首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The distribution of 15N and 14N compounds in cryofixed and resin embedded sections of soybean (Glycine max L) leaves was studied by SIMS microscopy. The results indicate that, with a mass resolution MM higher than 6000, images of the nitrogen distribution can be obtained from the mapping of the two secondary cluster ions 12C14N? and 12C15N?, in samples of both control and 15N-labeled leaves. The ionic images were clearly related to the histological structure of the organ, and allow the detection of 14N and 15N at the subcellular level. Furthermore, relative measurements of the 12C14N? and 12C15N? beams made possible the quantification of the 15N atom% in the various tissues of the leaf.  相似文献   

2.
3.
Thanks to the "secondary-ion emission microscope" (CAMECA IMS 300), we have been able to image the distribution of the stable isotopes of nitrogen 14N and 15N in sections of plant roots (spatial resolution better than 1 micron), as well as to estimate the relative concentrations of these isotopes. The plants used (Lupinus spec.) originated from seeds with natural (i.e., 14N) nitrogen and had been fed for a few days with [15N]-nitrate before sampling. We have found in root sections of 6-day-old plants (prepared at 5 mm from the root tip) a clear-cut regionalization of the distribution of 15N between the vascular cylinder and the cortex. The latter contained approximately 5% 15N (of total nitrogen), whereas the relative concentration of the heavy isotope in the vascular cylinder was significantly lower. The observed concentration difference is probably due to the Casparian strip, which is a barrier for the apoplastic diffusion of solutes from the cortex to the vascular cylinder.  相似文献   

4.
Raman imaging of plant cell walls represents a nondestructive technique that can provide insights into chemical composition in context with structure at the micrometer level (<0.5 μm). The major steps of the experimental procedure are described: sample preparation (embedding and microcutting), setting the mapping parameters, and finally the calculation of chemical images on the basis of the acquired Raman spectra. Every Raman image is based on thousands of spectra, each being a spatially resolved molecular 'fingerprint' of the cell wall. Multiple components are analyzed within the native cell walls, and insights into polymer composition as well as the orientation of the cellulose microfibrils can be gained. The most labor-intensive step of this process is often the sample preparation, as the imaging approach requires a flat surface of the plant tissue with intact cell walls. After finishing the map (acquisition time is ~10 min to 10 h, depending on the size of the region of interest and scanning parameters), many possibilities exist for the analysis of spectral data and image generation.  相似文献   

5.
Pharmaceutical companies and regulatory agencies are broadly pursuing biomarkers as a means to increase the productivity of drug development. Quantifying differential levels of proteins from complex biological samples such as plasma or cerebrospinal fluid is one specific approach being used to identify markers of drug action, efficacy, toxicity, etc. We have developed a comprehensive, fully automated, and label-free approach to relative protein quantification from LC-MS/MS experiments of proteolytic protein digests including: de-noising, mass and charge state estimation, chromatographic alignment, and peptide quantification via integration of extracted ion chromatograms. Results from a variance components study of the entire method indicate that most of the variability is attributable to the LC-MS injection, with a median peptide LC-MS injection coefficient of variation of 8% on a ThermoFinnigan LTQ mass spectrometer. Spiked recovery results suggest a quantifiable range of approximately 32-fold for a sample protein.  相似文献   

6.
7.
8.
Monolayer cultures of human fibroblasts were incubated for 24 h with 14C-arginine and observed by means of SIMS microscopy (ion microscopy). Carbon 14 imaging showed the intracellular distribution of labelled arginine which featured high nuclear incorporation. The local concentration of this amino acid in different cells and intracellular structures was assessed through local isotopic 14C/12C ratio measurement. This relates the signal intensity of the labelling isotope carbon 14 to that of the corresponding natural isotope (carbon 12) of known tissular concentration. Using this method we were able to measure minor variations in the molecular concentration of arginine (expressed as mumol/g of tissue) between different fibroblasts. Results of this study indicate that SIMS microscopy is well adapted to carbon 14 detection and can provide quantitative maps of the cellular and subcellular distribution of 14C-labelled molecules.  相似文献   

9.
We took advantage of one of the main possibilities of ion microscopy, ie isotopic analysis, to study the cellular distribution of molecules labelled either with carbon 14 or with stable isotopes of low natural abundance such as nitrogen 15 and deuterium. The surface of the sample is bombarded with an ion beam (O2+, Cs+ etc). Secondary ions emitted from the sample are filtered by a mass spectrometer and the distribution of the labelling isotope is recorded. In this way, we obtained images showing the characteristic distribution of 14C-thymidine and D-arginine in human fibroblasts, and of 15N-adenine in organotypic cultures of human breast cancer cells. The spatial resolution on the acquired images was close to 0.1 micron when using the UPS-ONERA ion microprobe. The sensitivity of the method for detecting carbon 14 is far greater than that of autoradiography and the technique is both fast and quantitative. On the other hand, the capacity of ion microscopy for studying the tissular distribution of molecules labelled with stable isotopes, opens the way for biological and pharmacological tracer studies of human diseases.  相似文献   

10.
P. A. Vesk  D. G. Rayns  M. Vesk 《Protoplasma》1994,182(1-2):71-74
Summary High resolution scanning electron microscopy was used to obtain images of cortical microtubules and associated structures in onion root tips. Specimens were prepared using a modified quick-freeze deep-etch technique utilising cytosolic extraction with saponin and conductive staining with osmium.Abbreviations DMSO dimethylsulfoxide - HRSEM high resolution scanning electron microscope/microscopy - MTSB microtubule stabilising buffer - TEM transmission electron microscope/microscopy  相似文献   

11.
The subcellular distribution of halogenous molecules has been studied by SIMS microscopy in cultured cells of a human breast carcinoma (MCF-7 cell line). Two instruments of microanalysis were used. A low lateral resolution ion microscope (SMI 300 CAMECA) and a prototype scanning ion microscope equipped with a cesium gun that gives high lateral resolution images. This apparatus has been developed by G Slodzian, in Onera Laboratories (Office National d'Etudes et de Recherches Aérospatiales). Molecules studied by low lateral resolution ion microscope were halogenous steroids: fluorometholone, triamcinolone, bromocriptine and bromoandrosterone. Analytical images show that the first two compounds are mainly localized in the nuclear structure of MCF-7 cells whereas the last two molecules are localized in cytoplasm of these cells. Images were obtained with a resolution of 1 micron. With the scanning ion microscope, it is now possible to obtain images at the ultrastructural level. Four analytical images can be simultaneously obtained by a single scan of the imaged area, corresponding to a depth of erosion of the section of ten nm. The intranuclear distributions of three pyrimidine analogs, 5-bromo-2'-deoxyuridine, 5-iodo-2'-deoxyuridine and 5-fluorouracil have been studied in phase S and M of MCF-7 cells and these images have been compared to the distribution of sulfur, nitrogen and phosphorus. All these images have been obtained with a lateral resolution better than 100 nm.  相似文献   

12.
Rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) is important to identify patients colonized with this pathogen and implement infection control precautions. We aimed to improve the combined use of the mecA gene polymerase chain reaction (PCR) and the SA442 PCR to detect MRSA in clinical screening samples. In a true MRSA the mecA copy number will be equal to the SA442 copy number, whereas in samples with a methicillin-sensitive Staphylococcus aureus (MSSA) combined with a methicillin-resistant coagulase-negative Staphylococcus (MRCNS) the copy numbers will usually differ. Here we introduce a PCR system, relative quantification PCR (RQ-PCR), which takes this difference into account. RQ-PCR identifies true MRSA in clinical samples with a specificity that is comparable to the SCCmec-based PCRs.  相似文献   

13.
OBJECTIVE: To localize magnetic resonance imaging (MRI) contrast agents injected intravenously into mouse livers. STUDY DESIGN: Parallel studies were performed on fluorescent europium and nonfluorescent, paramagnetic gadolinium and on a product combining nanoparticles of Fe and Texas Red to obtain combined information on the distribution of these molecules inside the liver. The distribution of different superparamagnetic iron oxides was also studied because the size of these new compounds is not always convenientfor microcirculation studies. RESULTS: Europium and Texas Red can be detected by confocal microscopy. Europium, iron and gadolinium can be detected by secondary ion mass spectrometry (SIMS) microscopy. Studies confirmed the complementarity of both microscopies. They also confirmed the possibility of using europium as a model of gadolinium to analyze thefate of MRI contrast agents. CONCLUSION: The methodology can be used on mice injected intravenously and analyzed by confocal and SIMS microscopy to localize MRI contrast agents inside cellular and tissue specimens of mice.  相似文献   

14.
15.
The arsC gene is responsible for the first step in arsenate biotransformation encoding the enzyme arsenate reductase. The quantitative real-time PCR method was developed to quantify the abundance of the arsC genes in environmental samples contaminated with arsenic. Two sets of primers that showed high specificity for the target arsC gene were designed based on consensus sequences from 13 bacterial species. The arsC gene was used as an external standard instead of total DNA in the calibration curve for real-time PCR, which was linear over six orders of magnitude and the detection limit was estimated to be about three copies of the gene. Soil samples from arsenic contaminated sites were screened for arsC genes by using PCR and showed the presence of this gene. The copy numbers of the gene ranging from 0.88 x 10(4) to 1.56 x 10(5) per ng total DNA were found in eight arsenic contaminated samples. Soil samples from a bioreactor containing pulp mill biomass and high concentration of arsenate showed a tenfold higher count of arsC gene copies than soil samples collected underground from an arsenic-rich gold mine.  相似文献   

16.
The scanning probe microscopies applied to the sequencing of DNA is a challenging goal attempted by several groups. But one limitant parameter has been the sample preparation of DNA molecules. Here we report how to hold DNA molecules fixed on mica substrate and we show the three-dimensional configuration of double-stranded DNA obtained with our scanning force microscope. We can image DNA under negative supercoiling, a feature of general importance controlling the activities of DNA. We compared the electron micrographs of a carbon replica of the same DNA specimen with scanning force images which demonstrates well the feasibility and accuracy of our scanning probe measurements.  相似文献   

17.
Imaging molecular interactions in living cells by FRET microscopy   总被引:7,自引:0,他引:7  
F?rster resonance energy transfer (FRET) is applied extensively in all fields of biological research and technology, generally as a 'nanoruler' with a dynamic range corresponding to the intramolecular and intermolecular distances characterizing the molecular structures that regulate cellular function. The complex underlying network of interactions reflects elementary reactions operating under strict spatio-temporal control: binding, conformational transition, covalent modification and transport. FRET imaging provides information about all these molecular processes with high specificity and sensitivity via probes expressed by or introduced from the external medium into the cell, tissue or organism. Current approaches and developments in the field are discussed with emphasis on formalism, probes and technical implementation.  相似文献   

18.
Two-photon excitation microscopy provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging. Since two-photon excitation occurs only at the focal point of the microscope, it inherently provides three-dimensional resolution. This localization of excitation also minimizes photobleaching and photodamage, which are the ultimate limiting factors in imaging living cells. Furthermore, no pinhole is required to attain three-dimensional discrimination, so the efficiency of fluorescence collection is increased. These advantages allow experiments on thick living samples that would not be possible with other imaging techniques. The cost and complexity of the lasers required for two-photon excitation microscopy have limited its use, but appropriate turn-key lasers have now been introduced, and their cost should decrease. Finally, the recent introduction of commercial two-photon excitation laser-scanning microscope systems allows a much larger group of researchers access to this state-of-the-art methodology.  相似文献   

19.
Summry— The aim of this study was to localise two ionic S-phase markers in tissue sections using SIMS microscopy: aluminium as a potential endogenous marker and bromine as an exogenous marker after in vivo injection of bromodeoxyuridine (BrdU). This study was performed in an experimental model of hyperplastic proliferation after partial hepatectomy in rat. Aluminium was never detected in nuclei which were positive or negative for tritiated thymidine uptake, as determined by autoradiography in tissue prepared by cryotechniques. In contrast, bromine of BrdU was found in hepatocyte nuclei. However, there was a discrepancy between SIMS bromine images and BrdU immunohistochemistry detection which appears more sensitive. This is probably due to problems of stereology intrinsic to the correlation method which requires serial sections for this multi-instrumental approach.  相似文献   

20.
A new approach to trace the transport routes of macronutrients in plants at the level of cells and tissues and to measure their elemental distributions was developed for investigating the dynamics and structure-function relationships of transport processes. Stem samples from Phaseolus vulgaris were used as a test system. Shock freezing and cryo-preparation were combined in a cryogenic chain with cryo-time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS) for element and isotope-specific imaging. Cryo-scanning electron microscopy (cryo-SEM) was integrated into the cryogenic workflow to assess the quality of structural preservation. We evaluated the capability of these techniques to monitor transport pathways and processes in xylem and associated tissues using supplementary sodium (Na) and tracers for potassium (K), rubidium (Rb), and (41)K added to the transpiration stream. Cryo-ToF-SIMS imaging produced detailed mappings of water, K, calcium, magnesium, the K tracers, and Na without quantification. Lateral resolutions ranged from 10 microm in survey mappings and at high mass resolution to approximately 1 microm in high lateral resolution imaging in reduced areas and at lower mass resolution. The tracers Rb and (41)K, as well as Na, were imaged with high sensitivity in xylem vessels and surrounding tissues. The isotope signature of the stable isotope tracer was utilized for relative quantification of the (41)K tracer as a fraction of total K at the single pixel level. Cryo-SEM confirmed that tissue structures had been preserved with subcellular detail throughout all procedures. Overlays of cryo-ToF-SIMS images onto the corresponding SEM images allowed detailed correlation of nutrient images with subcellular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号