首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A heat transfer model was used to examine the possible sites for the cardiovascular control of heat exchange in ectothermic reptiles. 2. Predicted effects of changes in blood flow on heating and cooling remained constant or increased with mass. 3. Predicted sites at which changes in blood flow strongly affect heating and cooling rates differed between small (⩽1 kg) and large (⩾10 kg) reptiles. 4. In small reptiles (⩽1 kg) blood flow to appendages affected heating and cooling rates but blood flow to the torso had little effect on heat exchange. 5. In large animals (⩾10 kg) changing blood flow to either appendages or torso affected heat exchange; small changes in cardiac output have maximum effects when they occur at the appendages, but larger changes in cardiac output can achieve even larger effects by changing torso blood flow.  相似文献   

2.
The discovery that changes in heart rate and blood flow allow some reptiles to heat faster than they cool has become a central paradigm in our understanding of reptilian thermoregulation. However, this hysteresis in heart rate has been demonstrated only in simplistic laboratory heating and cooling trials, leaving its functional significance in free-ranging animals unproven. To test the validity of this paradigm, we measured heart rate and body temperature (Tb) in undisturbed, free-ranging bearded dragons (Pogona barbata), the species in which this phenomenon was first described. Our field data confirmed the paradigm and we found that heart rate during heating usually exceeded heart rate during cooling at any Tb. Importantly, however, we discovered that heart rate was proportionally faster in cool lizards whose Tb was still well below the 'preferred Tb range' compared to lizards whose Tb was already close to it. Similarly, heart rate during cooling was proportionally slower the warmer the lizard and the greater its cooling potential compared to lizards whose Tb was already near minimum operative temperature. Further, we predicted that, if heart rate hysteresis has functional significance, a 'reverse hysteresis' pattern should be observable when lizards risked overheating. This was indeed the case and, during heating on those occasions when Tb reached very high levels (> 40 degrees C), heart rate was significantly lower than heart rate during the immediately following cooling phase. These results demonstrate that physiological control of thermoregulation in reptiles is more complex than has been previously recognized.  相似文献   

3.
Laboratory studies and a single field study have shown that heart rate in some reptiles is faster during heating than during cooling at any given body temperature. This phenomenon, which has been shown to reflect changes in peripheral blood flow, is shown here to occur in the lizard Varanus varius (lace monitor) in the wild. On a typical clear day, lizards emerged from their shelters in the morning to warm in the sun. Following this, animals were active, moving until they again entered a shelter in the evening. During their period of activity, body temperature was 34-36 degrees C in all six study animals (4.0-5.6 kg), but the animals rarely shuttled between sun and shade exposure. Heart rate during the morning heating period was significantly faster than during the evening cooling period. However, the ratio of heating to cooling heart rate decreased with increasing body temperature, being close to 2 at body temperatures of 22-24 degrees C and decreasing to 1.2-1.3 at body temperatures of 34-36 degrees C. There was a significant decrease in thermal time constants with increasing heart rate during heating and cooling confirming that changes in heart rate are linked to rates of heat exchange.  相似文献   

4.
Differential heart rates during heating and cooling (heart rate hysteresis) are an important thermoregulatory mechanism in ectothermic reptiles. We speculate that heart rate hysteresis has evolved alongside vascularisation, and to determine whether this phenomenon occurs in a lineage with vascularised circulatory systems that is phylogenetically distant from reptiles, we measured the response of heart rate to convective heat transfer in the Australian freshwater crayfish, Cherax destructor. Heart rate during convective heating (from 20 to 30 degrees C) was significantly faster than during cooling for any given body temperature. Heart rate declined rapidly immediately following the removal of the heat source, despite only negligible losses in body temperature. This heart rate 'hysteresis' is similar to the pattern reported in many reptiles and, by varying peripheral blood flow, it is presumed to confer thermoregulatory benefits particularly given the thermal sensitivity of many physiological rate functions in crustaceans.  相似文献   

5.
Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and β-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.  相似文献   

6.
Reptiles are ectothermic, but regulate body temperatures (T(b)) by behavioural and physiological means. Body temperature has profound effects on virtually all physiological functions. It is well known that heating occurs faster than cooling, which seems to correlate with changes in cutaneous perfusion. Increased cutaneous perfusion, and hence elevated cardiac output, during heating is reflected in an increased heart rate (f(H)), and f(H), at a given T(b), is normally higher during heating compared to cooling ('hysteresis of heart rate'). Digestion is associated with an increased metabolic rate. This is associated with an elevated f(H) and many species of reptiles also exhibited a behavioural selection of higher T(b) during digestion. Here, we examine whether digestion affects the rate of heating and cooling as well as the hysteresis of heart rate in savannah monitor lizards (Varanus exanthematicus). Fasting lizards were studied after 5 days of food deprivation while digesting lizards were studied approximately 24 h after ingesting dead mice that equalled 10% of their body mass. Heart rate was measured while T(b) increased from 28 to 38 degrees C under a heat lamp and while T(b) decreased during a subsequent cooling phase. The lizards exhibited hysteresis of heart rate, and heating occurred faster than cooling. Feeding led to an increased f(H) (approximately 20 min(-1) irrespective of T(b)), but did not affect the rate of temperature change during heating or cooling. Therefore, it is likely that the increased blood flows during digestion are distributed exclusively to visceral organs and that the thermal conductance remains unaffected by the elevated metabolic rate during digestion.  相似文献   

7.
Reptiles change heart rate and blood flow patterns in response to heating and cooling, thereby decreasing the behavioural cost of thermoregulation. We tested the hypothesis that locally produced vasoactive substances, nitric oxide and prostaglandins, mediate the cardiovascular response of reptiles to heat. Heart rate and blood pressure were measured in eight crocodiles (Crocodylus porosus) during heating and cooling and while sequentially inhibiting nitric-oxide synthase and cyclooxygenase enzymes. Heart rate and blood pressure were significantly higher during heating than during cooling in all treatments. Power spectral density of heart rate and blood pressure increased significantly during heating and cooling compared to the preceding period of thermal equilibrium. Spectral density of heart rate in the high frequency band (0.19–0.70 Hz) was significantly greater during cooling in the saline treatment compared to when nitric-oxide synthase and cyclooxygenase enzymes were inhibited. Cross spectral analysis showed that changes in blood pressure preceded heart rate changes at low frequencies (<0.1 Hz) only. We conclude that the autonomic nervous system controls heart rate independently from blood pressure at higher frequencies while blood pressure changes determine heart rate at lower frequencies. Nitric oxide and prostaglandins do not control the characteristic heart rate hysteresis response to heat in C. porosus, although nitric oxide was important in buffering blood pressure against changes in heart rate during cooling, and inhibition caused a compensatory decrease in parasympathetic stimulation of the heart.  相似文献   

8.
A model of heat exchange in reptiles is used to investigate the role of blood flow in controlling rates of heating/cooling in animals in complex thermal environments. The model suggests an allometry of heating and cooling time constants and of the effects of blood flow on those time constants that accords with published data. The model suggests a simple physical reason for the increased effect of blood flow on time constants in large animals. Two tools (the model and an impulse response method) are presented to allow projection of body temperatures in complex thermal habitats. Application of the model to ecologically important situations suggest that mass, blood flow, and shuttling schedules affect the rate of heating and cooling and the effect of blood flow on the range of body temperatures experienced.  相似文献   

9.
The effectiveness of behavioural thermoregulation in reptiles is amplified by cardiovascular responses, particularly by differential rates of heart beat in response to heating and cooling (heart-rate hysteresis). Heart-rate hysteresis is ecologically important in most lineages of ectothermic reptile, and we demonstrate that heart-rate hysteresis in the lizard Pogona vitticeps is mediated by prostaglandins. In a control treatment (administration of saline), heart rates during heating were significantly faster than during cooling at any given body temperature. When cyclooxygenase 1 and 2 enzymes were inhibited, heart rates during heating were not significantly different from those during cooling. Administration of agonists showed that thromboxane B(2) did not have a significant effect on heart rate, but prostacyclin and prostaglandin F(2alpha) caused a significant increase (3.5 and 13.6 beats min(-1), respectively) in heart rate compared with control treatments. We speculate that heart-rate hysteresis evolved as a thermoregulatory mechanism that may ultimately be controlled by neurally induced stimulation of nitric oxide production, or maybe via photolytically induced production of vitamin D.  相似文献   

10.
Despite substantial knowledge on thermoregulation in reptiles, the mechanisms involved in heat exchange of sea turtles have not been investigated in detail. We studied blood flow in the front flippers of two green turtles, Chelonia mydas, and four loggerhead turtles, Caretta caretta, using Doppler ultrasound to assess the importance of regional blood flow in temperature regulation. Mean blood flow velocity and heart rate were determined for the water temperature at which the turtles were acclimated (19.3 degrees-22.5 degrees C) and for several experimental water temperatures (17 degrees-32 degrees C) to which the turtles were exposed for a short time. Flipper circulation increased with increasing water temperature, whereas during cooling, flipper circulation was greatly reduced. Heart rate was also positively correlated with water temperature; however, there were large variations between individual heart rate responses. Body temperatures, which were additionally determined for the two green turtles and six loggerhead turtles, increased faster during heating than during cooling. Heating rates were positively correlated with the difference between acclimation and experimental temperature and negatively correlated with body mass. Our data suggest that by varying circulation of the front flippers, turtles are capable of either transporting heat quickly into the body or retaining heat inside the body, depending on the prevailing thermal demands.  相似文献   

11.
The color-mediated thermoregulation hypothesis predicts that dark body color (low reflectance) allows organisms to gain heat more efficiently than does pale coloration (high reflectance). This prediction is intuitive and widely assumed to be true, but has poor empirical support. We used rare, captive-bred, mutant melanistic, albino and wild-type Australian bluetongue lizards, Tiliqua scincoides to measure the effects of skin reflectance on the heating and cooling rates. We measured heating under an artificial radiant heat source and cooling rates in an ice-cooled box using live lizards in a room with still air. The effect of skin reflectance on heat transfer was clear, despite the substantial influence of body size. Melanistic T. scincoides showed low reflectance and gained heat faster than highly reflective albinos. Melanistic lizards also lost heat faster than albinos. Wild-type lizards were intermediate in reflectance, gained heat at rates indistinguishable from melanistic lizards, and lost heat at rates indistinguishable from albino lizards. This study system allowed us to control for variables that were confounded in other studies and may explain the inconsistent support for the color-mediated thermoregulation hypothesis. Our results provide clear evidence that skin reflectance influences the rate of heating and cooling in ectotherms.  相似文献   

12.
Differences in warming and cooling rates in basking lizards have long been thought to be brought about by adjustments in heart rate and blood flow. We examined the physiological control of warming and cooling in Iguana iguana, Sceloporus undulatus, and three species of Cordylus by measuring time constants, heart rate, and superficial capillary blood flow. Previously, techniques have not been available to measure time constants in shuttling animals. Using a combination of rapid measurements of temperature and blood flow and numerically intensive parameter-fitting methods, we measured dominant and subdominant time constants in lizards subjected to periods of both simulated basking and simulated shuttling. Cutaneous blood flow and heart rate were measured using laser Doppler flowmeters. Of the three, only the larger I. iguana measurably altered rates of warming and cooling during basking. During shuttling, none of the species effectively controlled warming and cooling. During both basking and shuttling, blood flow and heart rate tended to change in predicted directions. Superficial blood flow correlated with surface temperature while heart rate correlated more closely with core temperature. Changes in superficial blood flow and heart rate varied relatively independently in I. iguana. The techniques used here provide a better understanding of the ability of these species to control thermoregulation.  相似文献   

13.
Heliothermy (heat gain by radiation) has been given a prominent role in basking lizards. However, thigmothermy (heat gain by conduction) could be relevant for heating in small lizards. To ascertain the importance of the different heat transmission modes to the thermoregulatory processes, we conducted an experimental study where we analyzed the role of heat transmission modes on heating rates and on the selection of sites for heating in the Mediterranean lizard Acanthodactylus erythrurus (Lacertidae). The study was conducted under laboratory conditions, where two situations of different operative temperatures (38 degrees and 50 degrees C) were simulated in a terrarium. In a first experiment, individuals were allowed to heat up during 2 min at both temperatures and under both heat transmission modes. In a second experiment, individuals were allowed to select between patches differing in the main transmission mode, at both temperatures, to heat up. Experiences were conducted with live, nontethered lizards with a starting body temperature of 27 degrees C. Temperature had a significant effect on the heating rate, with heat gain per unit of time being faster at the higher operative temperature (50 degrees C). The effect of the mode of heat transmission on the heating rate was also significant: at 50 degrees C, heating rate was greater when the main heat transmission mode was conduction from the substrate (thigmothermy) than when heating was mainly due to heat gain by radiation (heliothermy); at 38 degrees C, heating rates did not significantly differ between transmission modes. At 38 degrees C, selection of the site for heating was not significantly different from that expected by chance. However, at 50 degrees C, the heating site offering the slowest heating rate (heliothermic patch) was selected. These results show that heating rates vary not only with environmental temperature but also with different predominant heat transmission modes. Lizards are able to identify and exploit this heterogeneity, selecting the source of heat gain (radiation) that minimizes the risk of overheating when temperature is high.  相似文献   

14.
The Cardiovascular Control of Heat Exchange: Consequences of Body Size   总被引:1,自引:0,他引:1  
For blood flow to be an effective agent for the control of heatexchange, it must occur in a region of the body where conductionresistance in the tissues is relatively high, and in an environmentwhere external resistance to heat exchange is relatively low.If either of these conditions is not met, control of heat exchangeby blood flow is not possible. Very small reptiles should notbe able to control heat exchange by blood flow in any environment,unless they control blood flow specifically to appendages. Verylarge reptiles should be able to control heat exchange by bloodflow only under certain conditions, such as in water, very highwinds, or intense radiative heating. Otherwise, they shouldhave little control. An optimum body size should exist for areptile's ability to control heat exchange using blood flow.In air, this optimum body size for alligators appears to beabout 5 kg. Theoretically, the optimum size should be substantiallylarger than 5 kg for reptiles heating and cooling in water.  相似文献   

15.
Regulation of body temperature may increase fitness of animals by ensuring that biochemical and physiological processes proceed at an optimal rate. The validity of current methods of testing whether or not thermoregulation in reptiles occurs is often limited to very small species that have near zero heat capacity. The aim of this study was to develop a method that allows estimation of body temperature null distributions of large reptiles and to investigate seasonal thermoregulation in the American alligator (Alligator mississippiensis). Continuous body temperature records of wild alligators were obtained from implanted dataloggers in winter (n=7, mass range: 1.6-53.6 kg) and summer (n=7, mass range: 1.9-54.5 kg). Body temperature null distributions were calculated by randomising behavioural postures, thereby randomly altering relative animal surface areas exposed to different avenues of heat transfer. Core body temperatures were predicted by calculations of transient heat transfer by conduction and blood flow. Alligator body temperatures follow regular oscillations during the day. Occasionally, body temperature steadied during the day to fall within a relatively narrow range. Rather than indicating shuttling thermoregulation, however, this pattern could be predicted from random movements. Average daily body temperature increases with body mass in winter but not in summer. Daily amplitudes of body temperature decrease with increasing body mass in summer but not in winter. These patterns result from differential exposure to heat transfer mechanisms at different seasons. In summer, alligators are significantly cooler than predictions for a randomly moving animal, and the reverse is the case in winter. Theoretical predictions show, however, that alligators can be warmer in winter if they maximised their sun exposure. We concluded that alligators may not rely exclusively on regulation of body temperature but that they may also acclimatise biochemically to seasonally changing environmental conditions.  相似文献   

16.
Heating rates were significantly greater than cooling rates in Egernia cunninghami. Male lizards had significantly slower cooling rates than females, while heating rates of both sexes were similar. Faster heating and cooling rates were recorded in the earlier months of the 32-week experiment than during the winter season. The effect of infra-red heat intensity on heating and cooling rates was apparent only in the winter months. Painting the animals black retarded the radiant heating rates, rather than enhancing them.  相似文献   

17.
Du WG  Ye H  Zhao B  Pizzatto L  Ji X  Shine R 《PloS one》2011,6(12):e29027
New non-invasive technologies allow direct measurement of heart rates (and thus, developmental rates) of embryos. We applied these methods to a diverse array of oviparous reptiles (24 species of lizards, 18 snakes, 11 turtles, 1 crocodilian), to identify general influences on cardiac rates during embryogenesis. Heart rates increased with ambient temperature in all lineages, but (at the same temperature) were faster in lizards and turtles than in snakes and crocodilians. We analysed these data within a phylogenetic framework. Embryonic heart rates were faster in species with smaller adult sizes, smaller egg sizes, and shorter incubation periods. Phylogenetic changes in heart rates were negatively correlated with concurrent changes in adult body mass and residual incubation period among the lizards, snakes (especially within pythons) and crocodilians. The total number of embryonic heart beats between oviposition and hatching was lower in squamates than in turtles or the crocodilian. Within squamates, embryonic iguanians and gekkonids required more heartbeats to complete development than did embryos of the other squamate families that we tested. These differences plausibly reflect phylogenetic divergence in the proportion of embryogenesis completed before versus after laying.  相似文献   

18.
The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.  相似文献   

19.
Bergmann's Rule predicts larger body sizes in colder habitats, increasing organisms' ability to conserve heat. Originally formulated for endotherms, it is controversial whether Bergmann's Rule may be applicable to ectotherms, given that larger ectotherms show diminished capacity for heating up. We predict that Bergmann's Rule will be applicable to ectotherms when the benefits of a higher conservation of heat due to a larger body size overcompensate for decreased capacity to heating up. We test this hypothesis in the lizard Psammodromus algirus, which shows increased body size with elevation in Sierra Nevada (SE Spain). We measured heating and cooling rates of lizards from different elevations (from 300 to 2500 m above sea level) under controlled conditions. We found no significant differences in the heating rate along an elevational gradient. However, the cooling rate diminished with elevation and body size: highland lizards, with larger masses, have a higher thermal inertia for cooling, which allows them to maintain heat for more time and keep a high body temperature despite the lower thermal availability. Consequently, the net gaining of heat increased with elevation and body size. This study highlights that the heat conservation mechanism for explaining Bergmann's Rule works and is applicable to ectotherms, depending on the thermal benefits and costs associated with larger body sizes.  相似文献   

20.
Heart rate was counted telemetrically in lizards (Iguana iguana) and frogs (Rana catesbeiana and Rana pipiens) to estimate their response to gentle 1-min handling. The animals were kept at steady body temperatures of ca. 28 degrees C (lizards), and 24 degrees C (frogs). Handling increased the heart rate of lizards from ca. 70 to 110 beats per min immediately during and after handling and this tachycardia decreased in ca. 10 min. Similar handling did not modify significantly the frogs' heart rates. Although the absence of a response to mild stress is not synonymous with the absence of emotion, the absence of handling-tachycardia in frogs and its presence in lizards (as well as in mammals and birds), together with the emotional fever in mammals, birds, and reptiles, but not frogs or fish as reported in the literature, might suggest that 'emotional' response to stress emerged in phylogeny between amphibians and reptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号