首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eotaxin potentiates antigen-dependent basophil IL-4 production.   总被引:2,自引:0,他引:2  
Basophils are a major source of IL-4, which is a critical factor in the generation of allergic inflammation. Eotaxin induces chemotaxis mediated through the CC chemokine receptor 3 (CCR3) present on basophils as well as eosinophils and Th2 cells, thereby promoting cell recruitment. To determine whether eotaxin has other proinflammatory activity, we examined the effect of eotaxin on basophil IL-4 expression by flow cytometry. Eotaxin alone had no effect on basophil IL-4 production, but further increased allergen-stimulated IL-4 expression. Eotaxin also enhanced IL-4 release from purified basophils 2- to 4-fold, as determined by ELISA (p < 0.01). Addition of eotaxin to cultures resulted in a 40-fold left shift in the dose response to Ag. This effect was obtained with physiologic concentrations of eotaxin (10 ng/ml), was abrogated by an Ab to the CCR3 receptor, and was noted with other chemokine ligands of CCR3. Additionally, eotaxin augmented IL-3 priming of basophil IL-4 production in a synergistic manner (p < 0.01). In contrast, no priming was observed with either IL-5 or GM-CSF. These results establish a novel function for eotaxin and other chemokine ligands of CCR3: the potentiation of Ag-mediated IL-4 production in basophils, and suggest a potential nonchemotactic role for CC chemokines in the pathogenesis and amplification of inflammation.  相似文献   

2.
3.
Eosinophils are the predominant cell type recruited in inflammatory reactions in response to allergen challenge. The mechanisms of selective eosinophil recruitment in allergic reactions are not fully elucidated. In this study, the ability of several C-C chemokines to induce transendothelial migration (TEM) of eosinophils in vitro was assessed. Eotaxin, eotaxin-2, monocyte chemotactic protein (MCP)-4, and RANTES induced eosinophil TEM across unstimulated human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner with the following rank order of potency: eotaxin approximately eotaxin-2 > MCP-4 approximately RANTES. The maximal response induced by eotaxin or eotaxin-2 exceeded that of RANTES or MCP-4. Preincubation of eosinophils with anti-CCR3 Ab (7B11) completely blocked eosinophil TEM induced by eotaxin, MCP-4, and RANTES. Activation of endothelial cells with IL-1beta or TNF-alpha induced concentration-dependent migration of eosinophils, which was enhanced synergistically in the presence of eotaxin and RANTES. Anti-CCR3 also inhibited eotaxin-induced eosinophil TEM across TNF-alpha-stimulated HUVEC. The ability of eosinophil-active cytokines to potentiate eosinophil TEM was assessed by investigating eotaxin or RANTES-induced eosinophil TEM across resting and IL-1beta-stimulated HUVEC in the presence or absence of IL-5. The results showed synergy between IL-5 and the chemokines but not between IL-5 and the endothelial activator IL-1beta. Our data suggest that eotaxin, eotaxin-2, MCP-4, and RANTES induce eosinophil TEM via CCR3 with varied potency and efficacy. Activation of HUVEC by IL-1beta or TNF-alpha or priming of eosinophils by IL-5 both promote CCR3-dependent migration of eosinophils from the vasculature in conjunction with CCR3-active chemokines.  相似文献   

4.
Human eosinophils are potential sources of inflammatory and immunomodulatory mediators, including cysteinyl leukotrienes, chemokines, and cytokines, which are pertinent to allergic inflammation. We evaluated the means by which IL-16, a recognized eosinophil chemoattractant, might act on eosinophils to affect their capacity to release leukotriene C(4) (LTC(4)) or their preformed stores of chemokines (eotaxin, RANTES) or Th1 (IL-12) or Th2 (IL-4) cytokines. IL-16 dose dependently (0.01-100 nM) elicited new lipid body formation, intracellular LTC(4) formation at lipid bodies, and priming for enhanced calcium ionophore-activated LTC(4) release. IL-16 also elicited brefeldin A-inhibitable, vesicular transport-mediated release of preformed IL-4, but not IL-12, from eosinophils. CD4 is a recognized IL-16R, and accordingly anti-CD4 Fab, soluble CD4, and a CD4 domain 4-based IL-16 blocking peptide inhibited the actions of IL-16 on eosinophils. Although CD4 is not G-protein coupled, pertussis toxin inhibited IL-16-induced eosinophil activation. IL-16 actions were found to be mediated by the autocrine activity, not of platelet-activating factor, but rather of endogenous CCR3-acting chemokines. IL-16 induced the rapid vesicular transport-mediated release of RANTES. The effects of IL-16 were blocked by CCR3 inhibitors (met-RANTES, anti-CCR3 mAb) and by neutralizing anti-eotaxin and anti-RANTES mAbs, but not by platelet-activating factor receptor antagonists (CV6209, BN52021). RANTES and eotaxin each enhanced LTC(4) and IL-4 (but not IL-12) release. Therefore, IL-16 activation of eosinophils is CD4-mediated to elicit the extracellular release of preformed RANTES and eotaxin, which then in an autocrine fashion act on plasma membrane CCR3 receptors to stimulate both enhanced LTC(4) production and the preferential release of IL-4, but not IL-12, from within eosinophils.  相似文献   

5.
The priming of eosinophils by cytokines leading to augmented response to chemoattractants and degranulating stimuli is a characteristic feature of eosinophils in the course of allergic inflammation and asthma. Actin reorganization and integrin activation are implicated in eosinophil priming by GM-CSF, but their molecular mechanism of action is unknown. In this regard, we investigated the role of L-plastin, an eosinophil phosphoprotein that we identified from eosinophil proteome analysis. Phosphoproteomic analysis demonstrated the upregulation of phosphorylated L-plastin after eosinophil stimulation with GM-CSF. Additionally, coimmunoprecipitation studies demonstrated a complex formation of phosphorylated L-plastin with protein kinase CβII (PKCβII), GM-CSF receptor α-chain, and two actin-associated proteins, paxilin and cofilin. Inhibition of PKCβII with 4,5-bis(4-fluoroanilino)phtalimide or PKCβII-specific small interfering RNA blocked GM-CSF-induced phosphorylation of L-plastin. Furthermore, flow cytometric analysis also showed an upregulation of α(M)β(2) integrin, which was sensitive to PKCβII inhibition. In chemotaxis assay, GM-CSF treatment allowed eosinophils to respond to lower concentrations of eotaxin, which was abrogated by the above-mentioned PKCβII inhibitors. Similarly, inhibition of PKCβII blocked GM-CSF induced priming for degranulation as assessed by release of eosinophil cationic protein and eosinophil peroxidase in response to eotaxin. Importantly, eosinophil stimulation with a synthetic L-plastin peptide (residues 2-19) phosphorylated on Ser(5) upregulated α(M)β(2) integrin expression and increased eosinophil migration in response to eotaxin independent of GM-CSF stimulation. Our results establish a causative role for PKCβII and L-plastin in linking GM-CSF-induced eosinophil priming for chemotaxis and degranulation to signaling events associated with integrin activation via induction of PKCβII-mediated L-plastin phosphorylation.  相似文献   

6.
Recombinant human granulocyte colony-stimulating factor (G-CSF) by itself was not an effective stimulus for inducing the release of superoxide (O-2) in human granulocytes. However, G-CSF was able to prime human granulocytes, and enhanced O-2 release stimulated by the chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP). The preincubation with G-CSF for 5-10 min at 37 degrees C was sufficient for priming the cells. The optimal enhancing effect was obtained at 25 ng/ml of G-CSF. The enhancement of O-2 release by G-CSF was observed over the complete range of effective concentrations of FMLP (10(-8)-10(-6) M). These findings indicate that G-CSF is a potent activator of mature granulocyte functions.  相似文献   

7.
Interleukin (IL)-9 is a pleiotropic cytokine that has been proposed as a candidate gene for asthma. As IL-9 expression is correlated with airway hyperresponsiveness in animals, we examined the effects of IL-9 on cultured human airway smooth muscle (HASM) cells. IL-9 alone had no effect on IL-8 release, but at concentrations of > or =30 ng/ml, IL-9 significantly increased IL-8 release induced by TNF-alpha. IL-9 increased phosphorylation of extracellular signal-regulated protein kinase (ERK, p42 and p44) in a concentration- and time-dependent fashion, and U-0126 (10 micro M), which inhibits ERK phosphorylation, abolished the synergism between TNF-alpha and IL-9 on IL-8 release. IL-9 alone had no effect on eotaxin release into HASM cell supernatants but at concentrations of > or =10 ng/ml caused an approximately 50% increase in release of eotaxin evoked by IL-13 (10 ng/ml). U-0126 blocked the synergism between IL-9 and IL-13 on eotaxin release. IL-9 had no effect on cyclooxygenase-2 (COX-2) expression or PGE(2) release and did not augment the COX-2 expression that was induced by IL-1beta. Our results indicate that airway smooth muscle is a target for IL-9 and that IL-9 amplifies the potential for these cells to recruit eosinophils and neutrophils into the airways by a mechanism involving ERK.  相似文献   

8.

Background

Patients with asthma demonstrate circadian variations in the airway inflammation and lung function. Pinealectomy reduces the total inflammatory cell number in the asthmatic rat lung. We hypothesize that melatonin, a circadian rhythm regulator, may modulate the circadian inflammatory variations in asthma by stimulating the chemotaxins expression in the lung epithelial cell.

Methods

Lung epithelial cells (A549) were stimulated with melatonin in the presence or absence of TNF-α(100 ng/ml). RANTES (Regulated on Activation Normal T-cells Expressed and Secreted) and eotaxin expression were measured using ELISA and real-time RT-PCR, eosinophil chemotactic activity (ECA) released by A549 was measured by eosinophil chemotaxis assay.

Results

TNF-α increased the expression of RANTES (307.84 ± 33.56 versus 207.64 ± 31.27 pg/ml of control, p = 0.025) and eotaxin (108.97 ± 10.87 versus 54.00 ± 5.29 pg/ml of control, p = 0.041). Melatonin(10-10 to 10-6M) alone didn't change the expression of RNATES (204.97 ± 32.56 pg/ml) and eotaxin (55.28 ± 6.71 pg/ml). However, In the presence of TNF-α (100 ng/ml), melatonin promoted RANTES (410.88 ± 52.03, 483.60 ± 55.37, 559.92 ± 75.70, 688.42 ± 95.32, 766.39 ± 101.53 pg/ml, treated with 10-10, 10-9, 10-8, 10-7,10-6M melatonin, respectively) and eotaxin (151.95 ± 13.88, 238.79 ± 16.81, 361.62 ± 36.91, 393.66 ± 44.89, 494.34 ± 100.95 pg/ml, treated with 10-10, 10-9, 10-8, 10-7, 10-6M melatonin, respectively) expression in a dose dependent manner in A549 cells (compared with TNF-α alone, P < 0.05). The increased release of RANTES and eotaxin in A549 cells by above treatment were further confirmed by both real-time RT-PCR and the ECA assay.

Conclusion

Taken together, our results suggested that melatonin might synergize with pro-inflammatory cytokines to modulate the asthma airway inflammation through promoting the expression of chemotaxins in lung epithelial cell.  相似文献   

9.
10.
Eotaxin selectively binds CC chemokine receptor (CCR) 3, whereas monocyte chemotactic protein (MCP)-3 binds CCR1, CCR2, and CCR3. To identify the functional determinants of the chemokines, we generated four reciprocal chimeric chemokines-M10E9, M22E21, E8M11, and E20M23-by shuffling the N-terminus and N-loop of eotaxin and MCP-3. M22E21 and E8M11, which shared the N-loop from MCP-3, bound to monocytes with high affinity, and activated monocytes. In contrast, M10E9 and E20M23, which lacked the N-loop, failed to bind and transduce monocyte responses, identifying the N-loop of MCP-3 as the selectivity determinant for CCR1/CCR2. A BIAcore assay with an N-terminal peptide of CCR3 (residues 1-35) revealed that all chimeras except E20M23 exhibited varying degrees of binding affinity with commensurate chemotaxis activity of eosinophils. Surprisingly, E20M23 could neither bind the CCR3 peptide nor activate eosinophils, despite having both N-terminal motifs from eotaxin. These results suggest that the two N-terminal motifs of eotaxin must cooperate with other regions to successfully bind and activate CCR3.  相似文献   

11.
Eotaxin is a potent eosinophil chemoattractant that acts selectively through CCR3, which is expressed on eosinophils, basophils, mast cells, and Th2-type T cells. This arm of the immune system is believed to have evolved to control helminthic parasites. We hypothesized that helminths may employ mechanisms to inhibit eosinophil recruitment, to prolong worm survival in the host. We observed that the excretory/secretory products of the hookworm Necator americanus inhibited eosinophil recruitment in vivo in response to eotaxin, but not leukotriene B(4), a phenomenon that could be prevented by the addition of protease inhibitors. Using Western blotting, N. americanus supernatant was shown to cause rapid proteolysis of eotaxin, but not IL-8 or eotaxin-2. N. americanus homogenate was fractionated by gel filtration chromatography, and a FACS-based bioassay measured the ability of each fraction to inhibit the activity of a variety of chemokines. This resulted in two peaks of eotaxin-degrading activity, corresponding to approximately 15 and 50 kDa molecular mass. This activity was specific for eotaxin, as responses to other agonists tested were unaffected. Proteolysis of eotaxin was prevented by EDTA and phenanthroline, indicating that metalloprotease activity was involved. Production of enzymes inactivating eotaxin may be a strategy employed by helminths to prevent recruitment and activation of eosinophils at the site of infection. As such this represents a novel mechanism of regulation of chemokine function in vivo. The existence of CCR3 ligands other than eotaxin (e.g., eotaxin-2) may reflect the evolution of host counter measures to parasite defense systems.  相似文献   

12.
BackgroundPatients with asthma demonstrate circadian variations in the airway inflammation and lung function. Pinealectomy reduces the total inflammatory cell number in the asthmatic rat lung. We hypothesize that melatonin, a circadian rhythm regulator, may modulate the circadian inflammatory variations in asthma by stimulating the chemotaxins expression in the lung epithelial cell.MethodsLung epithelial cells (A549) were stimulated with melatonin in the presence or absence of TNF-α(100 ng/ml). RANTES (Regulated on Activation Normal T-cells Expressed and Secreted) and eotaxin expression were measured using ELISA and real-time RT-PCR, eosinophil chemotactic activity (ECA) released by A549 was measured by eosinophil chemotaxis assay.ResultsTNF-α increased the expression of RANTES (307.84 ± 33.56 versus 207.64 ± 31.27 pg/ml of control, p = 0.025) and eotaxin (108.97 ± 10.87 versus 54.00 ± 5.29 pg/ml of control, p = 0.041). Melatonin(10-10 to 10-6M) alone didn''t change the expression of RNATES (204.97 ± 32.56 pg/ml) and eotaxin (55.28 ± 6.71 pg/ml). However, In the presence of TNF-α (100 ng/ml), melatonin promoted RANTES (410.88 ± 52.03, 483.60 ± 55.37, 559.92 ± 75.70, 688.42 ± 95.32, 766.39 ± 101.53 pg/ml, treated with 10-10, 10-9, 10-8, 10-7,10-6M melatonin, respectively) and eotaxin (151.95 ± 13.88, 238.79 ± 16.81, 361.62 ± 36.91, 393.66 ± 44.89, 494.34 ± 100.95 pg/ml, treated with 10-10, 10-9, 10-8, 10-7, 10-6M melatonin, respectively) expression in a dose dependent manner in A549 cells (compared with TNF-α alone, P < 0.05). The increased release of RANTES and eotaxin in A549 cells by above treatment were further confirmed by both real-time RT-PCR and the ECA assay.ConclusionTaken together, our results suggested that melatonin might synergize with pro-inflammatory cytokines to modulate the asthma airway inflammation through promoting the expression of chemotaxins in lung epithelial cell.  相似文献   

13.
An important feature of chemokines is their ability to bind to the glycosaminoglycan (GAG) side chains of proteoglycans, predominately heparin and heparan sulfate. To date, all chemokines tested bind to immobilized heparin in vitro, as well as cell surface heparan sulfate in vitro and in vivo. These interactions play an important role in modulating the action of chemokines by facilitating the formation of stable chemokine gradients within the vascular endothelium and directing leukocyte migration, by protecting chemokines from proteolysis, by inducing chemokine oligomerization, and by facilitating transcytosis. Despite the importance of eotaxin in eosinophil differentiation and recruitment being well established, little is known about the interaction between eotaxin and GAGs and the functional consequences of such an interaction. Here we report that eotaxin binds selectively to immobilized heparin with high affinity (K(d) = 1.23 x 10(-8) M), but not to heparan sulfate or a range of other GAGs. The interaction of eotaxin with heparin does not promote eotaxin oligomerization but protects eotaxin from proteolysis directly by plasmin and indirectly by cathepsin G and elastase. In vivo, co-administration of eotaxin and heparin is able to significantly enhance eotaxin-mediated eosinophil recruitment in a mouse air-pouch model. Furthermore, when heparin is co-administered with eotaxin at a concentration that does not normally result in eosinophil infiltration, eosinophil recruitment occurs. In contrast, heparin does not enhance eotaxin-mediated eosinophil chemotaxis in vitro, suggesting protease protection or haptotactic gradient formation as the mechanism by which heparin enhances eotaxin action in vivo. These results suggest a role for mast cell-derived heparin in the recruitment of eosinophils, reinforcing Th2 polarization of inflammatory responses.  相似文献   

14.
The CC chemokine eotaxin plays a predominant role in eosinophil trafficking in vivo by specifically activating the chemokine receptor CCR3. We have screened a series of synthetic peptides corresponding to extracellular regions of CCR3 for their ability to bind eotaxin. A peptide corresponding to the N terminus of CCR3 (CCR3-(1-35)) bound to eotaxin with a dissociation constant of 80 +/- 38 micrometer. However, linear or cyclic peptides derived from the first and third extracellular loops of CCR3 did not bind to eotaxin. Linear and cyclic peptides derived from the second extracellular loop precipitated upon addition of eotaxin. (1)H-(15)N correlation NMR spectroscopy indicated that an extended groove in the eotaxin surface, whose edges are defined by the N-loop, 3(10)-helical turn, and beta(2)-beta(3) hairpin, is the most likely binding surface for CCR3-(1-35). NMR assignments for CCR3-(1-35) were obtained using two-dimensional and three-dimensional homonuclear NMR experiments. (15)N-Filtered TOCSY spectra indicated that the central region of CCR3-(1-35), surrounding the DDYY sequence, is involved in the interaction with eotaxin. This was supported by the observation that a truncated N-terminal peptide (CCR3-(8-23)) binds to eotaxin with a dissociation constant of 136 +/- 23 micrometer, only slightly weaker than the full-length N-terminal peptide. Taken together with previous studies, these results suggest that interactions between the N-loop/beta(3) regions of chemokines and the N-terminal regions of their receptors may be a conserved feature of chemokine-receptor complexes across the CC, CXC, and C chemokine subfamilies. However, the low affinity of the interactions observed in these studies suggests the existence of additional binding regions in both the chemokines and the receptors.  相似文献   

15.
The chemokine eotaxin (CCL11) is a key player in the trafficking of eosinophils to normal tissues and in the tissue eosinophilia associated with human allergic disease. We have recently cloned equine eotaxin and here we report the production of rEq eotaxin, with and without a C-terminal fusion peptide, in a novel expression system utilising stably transfected insect cells. rEq eotaxin induced equine eosinophil migration and superoxide production in vitro. A shape change in human eosinophils that could be blocked by 7B11, a monoclonal antibody against human CCR3, was also observed. Biological activity was not dependent on an intact eotaxin C-terminus. These results suggest that equine eotaxin, like its human ortholog, may play a role in eosinophil accumulation and activation in the horse.  相似文献   

16.
BACKGROUND: Understanding the processes that control selective eosinophilia is of fundamental importance in a variety of human diseases (e.g., allergies, parasitic infections, malignancy). Interleukin 5, an eosinophil-specific growth and activating factor, and eotaxin appear to collaborate in this process. Eotaxin is a recently described chemotactic factor that belongs to the C-C (or beta) chemokine family and has been implicated in animal and human eosinophilic inflammatory states. We have recently reported the molecular characterization of murine eotaxin and now report the biological properties of purified recombinant murine eotaxin in vitro and in vivo in the presence or absence of interleukin 5 (IL-5) in mice. MATERIALS AND METHODS: Murine eotaxin was expressed in bacteria and purified by affinity chromatography and HPLC. Activity was tested in vitro by examining chemotactic and calcium flux responses of purified murine leukocytes. Additionally, desensitization of calcium flux responses to other chemokines, eosinophil survival assays, and basophil histamine release were examined. Finally, eotaxin was delivered to wild-type or IL-5 transgenic mice and the host response was examined. RESULTS: Eotaxin had activity only when the recombinant molecule had the native mature amino terminus and contained the first 25 amino acids of the mature protein. It was active in vitro at an effective concentration between 10 and 100 ng/ml in both chemotaxis and calcium flux assays toward eosinophils, but not macrophages or neutrophils. Furthermore, intranasal or subcutaneous application of eotaxin selectively recruited large numbers of eosinophils into the mouse lung and skin, respectively, only in the presence of interleukin 5. Macrophage inflammatory protein-1 alpha, a related C-C chemokine active on eosinophils, and eotaxin were not able to cross-desensitize. Eotaxin had no affect on the in vitro survival of eosinophils and did not induce basophil histamine release. CONCLUSIONS: Mouse eotaxin is an eosinophil specific chemoattractant that has a markedly enhanced effect in vivo in the presence of another eosinophil selective cytokine IL-5, and utilizes a signal transduction receptor pathway that is distinct from that utilized by macrophage inflammatory protein-1 alpha. This data suggests that the development of tissue eosinophilia in vivo involves a two-step mechanism elicited by interleukin 5 and eotaxin.  相似文献   

17.
Eosinophilia have been implicated in a broad range of diseases, most notably allergic conditions (e.g. asthma, rhinitis and atopic dermatitis) and inflammatory diseases. These diseases are characterized by an accumulation of eosinophils in the affected tissue. Defining the mechanisms that control the recruitment of eosinophil is fundamental to understanding how these diseases progress and identifying a novel target for drug therapy. Accordingly, this study was conducted to evaluate the regulatory effect of Schizandrae Fructus (SF) on the expression of eotaxin, an eosinophil-specific chemokine released in respiratory epithelium following allergic stimulation, as well as its effects on eosinophil migration.To accomplish this, human epithelial lung cells (A549 cell) were stimulated with a combination of TNF-α (100 ng/ml) and IL-4 (100 ng/ml) for 24 h. The cells were then restimulated with TNF-α (100 ng/ml) and IL-1β (10 ng/ml) to induce the expression of chemokines and adhesion molecules involved in eosinophil chemotaxis for another 24 h. Next, the samples were treated with various concentrations of Schizandrae Fructus (SF) (1, 10, 100, 1000 μg/ml) or one of the major constituents of SF, schizandrin (0.1, 1, 10, 100 μg/ml), after which following inhibition effect assay was performed triplicates in three independence.The levels of eotaxin in secreted proteins were suppressed significantly by SF (100 and 1000 μg/ml, p<0.01) and schizandrin (10 and 100 μg/ml, p<0.01). In addition, SF (1, 10, 100 and 1000 μg/ml) decreased mRNA expression levels in A549 cells significantly (p<0.01). Eosinophil recruitment to lung epithelial cells was also reduced by SF, which indicates that eotaxin plays a role in eosinophil recruitment. Furthermore, treatment with SF suppressed the expression of another chemokine, IL-8 (0.1 and 1 μg/ml SF, p<0.01), as well as intercellular adhesion molecule-1 (10 and 100 μg/ml SF, p<0.01) and vascular cell adhesion molecule-1 (0.1 and 1 μg/ml SF, p<0.05), which are all related to eosinophil migration. Taken together, these findings indicate that SF may be a desirable medicinal plant for the treatment of allergic diseases.  相似文献   

18.
Neuropeptides modulate human eosinophil chemotaxis.   总被引:5,自引:0,他引:5  
To investigate the role of neuropeptides in allergic inflammation, we examined the effect of peptides on eosinophil chemotaxis. Eosinophils were purified from the blood of allergic and normal subjects using a discontinuous Percoll density gradients. Chemotaxis was induced by platelet-activating factor (PAF) and leukotriene B4, and was assayed by a modified Boyden's chamber technique. Four neuropeptides were examined in this study: substance P (SP), neurokinin A, calcitonin gene-related peptide (CGRP), and cholecystokinin octapeptide. Peptides alone (10 nM to 10 microM) were not chemotactic for eosinophils. However, when eosinophils were pre-treated with peptides (100 nM) at 37 degrees C for 30 min, chemotactic response to PAF (10 nM) was significantly enhanced (p < 0.01) in allergic subjects; % control by SP, neurokinin A, CGRP and cholecystokinin octapeptide was 269 +/- 42, 243 +/- 32, 227 +/- 21, and 251 +/- 42, respectively (n = 8). Similar results were obtained in leukotriene B4-induced eosinophil chemotaxis. In contrast, no enhancement was observed in normal subjects. Potentiating effect of SP and CGRP on PAF-induced eosinophil chemotaxis in allergic subjects was significantly attenuated by SP antagonist [D-Pro2,D-Trp7,9]-SP and human CGRP (8-37) receptor antagonist, respectively. Neutral endopeptidase inhibitors (phosphoramidon, leupeptin, and bestatin) failed to significantly augment the PAF-induced eosinophil chemotaxis when the cells were pretreated with various peptides and neutral endopeptidase inhibitors. The C-terminal fragment of SP (SP6-11) had an effect similar to that of the intact SP molecule, whereas no potentiating effect by the N-terminal of SP (SP1-9) was observed. These results suggest that neuropeptides may play a significant role in eosinophil infiltration by priming cells in allergic inflammation.  相似文献   

19.
Cysteinyl leukotrienes (CysLTs) play an important role in eosinophilic airway inflammation. In addition to their direct chemotactic effects on eosinophils, indirect effects have been reported. Eotaxin is a potent eosinophil-specific chemotactic factor produced mainly by fibroblasts. We investigated whether CysLTs augment eosinophilic inflammation via eotaxin production by fibroblasts. Leukotriene (LT)C(4) alone had no effect on eotaxin production by human fetal lung fibroblasts (HFL-1). However, LTC(4) stimulated eotaxin production by IL-13-treated fibroblasts, thereby indirectly inducing eosinophil sequestration. Unstimulated fibroblasts did not respond to LTC(4), but coincubation or preincubation of fibroblasts with IL-13 altered the response to LTC(4). To examine the mechanism(s) involved, the expression of CysLT1R in HFL-1 was investigated by quantitative real-time PCR and flow cytometry. Only low levels of CysLT1R mRNA and no CysLT1R protein were expressed in unstimulated HFL-1. In contrast, stimulation with IL-13 at a concentration of 10 ng/ml for 24 h significantly up-regulated both CysLT1R mRNA and protein expression in HFL-1. The synergistic effect of LTC(4) and IL-13 on eotaxin production was abolished by CysLT1R antagonists pranlukast and montelukast. These findings suggest that IL-13 up-regulates CysLT1R expression, which may contribute to the synergistic effect of LTC(4) and IL-13 on eotaxin production by lung fibroblasts. In the Th2 cytokine-rich milieu, such as that in bronchial asthma, CysLT1R expression on fibroblasts might be up-regulated, thereby allowing CysLTs to act effectively and increase eosinophilic inflammation.  相似文献   

20.
To investigate whether eosinophils are stimulated in vivo or have acquired an increased susceptibility to stimuli from the coagulation cascade, the release of eosinophil proteins was compared for three groups of donors with different levels of serum IgE. (1) with atopic dermatitis (s-IgE > 5000 IU/ml, n = 11); (2) with inhalant allergy (200 < s-IgE < 2 000 IU/ml, n = 10); and (3) non-allergic (s- IgE < 100 IU/ml, n = 10). The levels of eosinophil cationic protein and eosinophil protein X (ECP, EPX) were determined in serum (clotting time = 2.0 h) and plasma. Serum and plasma ECP in normal donors demonstrated large intra-personal variations (C.V. 50-80%), but serum-ECP (mean 8.1 ng/ml) was clearly distinguishable from plasma ECP (mean 1.0 ng/ml) by a factor of 8 (range: 5.6-11.6). The ECP released during clotting was markedly increased in the atopic dermatitis group (serum:plasma ratio 13.5, p < 0.003) compared with the other groups (6.7 and 5.6). EPX, having a higher plasma level, demonstrated a less pronounced release (serum: plasma ratios 2.0, 1.7 and 1.4), with no statistical difference between donor groups. Considering all donors together the levels of ECP and EPX in plasma and in serum were correlated to the number of eosinophils (coefficients of correlation 0.54-0.58, p < 0.002).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号