction induced by KC1 (80 mM) and histamine (1 microM) by about 30% (p<0.001). NO release especially from epithelium regulates the airways smooth muscle functions. Damage to the epithelium may contribute to an increase in airways sensitivity, observed in asthma.  相似文献   

10.
The effect of lignocaine on tone and contractility of intestinal smooth muscle, and on contractures produced by ACh or TEA, was studied in isolated ileum of the rat. Lignocaine (0.1-100 microM) produced concentration-dependent contractures in the rat ileum. In low concentrations, lignocaine increased the amplitude of spontaneous contractions and contractions produced by transmural stimulation. High concentrations of lignocaine abolished all contractile responses and produced a marked contracture in rat ileum. Lignocaine (10 microM) also reduced the contractures produced by ACh (0.01-10 microM). In contrast, the contractures produced by TEA (0.1-10 mM) were markedly increased by lignocaine. Furthermore, the contracture produced by lignocaine was reduced by lowering the external calcium from 2.5 mM to 1.5 mM. It was concluded that lignocaine in moderate and high concentrations produces a contracture in rat intestinal smooth muscle. Whereas lignocaine reduces the ACh-induced contracture, it increases that produced by TEA in the same preparation. The results further suggest that lignocaine modifies cholinergic responses and affects excitation-contraction coupling in rat intestinal smooth muscle.  相似文献   

11.
Increased intracellular calcium concentration ([Ca2+]i) is required for smooth muscle contraction. In tracheal and other tonic smooth muscles, contraction and elevated [Ca2+]i are maintained as long as an agonist is present. To evaluate the physiological role of steady-state increases in Ca2+ on tension maintenance, [Ca2+]i was elevated using ionomycin, a Ca2+ ionophore or charybdotoxin, a large-conductance calcium-activated potassium channel (KCa) blocker prior to or during exposure of tracheal smooth muscle strips to Ach (10–9 to 10–4 M). Ionomycin (5 µM) in resting muscles induced increases in [Ca2+]i to 500±230 nM and small increases in force of 2.6±2.3 N/cm2. This tension is only 10% of the maximal tension induced by ACh. Charybdotoxin had no effect on [Ca2+]i or tension in resting muscle. After pretreatment of muscle with ionomycin, the concentration-response relationship for ACh-induced changes in tension shifted to the left (EC50=0.07±0.05 µM ionomycin; 0.17±0.07 µM, control, p<0.05). When applied to the muscles during steady-state responses to submaximal concentrations of ACh, both ionomycin and charybdotoxin induced further increases in tension. The same magnitude increase in tension occurs after ionomycin and charybdotoxin treatment, even though the increase in [Ca2+]i induced by charybdotoxin is much smaller than that induced by ionomycin. We conclude that the resting muscle is much less sensitive to elevation of [Ca2+]i when compared to muscles stimulated with ACh. Steady-state [Ca2+]i limits tension development induced by submaximal concentrations of ACh. The activity of KCa moderates the response of the muscle to ACh at concentrations less than 1 µM.  相似文献   

12.
Role of M2 muscarinic receptors in airway smooth muscle contraction   总被引:7,自引:0,他引:7  
Airway smooth muscle expresses both M2 and M3 muscarinic receptors with the majority of the receptors of the M2 subtype. Activation of M3 receptors, which couple to Gq, initiates contraction of airway smooth muscle while activation of M2 receptors, which couple to Gi, inhibits beta-adrenergic mediated relaxation. Increased sensitivity to intracellular Ca2+ is an important mechanism for agonist-induced contraction of airway smooth muscle but the signal transduction pathways involved are uncertain. We studied Ca2+ sensitization by acetylcholine (ACh) and endothelin-1 (ET-1) in porcine tracheal smooth muscle by measuring contractions at constant [Ca2+] in strips permeabilized with Staphylococcal alpha-toxin. Both ACh and ET-1 contracted airway smooth muscle at constant [Ca2+]. Pretreatment with pertussis toxin for 18-20 hours reduced ACh contractions, but had no effect on those of ET-1 or GTPgammaS. We conclude that the M2 muscarinic receptor contributes to airway smooth muscle contraction at constant [Ca2+] via the heterotrimeric G-protein Gi.  相似文献   

13.
To elucidate the possible role of Rho A/Rho-kinase on lysophosphatidic acid (LPA)-induced contraction in intact guinea-pig ileal smooth muscle, we examined effects of pretreatment with a specific inhibitor of Rho-kinase (Y-27632) on the LPA-induced contraction and MLC20 phosphorylation. In addition, we investigated whether LPA actually elicits an activation of Rho A by studying subcellular distribution of Rho A in unstimulated and stimulated smooth muscles by LPA. LPA induced a less intense, but sustained, contraction compared with ACh, and was accompanied by significant increases in MLC20 phosphorylation. The effects of LPA on tension and MLC20 phosphorylation were inhibited by Y-27632. The ACh-induced contraction, but not increases in MLC20 phosphorylation, was partially inhibited by Y-27632. High K+-induced contraction was unaffected by the inhibitor. LPA stimulated translocation of Rho A from the cytosol to the membrane fraction of the muscle. Translocation of Rho A was also induced by ACh and high K+. These results suggest that LPA-induced contraction of intact ileal smooth muscle is dominated through activation of Rho A and Rho-kinase and subsequent increases in MLC20 phosphorylation.  相似文献   

14.
The nature of ATP release from mainly smooth muscles of guinea-pig was evaluated with KCl and agonists for different kinds of receptors. In ileal longitudinal muscles, amounts of net ATP release by ACh and bethanechol (1-10 microM) were much larger (about 10 fold) than that by other drugs, e.g., histamine, 5-hydroxytryptamine, prostaglandin-F2 alpha, substance P and bradykinin, including KC1, although differences between contractions of the tissue evoked by test drugs were approximately 1.5 times at most. The ATP release, as well as the contraction, evoked by ACh or bethanechol was markedly reduced by atropine (0.3 microM), thus, indicating primarily postjunctional release of ATP. The remarkable ATP release from vas deferens by norepinephrine (NE), but not by substance P, was abolished almost completely by prazosin (0.3 microM). Increases in intracellular Ca2+ and subsequent contraction in the ileal tissue were produced by ATP and these responses were fully antagonized by nifedipine (0.1 microM). These findings provide evidence that the drugs-stimulated ATP release from smooth muscles does not result from contractility of muscles, but is substantially elicited only by stimulation of neurotransmitter (NE or ACh) receptors, suggesting the existence of the receptor-stimulus-postjunctional ATP release coupling. The released ATP may contribute, in part, to the muscle contractility via increase of Ca2(+)-influx, presumably, in a manner related to the voltage-gated Ca2(+)-channels.  相似文献   

15.
The effects of eugenol (1-2000 microM) on rat isolated ileum were studied. Eugenol relaxed the basal tonus (IC50 83 microM) and the ileum precontracted with 60 mM KCl (IC50 162 microM), an action unaltered by 0.5 microM tetrodotoxin, 0.2 mM N(G)-nitro-L-arginine methyl ester, 0.5 mM hexamethonium, and 1 microM indomethacin. Eugenol did not alter the resting transmembrane potential (Em) of the longitudinal muscle layer under normal conditions (5.0 mM K+) or in depolarised tissues. Eugenol reversibly inhibited contractions induced by submaximal concentrations of acetylcholine (ACh) and K+ (40 mM) with IC50 values of approximately 228 and 237 microM, respectively. Eugenol blocked the component of ACh-induced contraction obtained in Ca(2+)-free solution (0.2 mM EGTA) or in the presence of nifedipine (1 microM). Our results suggest that eugenol induces relaxation of rat ileum by a direct action on smooth muscle via a mechanism largely independent of alterations of Em and extracellular Ca2+ influx.  相似文献   

16.
库容性Ca2+内流参与ACh诱导的大鼠远端结肠平滑肌收缩   总被引:2,自引:0,他引:2  
Kong DH  Zhou H  Song J  Ke DP  Hu JL  Li ZW  Ma R 《生理学报》2006,58(2):149-156
应用生物换能技术和Ca^2+通道特异性阻断剂观察并记录大鼠离体远端结肠平滑肌收缩张力的变化,分析库容性Ca^2+内流(capacitative Ca^2+ entry,CCE)是否与ACh诱导的离体远端结肠平滑肌收缩反应有关。结果表明,以无钙的Krebs液灌流或应用EGTA螯合细胞外Ca^2+后,高K^+及ACh引起的远端结肠平滑肌收缩几乎完全消失。电压操纵性Ca^2+通道阻断剂verapamil也能减弱高K^+及ACh引起的远端结肠平滑肌收缩,其减弱的程度分别为74%和41%。在无钙的Krebs液中,5μmol/LACh可引起离体肠管瞬时性收缩,这是由肌质网(sarcoplasmic reticulum,SR)释放钙所致:然后加入10μmol/L阿托品(atropine),并在此基础上恢复细胞外Ca^2+(2.5mmol/L),结肠平滑肌则出现持续性收缩,待收缩反应达峰值时,加入5μmol/L verapamil,收缩无明显变化,且该收缩反应对钙库操纵性通道(store-operated Ca^2+ channel,socc)阻断剂La^3+敏感,20,50和100μmol/L的La^3+使上述收缩张力分别降低15%,23%和36%,且呈浓度依赖性,但对Cd^2+不敏感。研究结果提示,细胞外Ca^2+内流对高K^+及ACh介导的离体远端结肠平滑肌持续性收缩是必需的,由ACh诱导的远端结肠平滑肌收缩至少包括SR释放钙引起的短暂性收缩及受体操纵性Ca^2+通道(receptor-operated Ca^2+ channel,ROCC)、电压操纵性Ca^2+通道(voltage-operated Ca^2+ channel,VOCC)和CCE介导的胞外Ca^2+ 内流等途径。这将从通道水平进一步分析消化管平滑肌收缩的机制和特征,亦将为预防和控制因胃肠动力紊乱所致的消化管疾病寻求有针对性的药物干预和治疗提供理论依据。  相似文献   

17.
The activation of the small GTPase RhoA is necessary for ACh-induced actin polymerization and airway smooth muscle (ASM) contraction, but the mechanism by which it regulates these events is unknown. Actin polymerization in ASM is catalyzed by the actin filament nucleation activator, N-WASp and the polymerization catalyst, Arp2/3 complex. Activation of the small GTPase cdc42, a specific N-WASp activator, is also required for actin polymerization and tension generation. We assessed the mechanism by which RhoA regulates actin dynamics and smooth muscle contraction by expressing the dominant negative mutants RhoA T19N and cdc42 T17N, and non-phosphorylatable paxillin Y118/31F and paxillin ΔLD4 deletion mutants in SM tissues. Their effects were evaluated in muscle tissue extracts and freshly dissociated SM cells. Protein interactions and cellular localization were analyzed using proximity ligation assays (PLA), immunofluorescence, and GTPase and kinase assays. RhoA inhibition prevented ACh-induced cdc42 activation, N-WASp activation and the interaction of N-WASp with the Arp2/3 complex at the cell membrane. ACh induced paxillin phosphorylation and its association with the cdc42 GEFS, DOCK180 and α/βPIX. Paxillin tyrosine phosphorylation and its association with βPIX were RhoA-dependent, and were required for cdc42 activation. The ACh-induced recruitment of paxillin and FAK to the cell membrane was dependent on RhoA. We conclude that RhoA regulates the contraction of ASM by catalyzing the assembly and activation of cytoskeletal signaling modules at membrane adhesomes that initiate signaling cascades that regulate actin polymerization and tension development in response to contractile agonist stimulation. Our results suggest that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to agonist -induced smooth muscle contraction.  相似文献   

18.
Uteri of Anolis carolinensis exhibited spontaneous rhythmic contractions in vitro. Addition of arginine vasotocin (AVT) caused an immediate, strong, tonic contraction followed by rhythmic contractions with the same frequency as spontaneous contractions but of a greater amplitude. At low tension (1.5 g) the AVT-induced tonic contraction was blocked by low dose of indomethacin, suggesting that it is influenced by calcium rather than prostaglandins (PGs). An increase in tension (from 1.5 to 15 g) reduced the duration of the AVT-induced tonic contraction; this stretch-induced decrease was also blocked by indomethacin. Stretch also decreased the duration of the rhythmic contractions, but this stretch effect was not inhibited by indomethacin. The rest interval between rhythmic contractions was decreased by PGF2alpha and PGE2, and indomethacin or stretch blocked these PG effects. Indomethacin, AVT, or stretch alone did not affect PGF2alpha secretion from AVT-treated uteri. Stretch also reduced PGF2alpha secretion from AVT-treated uteri, an effect inhibited by indomethacin.  相似文献   

19.
This study provides pharmacological evidence for the presence of GABAergic neurons innervating the longitudinal muscle of the body wall (LMBW) of holothurians. γ-Aminobutyric acid (GABA) A and B receptor subtypes were both present in this system and regulated spontaneous contractions as well as responses to acetylcholine (ACh) that stimulated contraction of the LMBW. GABA dose-dependently relaxed the resting tone of the LMBW. GABA (10−5 M) inhibited ACh-induced (10−4 M) contractions by 20%. The GABA B agonist, baclofen, relaxed the LMBW, an effect potentiated by GABA. Pretreatment with baclofen (10−4 M) inhibited ACh (10−4 M) contractions of the LMBW by 50%. Phaclofen, a GABA receptor B antagonist, caused a dose-dependent increase in resting tension. Phaclofen-induced (10−5 M) contractions were reversed by the addition of GABA or baclofen (10−4 M) and potentiated by the addition of another GABA B receptor antagonist, 2-hydroxy-saclofen (10−5 M). Pretreatment with phaclofen (10−5 M) caused a marked potentiation of ACh-induced (10−4 M) contractions by 101%. 2-Hydroxy-saclofen (10−5 M) had a toxic effect on the LMBW, rendering it completely unresponsive either to ACh or to a second exposure to GABA, and so exhibiting cross-desensitization. Muscimol, a GABA A receptor agonist, had no effect on the resting tension of the LMBW. Curiously, pretreatment of the muscle with muscimol (10−5 M) potentiated ACh-evoked (10−4 M) contractions by nearly 20%. Bicuculline (10−5 M), a GABA A receptor antagonist, generated large, sustained contractions and partially blocked GABA-induced (10−4 M) relaxation. Like 2-hydroxy-saclofen, bicuculline (10−5 M) had a profound cross-desensitizing effect on the LMBW to subsequent exposures to GABA and ACh. ACh was unable to potentiate the sustained contractions induced by bicuculline. Accepted: 17 September 1998  相似文献   

20.
Calcitonin gene-related peptide (CGRP) relaxes vascular and intestinal smooth muscle. This study localized CGRP in the guinea pig gallbladder, examined the effects of CGRP on KCl- and ACh-induced contraction, and determined CGRPs site of action in the gallbladder. The gallbladder of male Hartley guinea pigs was used in in vitro tension studies, radioimmunoassay, or immunocytochemical studies. Radioimmunoassay showed that 8.0 +/- 0.5 pmol/g of immunoreactive CGRP was present. Immunocytochemistry demonstrated that immunoreactive-CGRP nerve fibers occurred around blood vessels, in gallbladder smooth muscle layers, and were associated with ganglia. No immunoreactive cell bodies were observed, even after colchicine treatment. The in vitro tension studies showed that CGRP inhibits either KCl- or acetylcholine-stimulated contraction. CGRP may in part act directly on the gallbladder smooth muscle to inhibit contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号