首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of prescribed fire, herbicide treatment, and sod removal on the eradication of exotic grasses and the establishment of native plant species in 24 experimental restoration plots in three razed residential sites within the boundary of Indiana Dunes National Lakeshore. During 1992–1995, herbicide treatment and sod removal decreased the combined cover of Poa pratensis (Kentucky blue grass) and Agropyron repens (quackgrass) significantly (from 82% to 13%, and 85% to 8%, respectively), whereas fire did not suppress such exotic lawn grasses. In 1993, several opportunistic species, represented by Cyperus spp. (umbrella sedges), Digitaria sanguinalis (crab grass), and Ambrosia artemisiifolia (common ragweed), filled the gaps left by the removal of lawn grasses. For the same period, Detrended Correspondence Analysis revealed a clear vegetation divergence between the control-fire plots and the herbicide-sod removal plots. While Poa pratensis and Agropyron repens continued to dominate the control and fire plots, the planted native species, represented by Schizachyrium scoparium (little blue-stem), Sorghastrum nutans (Indian grass), Rudbeckia hirta (black-eyed Susan), and Monarda punctata (horsemint), began to dominate in the herbicide and sod removal plots from 1994. In both herbicide and sod removal plots, the ground cover of grasses (68%) was much higher than the forbs (10%). The herbicide plots, where exotic species were removed but nitrogen-rich top soils were not removed, showed a higher diversity of planted native species than the sod removal plots (where both exotic species and top soils were removed) and the control-fire plots (where neither was removed). This finding suggests that an optimum but not excessive concentration of soil nitrogen is needed to support a maximum species diversity in such infertile substrate as sandy soil. In addition, the decrease in potassium in all plots, regardless of treatment, suggests that potassium may become a limiting factor for our restored native vegetation.  相似文献   

2.
Abstract. The first 10 yr of old-field successional dynamics on the Argentine Inland Pampa were studied on a series of adjacent plots established consecutively between 1978 and 1989. We examined differences in species abundance patterns among plots in order to detect the spatial and temporal variability of succession. Perennial grasses steadily increased in cover and replaced the dominant annual species after 5 yr. Pioneer dicots persisted in older seral stages with 20 — 23 species/plot. Overall, exotic species (mostly the grasses Lolium multiflorum and Cynodon dactylon) contributed much to the plant cover in these communities. Native grasses comprised 45 % of total cover at years 7 — 10 of succession, but occurred with less than 7 species/plot. Substantial variation was found in the successional pathway, which reflected the particular sequence from annual forbs to short-lived and perennial grasses in the various plots. The course of succession was apparently influenced by a 2-yr period of unusually high rainfall. Deyeuxia viridiflavescens, a native perennial grass virtually absent before the wet period, spread over the study area and dominated seral communities for 3 yr, irrespective of plot age. Climatic conditions thus affected the successional turnover of life forms by increasing the rate of colonization by perennial grasses. We further point out the constraints imposed on secondary succession by the life histories of ‘available’ species.  相似文献   

3.
The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non‐indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass‐fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there.  相似文献   

4.
Many semi-arid shrublands in the western US have experienced invasion by a suite of exotic grasses and forbs that have altered community structure and function. The effect of the exotic grasses in this area has been studied, but little is known about how exotic forbs influence the plant community. A 3-year experiment in southern California coastal sage scrub (CSS) now dominated by exotic grasses was done to investigate the influence of both exotic grasses (mainly Bromus spp.) and exotic forbs (mainly Erodium spp.) on a restoration seeding (9 species, including grasses, forbs, and shrubs). Experimental plots were weeded to remove one, both, or neither group of exotic species and seeded at a high rate with a mix of native species. Abundance of all species varied with precipitation levels, but seeded species established best when both groups of exotic species were removed. The removal of exotic grasses resulted in an increase in exotic and native forb cover, while removal of exotic forbs led to an increase in exotic grass cover and, at least in one year, a decrease in native forb cover. In former CSS now converted to exotic annual grassland, a competitive hierarchy between exotic grasses and forbs may prevent native forbs from more fully occupying the habitat when either group of exotics is removed. This apparent competitive hierarchy may interact with yearly variation in precipitation levels to limit restoration seedings of CSS/exotic grassland communities. Therefore, management of CSS and exotic grassland in southern California and similar areas must consider control of both exotic grasses and forbs when restoration is attempted.  相似文献   

5.
Question. Can strategic burning, targeting differing ecological characteristics of native and exotic species, facilitate restoration of native understorey in weed‐invaded temperate grassy eucalypt woodlands? Location. Gippsland Plains, eastern Victoria, Australia. Methods. In a replicated, 5‐year experimental trial, the effects of repeated spring or autumn burning were evaluated for native and exotic plants in a representative, degraded Eucalyptus tereticornis grassy woodland. Treatments aimed to reduce seed banks and modify establishment conditions of exotic annual grasses, and to exhaust vegetative reserves of exotic perennial grasses. Treatments were applied to three grassland patch types, dominated by the native grass Austrodanthonia caespitosa, ubiquitous exotic annuals, or the common exotic perennial grass Paspalum dilatatum. Results. The dominant native grass Austrodanthonia caespitosa and native forbs were resilient to repeated fires, and target exotic annuals and perennials were suppressed differentially by autumn and spring fires. Exotic annuals were also suppressed by drought, reducing the overall treatment effects but indicating important opportunities for restoration. The initially sparse exotic geophyte Romulea rosea increased in cover with fire and the impact of this species on native forbs requires further investigation. There was minimal increase in diversity of subsidiary natives with fire, probably owing to lack of propagules. Conclusions. While fire is often considered to increase ecosystem invasibility, our study showed that strategic use of fire, informed by the relative responses of available native and exotic taxa, is potentially an effective step towards restoration of weed‐invaded temperate eucalypt woodlands.  相似文献   

6.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

7.
Exotic plants have been found to use allelochemicals, positive plant–soil feedbacks, and high concentrations of soil nutrients to exercise a competitive advantage over native plants. Under laboratory conditions, activated carbon (AC) has shown the potential to reduce these advantages by sequestering organic compounds. It is not known, however, if AC can effectively sequester organics or reduce exotic plant growth under field conditions. On soils dominated by exotic plants, we found that AC additions (1% AC by mass in the top 10 cm of soil) reduced concentrations of extractable organic C and N and induced consistent changes in plant community composition. The cover of two dominant exotics, Bromus tectorum and Centaurea diffusa, decreased on AC plots compared to that on control plots (14–8% and 4–0.1%, respectively), and the cover of native perennial grasses increased on AC plots compared to that on control plots (1.4–3% cover). Despite promising responses to AC by these species, some exotic species responded positively to AC and some native species responded negatively to AC. Consequently, AC addition did not result in native plant communities similar to uninvaded sites, but AC did demonstrate potential as a soil‐based exotic plant control tool, especially for B. tectorum and C. diffusa.  相似文献   

8.
Communities subject to stress, including those with low invasibility, may be dominated by exotic generalist species. African grasses are aggressive invasive species in Neotropical savannas, where their response to abiotic stress remains unknown. We assessed the role of waterlogging and canopy closure on the presence, abundance and reproductive tillering of African and native grasses in a Neotropical savanna in southeastern Brazil. We obtained abundance and reproductive tillering data of exotic (Melinis minutiflora, Melinis repens and Urochloa decumbens) and common native grasses in 20 sites. We also determined the groundwater depth, soil surface water potential and canopy cover at these sites. The grass species generally had a low frequency and performed poorly where soil remained waterlogged throughout the year, except for two native species. Most native species were exclusive to either well‐drained savannas or better drained wet grasslands. However, two species (Loudetiopsis chrysothrix and Trachypogon spicatus) occurred in both vegetation types. Two exotic species (M. minutiflora and M. repens) were less common but demonstrated reasonable performance in wet grasslands, possibly due to their root system plasticity. Furthermore, U. decumbens had a lower occurrence, density and reproductive tillering at these sites, but was successful at sites where the groundwater level was slightly deeper. Although the favourable water regime in the savannas increases their invasibility in general, resistance to invasion by African grasses may be greater at microsites with high canopy closure, where these species showed lower performance and did not affect the abundance of co‐occurring native grasses. In summary, the Brazilian savanna becomes more susceptible to the spread of African grasses when disturbances decrease canopy closure or lower rainfall associated with climate change reduces the average groundwater depth and consequently releases invasive species from soil waterlogging in grasslands.  相似文献   

9.
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The size of the local species pool (i.e., species surrounding a community capable of dispersal into that community) and other dispersal limitations strongly influence native plant community composition. However, the role that the local species pool plays in determining the invasibility of communities by exotic plants remains to be evaluated. We hypothesized that the richness and abundance of exotic species would be greater in C4‐dominated grassland communities if the local species pool included a larger proportion of exotic species. We also predicted that an increase in the exotic species pool would increase the invasibility of sites thought to be resistant to invasion (annually burned grassland). To test these hypotheses, study plots were established within two long‐term (>20 yr) fire experiments at a tallgrass prairie preserve in NE Kansas (USA). Study plots were surrounded by either a small pool of exotic species (small species pool (SSP) plots; six species) or a larger exotic species pool (large species pool (LSP) plots; 18 species). We found that richness and absolute cover of exotic species was significantly (P<0.001) lower (~70 and 90%, respectively) in annually burned compared to unburned plots, regardless of the size of the exotic species pool. As predicted, exotic species richness was higher (P<0.001) for LSP plots (3.9 per 250 m2) than for SSP plots (0.7 per 250 m2); however, absolute cover was unaffected by the size of the exotic species pool. In the absence of fire, plots with a LSP had four times as many exotic species than SSP plots. An increase in the local exotic species pool also increased the invasibility of annually burned grassland. Indeed, richness of exotic plant species in annually burned LSP plots did not differ from unburned plots with a SSP, indicating that a larger pool of exotic species countered the negative effects of fire. These findings have important implications for predicting how the invasion of plant communities may respond to human‐induced global changes, such as habitat fragmentation. Community characteristics or factors such as frequent fires in grasslands may impart resistance to invasions by exotic species in large, intact ecosystems. However, when a large pool of exotic species is present, frequent fire may not be sufficient to limit the invasions of exotic plants in fragmented landscapes.  相似文献   

11.
Exotic Grass Competition in Suppressing Native Shrubland Re-establishment   总被引:4,自引:0,他引:4  
Disturbance of coastal sage scrub in southern California has led to extensive displacement of native shrubs by exotic annual grasses. The initial conversion from shrubland to exotic grassland is typically associated with disturbance caused by intense grazing, high fire frequency, or mechanical vegetation removal. While native shrubs have been shown to recolonize annual grasslands under some conditions, other annual grasslands are persistent and show no evidence of shrub recolonization. This study examined the mechanisms by which annual grasses may exclude native shrubs and persist after release from disturbance. Grass density was manipulated in experimental plots to achieve a series of prescribed densities. Artemisia californica, a dominant native shrub, was seeded or planted into the plots and responses to the grass density treatments were measured over two growing seasons. A. californica germination, first season growth, and survival were all negatively related to the density of neighboring annual grasses. The most probable mechanism underlying the reduction of first season growth and survival was depletion of soil water by the grasses. The effects of the grasses on A. californica were no longer significant in the second season. The results of this study indicate that Mediterranean annual grasses reduce recruitment and can persist by inhibiting post-disturbance establishment of A. californica from seed. Although succession alone may not return disturbed annual grasslands to their former shrubland composition, the results suggest that restoration can be achieved by using container plantings or grass removal followed by seeding.  相似文献   

12.
Cheatgrass (Bromus tectorum) and other exotic winter‐active plants can be persistent invaders in native grasslands, growing earlier in the spring than native plants and pre‐empting soil resources. Effective management strategies are needed to reduce their abundance while encouraging the reestablishment of desirable native plants. In this 4‐year study, we investigated whether mowing and seeding with native perennial grasses could limit growth of exotic winter‐actives, and benefit growth of native plants in an invaded grassland in Colorado, United States. We established a split‐plot experiment in October 2008 with 3 mowing treatments: control, spring‐mowed, and spring/summer‐mowed (late spring, mid‐summer, and late summer), and 3 within‐plot seeding treatments: control, added B. tectorum seeds, and added native grass seeds. Cover of plant species and aboveground biomass were measured for 3 years. In March and June of 2010, 2011, and March of 2012, B. tectorum and other winter‐annual grasses were half as abundant in both mowing treatments as in control plots; however, cover of non‐native winter‐active forbs increased 2‐fold in spring‐mowed plots and almost 3‐fold in spring/summer‐mowed plots relative to controls. These patterns remained consistent 1 year after termination of treatments. Native cool‐season grasses were most abundant in spring‐mowed plots, and least abundant in control plots. There was higher cover of native warm‐season grasses in spring/summer‐mowed plots than in control plots in July 2011 and 2012. The timing of management can have strong effects on plant community dynamics in grasslands, and this experiment indicates that adaptive management can target the temporal niche of undesirable invasive species.  相似文献   

13.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

14.
Questions: Can prescribed fire restore C4 perennial grasses in grassland ecosystems that have become dominated by fire‐resistant C3 shrubs (Prosopis glandulosa) and C3 grasses? Do fires in different seasons alter the direction of change in grass composition? Location: Texas, USA. Methods: We quantified short‐ and long‐term (12 yr post‐fire) herbaceous functional group cover and diversity responses to replicated seasonal fire treatments: (1) repeated‐winter fires (three in 5 yr), (2) repeated‐summer fires (two in 3 yr), and (3) alternate‐season fires (two winter and one summer in 4 yr), compared with a no‐fire control. Results: Summer fires were more intense than winter fires, but all fire treatments temporarily decreased Prosopis and C3 annual grass cover. The alternate‐season fire treatment caused a long‐term increase in C4 mid‐grass cover and functional group diversity. The repeated‐summer fire treatment increased C4 short‐grass cover but also caused a long‐term increase in bare ground. The repeated winter fire treatment had no long‐term effects on perennial grass cover. Mesquite post‐fire regrowth had increasingly negative impacts on herbaceous cover in all fire treatments. Conclusions: Summer fire was necessary to shift herbaceous composition toward C4 mid‐grasses. However, the repeated‐summer fire treatment may have been too extreme and caused post‐fire herbaceous composition to “over‐shift” toward less productive C4 short‐grasses rather than C4 mid‐grasses. This study provides some of the first long‐term data showing a possible benefit of mixing seasonal fires (i.e., the alternate‐season fire treatment) in a prescribed burning management plan to restore C4 mid‐grass cover and enhance overall herbaceous diversity.  相似文献   

15.
Ponderosa pine forest restoration consists of thinning trees and reintroducing prescribed fire to reduce unnaturally high tree densities and fuel loads to restore ecosystem structure and function. A current issue in ponderosa pine restoration is what to do with the large quantity of slash that is created from thinning dense forest stands. Slash piling burning is currently the preferred method of slash removal because it allows land managers to burn large quantities of slash in a more controlled environment in comparison with broadcast burning slash. However burning slash piles is known to have adverse effects such as soil sterilization and exotic species establishment. This study investigated the effects of slash pile burning on soil biotic and chemical variables and early herbaceous succession on burned slash pile areas. Slash piles were created following tree thinning in two adjacent approximately 20‐ha ponderosa pine (Pinus ponderosa) restoration treatments in the Coconino National Forest near Flagstaff, Arizona. We selected 30 burned slash pile areas and sampled across a gradient of the burned piles for arbuscular mycorrhizal (AM) propagule densities, the soil seed bank, and soil chemical properties. In addition, we established five 1‐m2 plots in each burned pile to quantify the effect of living soil (AM inoculum) and seeding amendments on early herbaceous succession in burned slash pile areas. The five treatments consisted of a control (no treatment), living soil (AM inoculum) amendment, sterilized soil (no AM inoculum) amendment, seed amendment, and a seed/soil (AM inoculum) amendment. Slash pile burning nearly eliminated populations of viable seeds and AM propagules and altered soil chemical properties. Amending scars with native seeds increased the cover of native forbs and grasses. Furthermore adding both seed and living soil more than doubled total native plant cover and decreased ruderal and exotic plant cover. These results indicate that seed/soil amendments that increase native forbs and grasses may enhance the rate of succession in burned slash pile areas by allowing these species to outcompete exotic and ruderal species also establishing at the site through natural regeneration.  相似文献   

16.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   

17.
Populations of the rare annual forb Amsinckia grandiflora may be declining because of competitive suppression by exotic annual grasses, and may perform better in a matrix of native perennial bunchgrasses. We conducted a field competition experiment in which Amsinckia seedlings were transplanted into forty 0.64‐m2 experimental plots of exotic annual grassland or restored perennial grassland. The perennial grassland plots were restored using mature 3 cm‐diameter plants of the native perennial bunchgrass Poa secunda planted in three densities. The exotic annual grassland plots were established in four densities through manual removal of existing plants. Both grass types reduced soil water potential with increasing biomass, but this reduction was not significantly different between grass types. Both grass types significantly reduced the production of Amsinckia inflorescences. At low and intermediate densities (dry biomass per unit area of 20–80 g/m2), the exotic annual grasses reduced Amsinckia inflorescence number to a greater extent than did Poa, although at high densities (>90 g/m2) both grass types reduced the number of Amsinckia inflorescences to the same extent. The response of Amsinckia inflorescence number to Poa biomass was linear, whereas the same response to the annual grass biomass is logarithmic, and appeared to be related to graminoid cover. This may be because of the different growth forms exhibited by the two grass types. Results of this research suggest that restored native perennial grasslands at intermediate densities have a high habitat value for the potential establishment of the native annual A. grandiflora.  相似文献   

18.
Infestations of the exotic perennial Spotted knapweed (Centaurea maculosa Lam.) hinder the restoration and management of native ecosystems on droughty, infertile sites throughout the Midwestern United States. We studied the effects of annual burning on knapweed persistence on degraded, knapweed‐infested gravel mine spoils in western Michigan. Our experiment included 48, 4‐m2 plots seeded to native warm‐season grasses in 1999 using a factorial arrangement of initial herbicide and fertility treatments. Beginning in 2003, we incorporated fire as an additional factor and burned half of the plots in late April or May for 3 years (2003–2005). Burning increased the dominance of warm‐season grasses and decreased both biomass and dominance of knapweed in most years. Burning reduced adult knapweed densities in all 3 years of the study, reduced seedling densities in the first 2 years, and reduced juvenile densities in the last 2 years. Knapweed density and biomass also declined on the unburned plots through time, suggesting that warm‐season grasses may effectively compete with knapweed even in the absence of fire. By the end of the study, mean adult knapweed densities on both burned (0.4‐m2) and unburned (1.3‐m2) plots were reduced to levels where the seeded grasses should persist with normal management, including the use of prescribed fire. These results support the use of carefully timed burning to help establish and maintain fire‐adapted native plant communities on knapweed‐infested sites in the Midwest by substantially reducing knapweed density, biomass, and seedling recruitment and by further shifting the competitive balance toward native warm‐season grasses.  相似文献   

19.
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales.  相似文献   

20.
We assessed the impacts of co‐occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA. We analyzed the distribution and co‐occurrence patterns of three invasive annual grasses (Bromus rubens, Bromus tectorum, and Schismus spp.) known to alter fuel conditions and community structure, and an invasive forb (Erodium cicutarium) which dominates postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts on postfire native herbaceous diversity. Most of the Mojave Desert is highly suitable for at least one of the four invasive species, and 76% of the ecoregion is predicted to have high or very high suitability for the joint occurrence of B. rubens and B. tectorum and 42% high or very high suitability for the joint occurrence of the two Bromus species and E. cicutarium. Analysis of cover from plot data indicated two or more of the species occurred in 77% of the plots, with their cover doubling with each additional species. We found invasive cover in burned plots increased for the first 20 years postfire and recorded two to five times more cover in burned than unburned plots. Analysis also indicated that native species diversity and evenness as negatively associated with higher levels of relative cover of the four invasive taxa. Our findings revealed overlapping distributions of the four invasives; a strong relationship between the invasives and fire frequency; and significant negative impacts of invasives on native herbaceous diversity in the Mojave. This suggests predicting the distributions of co‐occurring invasive species, especially transformer species, will provide a better understanding of where native‐dominated communities are most vulnerable to transformations following fire or other disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号