首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last decade, strong negative rainfall anomalies resulting from increased sea surface temperature in the tropical Atlantic have caused extensive droughts in rainforests of western Amazonia, exerting persistent effects on the forest canopy. In contrast, there have been no significant impacts on rainforests of West and Central Africa during the same period, despite large-scale droughts and rainfall anomalies during the same period. Using a combination of rainfall observations from meteorological stations from the Climate Research Unit (CRU; 1950–2009) and satellite observations of the Tropical Rainfall Measuring Mission (TRMM; 1998–2010), we show that West and Central Africa experienced strong negative water deficit (WD) anomalies over the last decade, particularly in 2005, 2006 and 2007. These anomalies were a continuation of an increasing drying trend in the region that started in the 1970s. We monitored the response of forests to extreme rainfall anomalies of the past decade by analysing the microwave scatterometer data from QuickSCAT (1999–2009) sensitive to variations in canopy water content and structure. Unlike in Amazonia, we found no significant impacts of extreme WD events on forests of Central Africa, suggesting potential adaptability of these forests to short-term severe droughts. Only forests near the savanna boundary in West Africa and in fragmented landscapes of the northern Congo Basin responded to extreme droughts with widespread canopy disturbance that lasted only during the period of WD. Time-series analyses of CRU and TRMM data show most regions in Central and West Africa experience seasonal or decadal extreme WDs (less than −600 mm). We hypothesize that the long-term historical extreme WDs with gradual drying trends in the 1970s have increased the adaptability of humid tropical forests in Africa to droughts.  相似文献   

2.
Recent work has indicated that tropical forest and savanna can be alternative stable states under a range of climatic conditions. However, dynamical systems theory suggests that in case of strong spatial interactions between patches of forest and savanna, a boundary between both states is only possible at conditions in which forest and savanna are equally stable, called the ‘Maxwell point.’ Frequency distributions of MODIS tree-cover data at 250 m resolution were used to estimate such Maxwell points with respect to the amount and seasonality of rainfall in both South America and Africa. We tested on a 0.5° scale whether there is a larger probability of local coexistence of forests and savannas near the estimated Maxwell points. Maxwell points for South America and Africa were estimated at 1760 and 1580 mm mean annual precipitation and at Markham’s Seasonality Index values of 50 and 24 %. Although the probability of local coexistence was indeed highest around these Maxwell points, local coexistence was not limited to the Maxwell points. We conclude that critical transitions between forest and savanna may occur when climatic changes exceed a critical value. However, we also conclude that spatial interactions between patches of forest and savanna may reduce the hysteresis that can be observed in isolated patches, causing more predictable forest-savanna boundaries than continental-scale analyses of tree cover indicate. This effect could be less pronounced in Africa than in South America, where the forest-savanna boundary is substantially affected by rainfall seasonality.  相似文献   

3.
Six features are covered. (1) The high endemism, which is not discussed in detail, is all-pervasive, and has resulted from the isolation of Madagascar from Africa some 125 million years ago and their present separation by 430 km. (2) The great richness in plant species (especially relative to Africa), seen particularly in the families of woody species in the wetter vegetation-types, involves both sympatry and allopatry within genera, and is explicable in terms of much less extreme drying out than in Africa during the Pleistocene and effective ‘species-pumping’ rather than mass extinctions during that period. (3) The abundance and species-richness of palms, pandans, tree-ferns, bamboos, and certain families of dicot trees (notably Lauraceae, Monimiaceae, Myrsinaceae and Myristicaceae) in the lowland rain forests also appears to be a result of both past and present wetness of the climate, while it is hypothesized that the low stature of most lowland rain forests, paucity of large-girth trees, and small size and sparsity of broad-leaved herbs, are a result of most rain forest soils being old and relatively nutrient-poor. (4) Within the dry evergreen forest region where rainfall is moderate (900–1600 mm yr−1) a sub-set of trees with fire-resistant bark seems to have evolved at sites prone to frequent ground fires, some perhaps spreading out of adjacent palm savanna on seasonally flooded sites. (5) Both the evolution of thicket rather than grassy woodland in the driest areas (300–600 mm yr−1), and the abundance of evergreen trees and shrubs on ordinary soils – not confined to run-on sites – are explicable in terms of there being a finite chance of rain throughout the year rather than one short wet season, coupled with relatively high values for air humidity throughout the year. The same factors probably explain the abundance and variety of succulents in the thicket; they are found throughout and not just on rocks. (6) Concerning physical defence against herbivores, the rain forests, dry evergreen forests and deciduous forests all show a complete lack of plants with physiognomic features plausibly related to browsing by extinct giant birds (a strong contrast with New Zealand), but in the semi-deciduous thicket there are many tiny-leaved, mostly non-spiny shrubs and small trees, whose dense branching and impenetrability have plausibly evolved as a defence against browsing by elephant birds. The Didiereaceae of the thicket are spiny (unlike members of the same family in Africa), and are giant analogues of the ‘ocotillo’ (Fouquieria splendens) in western North America rather than of Cactaceae; their spines appear to be protecting the leaves more than the stems against arboreal primates, spine length paralleling leaf length.  相似文献   

4.
Following recent classifications of rain forest vegetation in northern Australia this paper examines the biogeo-graphical status and condition of a rain forest type endemic to that region, dominated by the sclerophyll Allosyncarpia ternata (Myrtaceae). These forests are restricted to the Arnhem Land region of the Northern Territory, which includes Kakadu National Park. They cover an area of 1138 km2, or 41 % of all rain forest in northern and northwestern Australia. DCA of floristic data from 140 sites illustrates that Allosyncarpia forests occupy a range of sandstone-derived substrates, from moist valley sediments to steep, freely draining, rocky sites. DCA of floristic transect data illustrates that Allosyncarpia is by far the dominant canopy species over this topographic-moisture sequence, but especially on seasonally dry substrates where it provides over 80 % basal area and effectively the entire canopy. DCA of floristic quadrat data from a floristi-cally singular site illustrates major death of the fire-sensitive gymnosperm Callitris intratropica, and, to a lesser extent, Allosyncarpia itself, on the forest-savanna boundary. Biogeographical implications arising from the Gondwanic distributions of Allosyncarpia and its close relatives, Arillas-trum (New Caledonia), Eucalyptopsis (eastern Malesia), and an as yet undescribed taxon (eastern Australia), suggest that taxa ancestral to this group were extensive in the late Cretaceous. Their current restriction is in marked contrast to the success of their near relatives, the eucalypts. Given the tolerance of Allosyncarpia to a wide range of substrate moisture conditions in the present day, it is argued that fire regulates patch margins of this forest type. Although tolerant of light fires, canopy trees at patch margins are susceptible under a regime of frequent, intense late dry-season fires, such as are prevalent in Arnhem Land today. For effective conservation of fire-sensitive communities in this floristically significant region, greater attention must be given to management and monitoring of the fire regime.  相似文献   

5.
Phenology of Tree Species in Bolivian Dry Forests   总被引:2,自引:0,他引:2  
Phenological characteristics of 453 individuals representing 39 tree species were investigated in two dry forests of the Lomerío region, Department of Santa Cruz, Bolivia. The leaf, flower, and fruit production of canopy and sub–canopy forest tree species were recorded monthly over a two–year period. Most canopy species lost their leaves during the dry season, whereas nearly all sub–canopy species retained their leaves. Peak leaf fall for canopy trees coincided with the peak of the dry season in July and August. Flushing of new leaves was complete by November in the early rainy season. Flowering and fruiting were bimodal, with a major peak occurring at the end of the dry season (August–October) and a minor peak during the rainy season (January). Fruit development was sufficiently long in this forest that fruiting peaks actually tended to precede flowering peaks by one month. A scarcity of fruit was observed in May, corresponding to the end of the rainy season. With the exception of figs (Ficus), most species had fairly synchronous fruit production. Most canopy trees had small, wind dispersed seeds or fruits that matured during the latter part of the dry season, whereas many sub–canopy tree species produced larger animal– or gravity–dispersed fruits that matured during the peak of the rainy season. Most species produced fruit annually. Lomerio received less rainfall than other tropical dry forests in which phenological studies have been conducted, but rainfall can be plentiful during the dry season in association with the passage of Antarctic cold fronts. Still, phenological patterns in Bolivian dry forests appear to be similar to those of other Neotropical dry forests.  相似文献   

6.
Forests are vital for biodiversity, carbon storage and ecosystem services, but can be potentially threatened by fires. Given the significance of forests and fire in a changing climate, research into the long-term effects of fire on forests plays an important role in understanding the global carbon cycle by the forests functioning as a large terrestrial carbon sink or source. In this study, we used aerial photography from 1975 and 2013 to count the change in the number of trees in 560 dry sclerophyll plots (40 × 40m) in the Blue Mountains of Australia. We analysed the relationship between the number of fires and severe fires in that period on the change in numbers of trees. We found that the average response was an increase of 1 tree per plot over 38 years. The number of fires had a small positive effect on tree numbers; plots with 2 or 3 severe fires had 1 and 2 extra trees, respectively, than those without fire. One exception was a severe fire in 2001 that did not show this positive effect, probably because it corresponded with extensive drought. Our findings suggest that number of forest canopy trees is resilient to the number of fires and number of severe fires.  相似文献   

7.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

8.
Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees—those that have not attained the canopy—are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.  相似文献   

9.
森林生态系统作为陆地生态系统的主体,其发达的林冠层通过调节降水量、改变降水强度等深刻影响着流域全过程水文通量及水分输出。以中国广泛开展的典型森林降雨再分配过程的年尺度监测数据为基础,揭示中国不同类型森林生态系统的降雨再分配及林冠层降雨截留特征,阐明森林生态系统林冠层截留特征与降雨、植被要素的关系。结果表明:我国不同森林生态系统年穿透雨量处于141.4-2450.0 mm之间,年穿透雨率为36.3%-92.3%。5种典型森林生态系统多年平均穿透雨量((445.3±252.9)-(1230.6±479.6) mm)占同期多年平均降雨量的(72.6±9.2)%-(77.4±8.9)%。不同森林生态系统年树干茎流量介于0-508.2 mm之间,占同期年降雨量的0-25.8%。5种典型森林生态系统树干茎流量多年平均值((9.8±17.3)-(87.8±81.6) mm)占同期多年平均降雨量的(1.4±1.9)%-(5.4±4.6)%。不同森林生态系统林冠层年降雨截留范围在25.7-812.9 mm之间,占年降雨量的4.2%-55.6%。5种典型森林生态系统多年平均林冠截留量((154.2±81.6)-(392.2±203.5) mm)占同期年平均降雨量的(18.7±7.4)%-(25.9±8.3)%。进一步分析表明,我国森林生态系统穿透雨量、树干茎流量和林冠层截留量随观测区年降雨量的增加而呈显著增大(P<0.05),年穿透雨率、年树干茎流率随年降雨量的增加呈显著线性上升趋势(P<0.05),而年林冠截留率与年降雨量呈显著的负相关关系(P<0.01),降雨量、叶面积指数是深刻影响森林生态系统林冠层降雨截留率等特征的重要因素。整体上,不同类型森林生态系统林冠截留降雨能力存在明显差异,林冠层截留率突出表现为:落叶林大于常绿林、针叶林大于阔叶林。  相似文献   

10.
In order to investigate how environmental factors other than light availability affect tree architecture, differences in branching architecture and allometry were analysed in populations of Acacia karroo Hein. from three different environments in South Africa: forests, savannas and arid‐shrublands. Factors such as fire and herbivory have a large effect on tree life history in certain environments and are likely to have selected for trees that have different architectures from those of forest trees, whose major limitation is light assimilation. Significant differences were found in stem architecture and branching architecture between trees in each environment. Compared with forest trees, trees in savannas had an elongated growth form with small canopy and leaf areas, and tall, thin, unbranched trunks. Trees in arid areas showed opposite trends with wider canopies, and increased lateral branching. Savanna trees had significantly smaller spines than trees in other environments, and both forest and savanna trees showed delayed reproduction. These differences are probably related to a trade‐off between an architecture geared towards rapid height‐gain and one promoting lateral spread, and can be explained with reference to the different selective pressures in each environment. In forests, vertical and horizontal growth are both important. However, in savannas there is a great pressure for rapid vertical growth to escape fires, while in arid areas a defensive, lateral growth form is selected for. Savanna trees and arid karoo trees have evolved architectures that are more extreme vertically and laterally than the range of architectures displayed in a forest community.  相似文献   

11.
川西亚高山典型森林生态系统截留水文效应   总被引:8,自引:2,他引:8  
截留是水文循环的一个重要过程,水文功能是森林生态系统功能的重要方面,林冠和枯落物截留实现对大气降水的二次分配过程.为深入认识生态系统截留的水文效应,采用野外观测和人工降雨模拟试验相结合的方法,研究了2008年和2009年5-10月贡嘎山亚高山峨眉冷杉中龄林、峨眉冷杉成熟林和针阔混交林的冠层枯落物截留能力.结果表明,峨眉冷杉中龄林2008年林冠截留率为20.9%,针阔混交林2008年和2009年林冠截留率分别为23.0%和23.6%,林冠截留率的年际间变化不大,林冠截留主要受到降雨特征影响.3种林型枯落物饱和持水能力分别为5.1、5.1和5.7 mm,显著高于林冠的饱和持水能力,但由于冠层的截留蒸发速率较高,林冠截留蒸发仍是生态系统截留蒸发的主要组成部分.  相似文献   

12.
Mandrills have long been known to form large aggregations in the wild, but it has proved difficult to obtain detailed information on the socioecology of these groups. An unusually large (>600) horde of mandrills was followed for ten days during the 1995 dry season in Central Gabon, and data were collected on group composition and ecology while the mandrills were in an area of forest-savanna mosaic habitat in the north of the Lopé Reserve. Three separate counts of most of the group showed that fully coloured “fatted” adult males were present throughout the horde at a mean ratio to other individuals of 1:21. Paler “non-fatted” adult and sub-adult males were also distributed throughout. Mandrill diet over the ten days consisted mainly of insects, seeds from forest trees, and leaves or stems of understory herbaceous plants. Feeding was extremely selective, with most food items consumed in a much higher proportion than would be predicted from their relative availability. Ranging data also showed that the mandrills foraged preferentially in certain forest types within the forest-savanna mosaic, namely in Marantaceae and Rocky Forest. It is suggested that one reason why mandrills pass through gallery forests and forest-savanna mosaic in the dry season in the Lopé Reserve is because they find fruit there from preferred species, which are no longer fruiting in the main forest block, thus allowing them to maintain the fruit component of their diet at a time of fruit shortage. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Question: Disturbance effects on dry forest epiphytes are poorly known. How are epiphytic assemblages affected by different degrees of human disturbance, and what are the driving forces? Location: An inter‐Andean dry forest landscape at 2300 m elevation in northern Ecuador. Methods: We sampled epiphytic bryophytes and vascular plants on 100 trees of Acacia macracantha in five habitats: closed‐canopy mixed and pure acacia forest (old secondary), forest edge, young semi‐closed secondary woodland, and isolated trees in grassland. Results: Total species richness in forest edge habitats and on isolated trees was significantly lower than in closed forest types. Species density of vascular epiphytes (species per tree) did not differ significantly between habitat types. Species density of bryophytes, in contrast, was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge showed greater impoverishment than semi‐closed woodland and similar floristic affinity to isolated trees and to closed forest types. Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability. Distance to forest had no effect on species density of epiphytes on isolated trees, but species density was closely correlated with crown closure, a measure of canopy integrity. Main conclusions: Microclimatic changes but not dispersal constraints were key determinants of epiphyte assemblages following disturbance. Epiphytic cryptogams are sensitive indicators of microclimate and human disturbance in montane dry forests. The substantial impoverishment of edge habitat underlines the need for fragmentation studies on epiphytes elsewhere in the Tropics.  相似文献   

14.
Abstract. The occurrence and abundance of 12 canopy tree species from the moist tropical forests of West Africa have been studied in relation to a climatic gradient. We focused on environmental factors related to water availability: annual amount of rainfall, the length of the dry season, and cumulative water deficit. Species occurrence and abundance data are used for 39 forest sites in Liberia and southwest Côte d'Ivoire. Species responses are modelled using a set of five increasingly complex models, ranging from a no-trend model to a skewed bell-shaped response curve. The study species show different distribution patterns. Most of them suggest a close relationship to climatic conditions. Fitting of species occurrence data to each of the three climatic factors results in most cases in simple models. In only one out of 36 cases a bell-shaped response curve is needed to describe the data. Four of the 12 species show no response to the climatic factors when only occurrence is evaluated. When abundance data are used, in 33 of the 36 cases significant response models are found. In general these are much more complex than in the cases of species occurrence data: in 10 of the 36 cases a bell-shaped response model is found to describe the data best. This is in contrast with the widespread belief that species response curves are bell-shaped: within the forest zone in the area studied this is not generally the case. The importance of the three climatic factors for the distribution of the species is evaluated: for four species mean annual rainfall is the most important variable, for four species the length of the dry period, and for one species cumulative water deficit. Consequently, the assumption that mean annual rainfall is the most important factor determining tree species distribution in West African forests is not correct. Species response models to climatic factors show where species have their geographical optima. Implications for forest management are briefly discussed.  相似文献   

15.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

16.
A comparative floristic survey of lowland tropical rain forest at Kuala Lompat, Krau Game Reserve, West Malaysia and at Sepilok Virgin Jungle Reserve, Sabah, East Malaysia, revealed significant differences in the composition of canopy species, notably in the relative paucity of Dipterocarpaceae and abundance of Leguminosae at Kuala Lompat. A further comparison with data from other sites in Malesia indicated that Kuala Lompat was rather atypical, representing an extreme example of the relatively legume rich and dipterocarp poor forests of West Malaysia. Conversely, the predominance of dipterocarps and lack of legumes at Sepilok was similar to other sites in Borneo. Young and mature leaves were collected from a representative sample of the canopy flora of the two study sites; the levels of nitrogen, fibre, total phenolics and condensed tannins, and degree of digestibility by cellulase and pepsin, were measured. Levels of fibre, nitrogen and phenolics differed significantly between the two floras; foliage from Kuala Lompat being, on the whole, richer in nitrogen but lower in phenolics and fibre. As a consequence of the lower levels of fibre, and less certainly of phenolics, the Kuala Lompat foliage was comparatively more digestible. Possible reasons for the differences in foliar biochemistry between the two sites are discussed. Differences in rainfall and in soil quality are regarded as potential evolutionary causes. A further comparison of the chemical profiles with data for other forests in India and Africa indicate that Sepilok is a site in which trees invest heavily in quantitative defences such as fibre and phenolics whereas trees at Kuala Lompat place a lower emphasis on the production of these. Finally, attention is drawn to the use of foliar chemical profiles in predicting the carrying capacity for colobine monkeys at each of the five Old World forests where data are available. It was found that the ratio of nitrogen to fibre correlated well with the biomass of colobines at the five sites.  相似文献   

17.
Lianas are an important component of tropical forests; they alter tree mortality and recruitment and impact biogeochemical cycling. Recent evidence suggests that the abundance of lianas in tropical forests is increasing. To understand and predict the effect of lianas on ecosystem processes in tropical forests, it is important to understand the mechanisms through which they compete with trees. In this study, we investigated the functional traits of lianas and trees in a lowland tropical forest in northeast Queensland, Australia. The site is located at 16.1° south latitude and experiences significant seasonality in rainfall, with pronounced wet and dry seasons. It is also subject to relatively frequent disturbance by cyclones. We asked the question of whether the canopy liana community at this site would display functional traits consistent with a competitive advantage over trees in response to disturbance, or in response to dry season water stress. We found that traits that we considered indicative of a dry season advantage (xylem water δ18O as an indicator of rooting depth; leaf and stem tissue δ13C and instantaneous gas exchange as measures of water‐use efficiency) did not differ between canopy lianas and canopy trees. On the other hand, lianas differed from trees in traits that should confer an advantage in response to disturbance (low wood density; low leaf dry matter content; high leaf N concentration; high mass‐based photosynthetic rates). We conclude that the liana community at the study site expressed functional traits geared towards rapid resource acquisition and growth in response to disturbance, rather than outcompeting trees during periods of water stress. These results contribute to a body of literature which will be useful for parameterising a liana functional type in ecosystem models.  相似文献   

18.
The distribution of lichens in lowland deciduous and evergreen forests in Thailand is used to interpret recent changes in the distribution of these forests. The role of fire in changing the forest structure, microclimate and species content is discussed. Characteristic corticolous lichen communities of dry deciduous and moist evergreen forests are described, as well as changes in the composition of the flora following fire events. Where frequent fires have altered the forest rates of change in forest type are suggested using lichen data from randomly selected trees in forest plots, and growth rates of sampled species in quadrats. The disjunct nature of the lichen floras in lowland deciduous and evergreen forests is discussed, their origin and use in interpreting changes in forest types in monsoon climates over long periods of time.  相似文献   

19.
西南干旱对哀牢山常绿阔叶林凋落物及叶面积指数的影响   总被引:1,自引:0,他引:1  
为探讨2010年初西南干旱对这一地区原生植被林冠和凋落物量的影响,以及这一地区凋落物量和气候条件之间的关系,对比研究了哀牢山亚热带常绿阔叶林2010年和一般年份的凋落物特征以及各层的叶面积指数,并分析了凋落物量和气候因子之间的关系.2010年凋落物总量和往年相比无显著差异,但是叶凋落总量、旱季凋落物总量、旱季叶凋落量为历年来最高,其中旱季叶凋落物量比一般年份平均高35.2% (0.81 t/hm2).而2010年附生苔蘚年凋落量为历年来最低.2010年最旱月的乔木层和灌木层叶面积指数和2005同期相比无显著差异,但是草本层叶面积指数却极显著低于2005年同期.因此,2010年初西南干旱尽管使哀牢山常绿阔叶林旱季落叶增加,但还没有到显著影响冠层叶面积指数的程度.而草本层和附生苔藓的生长则受到了干旱事件的显著影响.此外,哀牢山常绿阔叶林年总凋落量和年降水量显著正相关,而和年均温却不相关,表明该亚热带森林凋落物量主要由降水而非温度决定.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号