首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A Robertsonian karyotypic polymorphism in the common shrew in the Oxford area, first described in the 1950s, was re-examined. The polymorphism involves chromosome arm combinations kq, no and pr (characteristic of the Oxford karyotypic race), ko (characteristic of the Hermitage karyotypic race) and jl (found in both races). The polymorphism for jl was sporadic along a north-south transect through the Oxford area, with the frequency of the twin-acrocentric morph never exceeding 10%. The frequency of the Oxford race-specific metacentrics decreased and the frequency of the Hermitage race-specific metacentric ko increased from north to south along the transect. At a latitudinal grid reference of about 180 km, there was a high frequency of individuals with chromosome arms k, n, o and q in the ancestral acrocentric state. This was coincident with the area of occurrence of ko-kq and ko-no Oxford-Hermitage hybrids. Such hybrids are double Robertsonian heterozygotes with monobrachial homology and are likely to suffer reduced fertility in consequence. It is proposed that this is a source of selection against the monobrachial hybrids and hence results in an increase in frequency of the acrocentric morphs. This scheme goes some way to explain the clines of polymorphism for arm combinations kq, no and ko, but it is suggested that other selective factors are involved. It cannot explain the cline of polymorphism for pr, which is in general terms similar to that for kq and no, but is more shallow and centred further north.  相似文献   

2.
The F5 (2n = 34) and FM2 (2n = 44–46) chromosome races of the Sceloporus grammicus complex form a parapatric hybrid zone in the Mexican state of Hidalgo, characterized by steep concordant clines among three diagnostic chromosome markers across a straight-line distance of about 2 km. Here, we show that this zone is actually structured into local patches in which hybridization extends over an extremely irregular front. The distribution of hybrid-index (HI) scores across the transect reveals some hybridization at almost all localities mapped in a central 7 km × 3 km area. Pooling the central samples produces both a strong heterozygote deficit for all diagnostic markers and strong linkage disequilibria between all pairwise combinations of these (unlinked) markers. Moreover, a highly significant association exists between the habitat on which each individual was caught and its karyotype (F5 chromosomes are more likely to be found on oak). Analysis of genotype frequencies over a range of spatial scales shows that there is no significant heterozygote deficit or habitat association within local areas of less than about 200 m; however, there is significant linkage disequilibrium over the smallest scales (R = D (pquv)1/2 = 0.29, support limits, 0.18–0.36) over 100 m. These patterns suggest that lizards mate and choose habitats randomly within local patches. This conclusion is supported by mark-recapture estimates of dispersal (≈ 80 m in a generation) and by inference of matings from embryo and maternal karyotypes. Closer examination of the two-dimensional pattern reveals a convoluted cline for all three markers, with a width of 830 m (support limits 770 m–930 m). This cline width, combined with the strength of local linkage disequilibrium, implies a dispersal rate of σ = 160 m in a generation and an effective selection pressure of 30% on each chromosome marker. The proportion of inviable embryos is greater in females from the center of the hybrid zone; this is caused by effects associated with both karyotype and location. The hybrid zone is likely to be maintained by selection against chromosomal heterozygotes, by other kinds of selection against hybrids, and by selection adapting the chromosome races to different habitats. The structure of the contact may be caused by both random drift and by selection in relation to habitat.  相似文献   

3.
Abstract A previous study of the hybrid zone in western Panama between white‐collared (Manacus candei) and golden‐collared manakins (M. vitellinus) documented the unidirectional introgression of vitellinus male secondary sexual traits across the zone. Here, we examine the hybrid zone in greater genetic and morphological detail. Statistical comparisons of clines are performed using maximum‐likelihood and nonparametric bootstrap methods. Our results demonstrate that an array of six molecular and two morphometric markers agree in cline position and width. Clines for male collar and belly color are similar in width to the first eight clines, but are shifted in position by at least five cline widths. The result is that birds in intervening populations are genetically and morphometrically very like parental candei, but males have the plumage color of parental vitellinus. Neither neutral diffusion nor nonlinearity of color scales appear to be viable explanations for the large cline shifts. Genetic dominance of vitellinus plumage traits is another potential explanation that will require breeding experiments to test. Sexual selection remains a plausible explanation for the observed introgression of vitellinus color traits in these highly dimorphic, polygynous, lek‐mating birds. Two other clines, including a nondiagnostic isozyme locus, are similar in position to the main cluster of clines, but are broader in width. Thus, introgression at some loci is greater than that detected with diagnostic markers. Assuming that narrow clines are maintained by selection, variation in cline width indicates that selection is not uniform throughout the genome and that diagnostic markers are under more intense selective pressure. The traditional focus on diagnostic markers in studies of hybrid zones may therefore lead to underestimates of average introgression. This effect may be more pronounced in organisms with low levels of genetic divergence between hybridizing taxa.  相似文献   

4.
Steep genetic clines resulting from recent secondary contact between previously isolated taxa can either gradually erode over time or be stabilized by factors such as ecological selection or selection against hybrids. We used patterns of variation in 30 nuclear and two mitochondrial SNPs to examine the factors that could be involved in stabilizing clines across a hybrid zone between two subspecies of the Atlantic killifish, Fundulus heteroclitus. Increased heterozygote deficit and cytonuclear disequilibrium in populations near the center of the mtDNA cline suggest that some form of reproductive isolation such as assortative mating or selection against hybrids may be acting in this hybrid zone. However, only a small number of loci exhibited these signatures, suggesting locus‐specific, rather than genomewide, factors. Fourteen of the 32 loci surveyed had cline widths inconsistent with neutral expectations, with two SNPs in the mitochondrial genome exhibiting the steepest clines. Seven of the 12 putatively non‐neutral nuclear clines were for SNPs in genes related to oxidative metabolism. Among these putatively non‐neutral nuclear clines, SNPs in two nuclear‐encoded mitochondrial genes (SLC25A3 and HDDC2), as well as SNPs in the myoglobin, 40S ribosomal protein S17, and actin‐binding LIM protein genes, had clines that were coincident and concordant with the mitochondrial clines. When hybrid index was calculated using this subset of loci, the frequency distribution of hybrid indices for a population located at the mtDNA cline center was non‐unimodal, suggesting selection against advanced‐generation hybrids, possibly due to effects on processes involved in oxidative metabolism.  相似文献   

5.
Hybrid zones are geographic regions where differentiated taxa meet and potentially exchange genes. Increasingly, genomic analyses have demonstrated that many hybrid zones are semipermeable boundaries across which introgression is highly variable. In some cases, certain alleles penetrate across the hybrid zone in only one direction, recombining into the alternate genome. We investigated this phenomenon using genomic (genotyping‐by‐sequencing) and morphological (plumage reflectance spectrophotometry) analyses of the hybrid zone between two subspecies of the red‐backed fairy‐wren (Malurus melanocephalus) that differ conspicuously in a sexual signal, male back plumage color. Geographic cline analyses revealed a highly variable pattern of differential introgression, with many narrow coincident clines combined with several significantly wider clines, suggesting that the hybrid zone is a semipermeable tension zone. The plumage cline was shifted significantly into the genomic background of the orange subspecies, consistent with sexual selection driving asymmetrical introgression of red plumage alleles across the hybrid zone. This interpretation is supported by previous experimental work demonstrating an extra‐pair mating advantage for red males, but the role of genetic dominance in driving this pattern remains unclear. This study highlights the potential for sexual selection to erode taxonomic boundaries and promote gene flow, particularly at an intermediate stage of divergence.  相似文献   

6.
Computer simulations of clines (Brues, 1972; Endler, 1977) as well as theoretical arguments (Nagylaki, 1975), have shown that steps in gene frequencies will be pulled to partial barriers (areas of reduced gene flow) if they form within approximately a cline width of the partial barrier. The behavior of a hybrid zone between two chromosomal taxa (“Moreton” and “Torresian”) of the acridine grasshopper Caledia captiva in southeast Queensland has been analyzed and found to comform qualitatively with a model of altered gene flow patterns. Clines in four enzyme systems were analyzed for 1983 and 1986 along a transect across the hybrid zone. The clines have shifted towards an area of regenerating forest, while homozygote frequencies have increased at this point. This forest barrier has broken the continuity of the spatial distribution of C. captiva, forming population islands in part of the hybrid zone, and thus reducing the amount of gene flow. The distance between the barrier and the original cline is approximately of the order of a cline width, so that they would be expected to interact. Historical information suggests that the secondary contact between the “Moreton” and “Torresian” taxa occurred very recently (1844–1940), due to the intensive land-clearing activities during the European settlement.  相似文献   

7.
Abstract Tension zones are maintained by the interaction between selection against hybrids and dispersal of individuals. Investigating multiple hybrid zones within a single species provides the opportunity to examine differences in zone structure on a background of differences in extrinsic factors (e.g., age of the zone, ecology) or intrinsic factors (e.g., chromosomes). The New Zealand tree weta Hemideina thoracica comprises at least eight distinct chromosomal races with diploid numbers ranging from 2n = 11 (XO) to 2n = 23 (XO). Five independent hybrid zones were located that involve races differing from one another by a variety of chromosomal rearrangements. The predicted negative correlation between extent of karyotypic differentiation (measured in terms of both percent of genome and number of rearrangements) and zone width was not found. Conversely, the widest zones were those characterized by two chromosome rearrangements involving up to 35% of the genome. The narrowest zone occurred where the two races differ by a single chromosome rearrangement involving approximately 2% of the genome. The five estimates of chromosomal cline width ranged from 0.5 km to 47 km. A comparative investigation of cline width for both chromosomal and mitochondrial markers revealed a complex pattern of zone characteristics. Three of the five zones in this study showed cline concordance for the nuclear and cytoplasmic markers, and at two of the zones the clines were also coincident. Zones with the widest chromosomal clines had the widest mitochondrial DNA clines. It appears that, even within a single species, the extent of karyotypic differentiation between pairs of races is not a good predictor of the level of disadvantage suffered by hybrids.  相似文献   

8.
Closely related grasshopper species of the Chorthippus albomarginatus group are notable for their extremely complex courtship songs, accompanied by a visual display. Two species of this group, Ch. albomarginatus and Ch. oschei, were previously shown to hybridize in a wide mosaic hybrid zone in Ukraine and Moldova. In this paper, variation in five courtship song characters, one character of visual display and the number of stridulatory pegs were analysed across the hybrid zone to estimate selection against hybrids and strength of assortative mating. Comparison of cline width and position across the hybrid zone showed concordant and coincident clines in four traits, such as three song characters and one morphological character, and discordant and non‐coincident clines in two other song characters and the character of visual display. Concordance of clines in different characters suggests an equal strength of selection acting on underlying loci. Increase of variance and covariance between phenotypic traits at the cline centre could more likely result from assortative mating than from selection against hybrids. Most pairwise cases showed the highest covariance for the oschei‐like, than for the albomarginatus‐like hybrid populations. This indicates that introgression of the oschei genes into the albomarginatus genome is stronger than vice versa, and may be evidence of the movement of the hybrid zone in favour of Ch. albomarginatus. Analysis of associations between phenotype and local vegetation showed that mosaic structure of the hybrid zone is explained to a great extent by habitat–phenotype associations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 275–291.  相似文献   

9.
Two chromosome races of common shrew, Moscow and Seliger, differ in the arm combination in 11 diagnostic chromosomes (Robertsonian metacentrics/acrocentrics). Homozygotes of both pure races, simple Robertsonian heterozygotes of Seliger race, and complex heterozygotes (F1 hybrids) were detected in the found earlier hybrid zone of these races, in the spring before the breeding season. The g/o heterozygote was first discovered in race Seliger, whose chromosome formula typically contains acrocentrics g and o. The m/q heterozygote was recorded for the second time. Meiosis was studied in 16 males representing five detected karyotypic categories. No abnormal in pairing of homologs in either sex trivalent common for the species (XY1Y2) or autosome trivalents (g/o and m/q) was detected at diakinesis-metaphase I. Two hybrids displayed a theoretically expected and unimpaired meiotic configuration in a form of a very long chain comprising 11 monobrachial homologs (g/gm/mq/qp/pr/rk/ki/ih/hn/no/o). The results are discussed in terms of hypotheses on fertility of complex heterozygotes and limited gene flow in hybrid zone.  相似文献   

10.
Strong ecological selection on a genetic locus can maintain allele frequency differences between populations in different environments, even in the face of hybridization. When alleles at divergent loci come into tight linkage disequilibrium, selection acts on them as a unit and can significantly reduce gene flow. For populations interbreeding across a hybrid zone, linkage disequilibria between loci can force clines to share the same slopes and centers. However, strong ecological selection on a locus can also pull its cline away from the others, reducing linkage disequilibrium and weakening the barrier to gene flow. We looked for this “cline uncoupling” effect in a hybrid zone between stream resident and anadromous sticklebacks at two genes known to be under divergent natural selection (Eda and ATP1a1) and five morphological traits that repeatedly evolve in freshwater stickleback. These clines were all steep and located together at the top of the estuary, such that we found no evidence for cline uncoupling. However, we did not observe the stepped shape normally associated with steep concordant clines. It thus remains possible that these clines cluster together because their individual selection regimes are identical, but this would be very surprising given their diverse roles in osmoregulation, body armor, and swimming performance.  相似文献   

11.
Karyotypes of the Petchora and Kirillov chromosomal races of the common shrew differ by six Robertsonian metacentrics with monobrachial homology, such that interracial F1 hybrids produce a ring-of-six configuration at meiosis I and are expected to suffer infertility. Mapping of 52 karyotyped individuals by using a unique global positioning system (GPS) revealed that the Kirillov-Petchora hybrid zone is positioned close to the river Mezen, which separated these races, and so may limit the migration of shrews across the contact zone. Although the population density of shrews was found to be markedly different with respect to habitats, the zone runs through a mosaic of habitats that are similar for both the Petchora and the Kirillov sides. This is one of the narrowest chromosomal hybrid zones among those studied in Sorex araneus with a standard cline width of about 1 km. The center of the cline is located on a bank occupied by the Petchora race at a distance of 0.4 km away from a riverine barrier. Interestingly, both the Kirillov race and hybrid individuals were found on a small island in the middle of a river fully flooded each spring. The frequencies of karyotypic variants allow us to consider the zone as an example of a bimodal zone. New Robertsonian and de novo whole-arm reciprocal translocations (WART) chromosomal variants found in the zone could be regarded as evidences of current evolutionary process in chromosomal hybrid zones.  相似文献   

12.
Steep clinal transitions in one or several inherited characters between genetically distinct populations are usually referred to as hybrid zones. Essentially two different mechanisms may maintain steep genetic clines. Either selection acts against hybrids that are unfit over the entire zone due to their mixed genetic origin (endogenous selection), or hybrids and parental types attain different fitness values in different parts of the cline (exogenous selection). Survival rate estimates of hybrids and parental forms in different regions of the cline may be used to distinguish between these models to assess how the cline is maintained. We used reciprocal transplants to test the relative survival rates of two parental ecotypes and their hybrids over microscale hybrid zones in the direct-developing marine snail Littorina saxatilis (Olivi) on the rocky shores of Galicia, Spain. One of the parental forms occupies upper and the other lower shores, and the hybrids are found at various proportions (1–38%) along with both parental forms in a midshore zone a few meters wide. The survival rate over one month was 39-52% of the native ecotype on upper shores, but only 2-8% for the lower-shore ecotype. In contrast, only 4-8% of the upper-shore ecotype but 53% of large (> 6 mm) and 8% of small (3-6 mm) native lower-shore ecotype survived in the lower shores. In the midshores, both the two parental ecotypes and the hybrids survived about equally well. Thus there is a considerable advantage for the native ecotypes in the upper and lower shores, while in the hybrid zone none of the morphs, hybrids included, are favored. This indicates that the dimorphism of L. saxatilis is maintained by steep cross-shore selection gradients, thus supporting the selection-gradient model of hybrid zones. We performed field and laboratory experiments that suggest physical factors and predation as important selective agents. Earlier studies indicate assortative mating between the two ecotypes in the midshore. This is unexpected in a hybrid zone maintained by selection gradients, and it seems as if the reproductive barrier compresses the hybrid zone considerably.  相似文献   

13.
The F5 and FM2 chromosome races of the Sceloporus grammicus complex form a hybrid zone in the Mexican state of Hidalgo. Previous studies of this zone have assessed genetic structure by averaging estimates of shape and width across three diagnostic chromosome markers. This approach is likely to mask subtle differences in cline shape among loci (e.g. selected vs. neutral), and obscure any displacement of cline centres (if present). Here we use maximum likelihood methods to construct the best fitting individual clines for three chromosomal markers, and also add two new markers; the mitochondrial DNA (mtDNA) locus, and the nuclear ribosomal DNA (rDNA) repeat. For each locus, hybrid zone models were fitted by cline shape and width, and the position and number of segments describing the centre of the zone. Pairwise comparisons between all clines revealed concordance between chromosomes 2 and 6, but significant discordance in cline structure among all other paired combinations. The concordance of chromosomes 2 and 6 suggests that these clines are maintained by genome-wide forces. The discordance of the chromosome 1 cline suggests an influence of asymmetric introgression, while the mtDNA cline is probably influenced by selection and drift. The rDNA locus reveals a pattern best explained by either extreme asymmetric introgression or gene conversion. The structure of zone indicates that genome-wide processes and locus specific selective forces as well as drift, are operating to different degrees on different loci. The locus-by-locus approach used here permits a finer discrimination among possible mechanisms responsible for the maintenance of the individual clines.  相似文献   

14.
A field vole (Microtus agrestis) population characterized by unique mitochondrial DNA (mtDNA) and Y chromosome markers occurs in southwest Sweden. A contact zone between this Lund (Lu) population and a standard (St) population was examined with two sex-specific genetic markers. The field vole mtDNA and Y chromosome clines display a remarkable lack of coincidence, rarely observed in contact zones. The cline width for both markers is about 50 km, but the two clines are displaced from each other: the mtDNA cline is found in the central part of the study area, whereas the cline for the Y chromosome is located in the eastern part. Thus, the absolute width of the Lu-St zone spans about 95–110 km. As a result of the cline shift, all male hybrids carry the Lu-Y chromosome and St-type mtDNA. The other possible male hybrid class is lacking. The distinct noncoincidence of the mtDNA and Y chromosome clines is most likely explained by selection against male hybrids with the St-Y chromosome and Lu-mtDNA. It is possible that incompatibilities between the maternal genome of Lu-type animals and the paternal genome of St-type individuals exist. However, alternative explanations based on neutrality or selective advantage cannot be totally dismissed.  相似文献   

15.
The fire-bellied toads Bombina bombina and B. variegata differ extensively in biochemistry, morphology, and behavior. We use a survey of five diagnostic enzyme loci across the hybrid zone near Cracow in Southern Poland to estimate the dispersal rate, selection pressures, and numbers of loci which maintain this zone. The enzyme clines coincide closely with each other and with morphological and mitochondrial DNA clines. Although the zone lies on a broad transition between environments suitable for bombina and variegata, the close concordance of diverse characters, together with increased aberrations and mortality in hybrids, suggest that the zone is maintained largely by selection against hybrids. There are strong “linkage disequilibria” between each pair of (unlinked) enzyme loci (R? = 0.129 [2-unit support limits: 0.119–0.139]). These are probably caused by gene flow into the zone, and they give an estimate of dispersal (σ = 890 [790–940] m gen). The clines are sharply stepped, with most of the change occurring within 6.15 (5.45–6.45) km, but with long tails of introgression on either side. This implies that the effective selection pressure on each enzyme marker (due largely to disequilibrium with other loci) is s* = 0.17 (0.159–0.181) at the center but that the selection acting directly on the enzyme loci is weak or zero (se < 0.0038). The stepped pattern implies a barrier to gene flow of 220 (48–415) km. This would substantially delay neutral introgression but would have little effect on advantageous alleles; the two taxa need not evolve independently. Strong selection is needed to maintain such a barrier: hybrid populations must have their mean fitness reduced by a factor of 0.65 (0.60–0.77). This selection must be spread over a large number of loci to account for the concordant patterns and the observed cline widths (N = 300 [80–2,000]).  相似文献   

16.
Chromosomal races of the common shrew differ in sets of metacentric chromosomes and on contact may produce hybrids with extraordinarily complex configurations at meiosis I that are associated with reduced fertility. There is an expectation that these may be some of the most extreme tension zones available for study and therefore are of interest as potential sites for reproductive isolation. Here, we analyse one of these zones, between the Novosibirsk race (characterized by metacentrics go, hn, ik, jl, mp and qr) and the Tomsk race (metacentrics gk, hi, jl and mn and acrocentrics o, p, q and r), which form hybrids with a chain-of-nine (CIX) and a chain-of-three (CIII) configuration at meiosis I. At the Novosibirsk-Tomsk hybrid zone, the CIX chromosomes form clines of 8.53 km standardized width on average, whereas the cline for the CIII chromosomes was 52.83 km wide. The difference in these cline widths fits with the difference in meiotic errors expected with the CIX and CIII configuration, and we produce estimates of selection against hybrids with these types of configurations, which we relate to dispersal and age of the hybrid zone. The hybrid zone is located at the isocline at 200 m altitude above sea level; this relationship between the races and altitude is suggested at both coarse and fine scales. This indicates adaptive differences between the races that may in turn have been promoted by the chromosome differences. Thus, the extreme chromosomal divergence between the Novosibirsk and Tomsk may be associated with genic differentiation, but it is still striking that, despite the large chromosomal differences, reproductive isolation between the Novosibirsk and Tomsk races has not occurred.  相似文献   

17.
Two parapatric chromosomal races of the common shrew (Sorex araneus) in Poland differ in their complement of metacentric arm combinations: hk, io, gr, nm (race IV), and hi, ko, gm, np (race II). In hybrids, these eight race-diagnostic metacentrics form two randomly segregating complexes. The first complex (C1) occurs in the form of a ring configuration ok/kh/hi/io, or a chain o/ok/kh/hi/i (when there is Robertsonian polymorphism of the element io). The second complex (C2) always takes the form of a six-element chain configuration r/rg/gm/mn/np/p. The C2 complex may be shortened to five or even four elements, when acrocentrics g, m and n are present. In the contact zone we found shrews of pure races (race II or IV), as well as hybrids with C1 or C2 complexes, and recombinants hi, ko, gr, nm. Complex heterozygotes are likely to suffer reduced fertility due to malsegregation at meiosis. However, the C1 hybrids with ring configurations occur with a high frequency throughout the contact zone. This suggest that their fitness is only slightly lowered relative to pure race individuals, in contrast to the hybrids with C1 or C2 chain configurations, which presumably have a more heavily reduced fertility. On the other hand, at the center of the zone there is a high proportion of recombinants, which, being chromosomal homozygotes, should display normal meiotic segregation. Furthermore, the high frequencies of recombinants within the contact zone should facilitate gene flow between the races. The occurrence of recombinants plays a similar role as the appearance of the maximum frequencies of acrocentric homozygotes described in several contact zones of S. araneus.  相似文献   

18.
We analyzed a hybrid zone between two chromosome races (2n = 16 and 2n = 22) of a Japanese harvestman, Gagrellopsis nodulifera Sato and Suzuki (Arachnida: Opiliones: Phalangiidae). The hybrid zone is located in the eastern part of Tottori Prefecture, western Honshu. The width of the zone is approximately 5 to 15 km. Three independent tandem fusions/fissions seem to be the main cause of the karyotypic differences between the parental races. Ten karyotypic variants were found in the hybrid zone. They differed by numbers of diploid chromosomes and trivalents detected in meiosis. In most of the collecting sites, karyotypic heterozygotes were less common than expected. A positive correlation was found between number of trivalents in a karyotype and its deficiency rate. In some sites, the deficit of heterozygous individuals was accompanied by an excess of the intermediate homozygotes. One of the three transects across the zone was studied in detail. We found that three types of single heterozygotes (2n = 17, 2n = 19 and 2n = 21) formed a series of successive, spatially separated peaks along the transect. Two types of intermediate homozygotes (2n = 18 and 2n = 20) were also spatially separated. The most parsimonious explanation of such a structure is the staggering of clines of three tandem (or Robertsonian) fusion/fission variants that differentiate the parental races caused by selection against multiple heterozygotes. Analysis of nondisjunction in single heterozygotes demonstrated that there was a strong interindividual variation in nondisjunction rate. The mean frequency of aneuploid MII in single heterozygotes was 0.10 +/- 0.03. Crossover exchanges in some critical regions of trivalents result in abnormal chromosomal configurations: chromosomes with unequal chromatids and dicentric chromosomes. Frequency of crossover-induced chromosomal abnormalities was low in single heterozygotes (approximately equal to 4%), and was unexpectedly high in the double heterozygotes (approximately equal to 15%). Selection against karyotypic heterozygotes is considered as a main evolutionary force responsible for the structuring of the hybrid zone. A positive association between diploid chromosome number and altitude was found. The race 2n = 16 tended to occupy lower altitudes than the 2n = 22 parental race. Differences in ecological preferences may be a result of previous adaptations to different environments in allopatry. A hypothesis concerning the origin and evolution of the hybrid zone is proposed.  相似文献   

19.
Two chromosome races of common shrew, Moscow and Seliger, differ in the arm combination in 11 diagnostic chromosomes (Robertsonian metacentrics/acrocentrics). Homozygotes of both pure races, simple Robertsonian heterozygotes of Seliger race, and complex heterozygotes (FI hybrids) were detected in the found earlier between hybrid zone of these races, in the spring before the breeding seasonbreeding season. The g/oheterozygote was first discovered in race Seliger, whose chromosome formula typically contains acrocentrics g and o. The m/q heterozygote was recorded for the second time. Meiosis was studied in 16 males representing five detected karyotypic categories. No abnormal in pairing of homologs in either sex trivalent common for the species (XY1Y2) or autosome trivalents (g/o and m/q) was detected at diakinesis--metaphase I. Two hybrids displayed a theoretically expected and unimpaired meiotic configuration in a form of a very long chain comprising 11 monobrachial homologs (g/gm/mq/qp/pr/rk/ki/ih/hn/no/o). The results are discussed in terms of hypotheses on fertility of complex heterozygotes and limited gene flow in hybrid zone.  相似文献   

20.
Two grasshopper species Stenobothrus rubicundus and S. clavatus were previously shown to meet in a narrow hybrid zone on Mount Tomaros in northern Greece. The species are remarkable for their complex courtship songs accompanied by conspicuous movements of antennae and wings. We analyzed variations in forewing morphology, antenna shape, and courtship song across the hybrid zone using a geographic information system, and we documented three contact zones on Mount Tomaros. All male traits and female wings show abrupt transitions across the contact zones, suggesting that these traits are driven by selection rather than by drift. Male clines in antennae are displaced toward S. clavatus, whereas all clines in wings are displaced toward S. rubicundus. We explain cline discordance as depending on sexual selection via female choice. The high covariance between wings and antennae found in the centers of all contact zones results from high levels of linkage disequilibria among the underlying loci, which in turn more likely results from assortative mating than from selection against hybrids. The covariance is found to be higher in clavatus‐like than rubicundus‐like populations, which implies asymmetric assortative mating in parental‐like sites of the hybrid zone and a movement of the hybrid zone in favor of S. clavatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号