首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodella violacea (Kornmann) Wehrmeyer and Rhodella maculata Evans were investigated for ultrastructural details of vegetative and dividing cells. Rhodella violacea has a nuclear projection into the pyrenoid similar to that found in R. maculata, although the nuclear projection in R. maculata traverses a starch-lined area before contacting the pyrenoid. Unlike most, red algae, the two Rhodella species lack a peripheral encircling thylakoid in the chloroplast and have dictyosomes associated solely with endoplasmic reticulum (ER) instead of with both mitochondria and ER. Both species also have a well-developed peripheral system of ER connected to the plasmalemma by tubules, a situation found only in red algal unicells, Cell division was studied primarily in R. violacea; a less thorough examination of R. maculata showed no essential differences. Both have small, double-ringed, nucleus-associated organ files (NAOs) surrounded by moderately electron-dense material, metaphase–anaphase polar gaps in the nuclear envelope, absence of perinuclear ER. and short interzonal spindles. This pattern of mitosis is similar in most respects to that reported in the unicell Flintiella. Following mitosis, microtubules extend from the region of each NAO to its associated nucleus and to the undivided pyrenoid. The NAOs appear to apply tension to the nuclei and the pyrenoid and may be the mechanism for ensuring equal partitioning of both organdies. Two different forms of pyrenoid-nucleus association occur during mitosis. Nuclear projections into the pyrenoid, prevalent during interphase and early stages of mitosis, recede at metaphase. Then, the pyrenoid extends protrusions into the nuclear polar areas, forming a cup that partially surrounds the nucleus. Cell division and vegetative characters confirm the close taxonomic affinity of these two species of Rhodella and support their separation from the genus Porphyridium.  相似文献   

2.
A new unicellular red alga, Corynoplastis japonica gen. et sp. nov., is described from Tobishima, Japan. Cells are spherical, 18–33 µm in diameter, pale purple to brownish red and surrounded by a mucilaginous sheath. A single chloroplast with many lobes extends from the cell periphery to the cell center. A peripheral thylakoid is present. A pyrenoid occurs at each innermost chloroplast lobe end and one or two thylakoids are present in the pyrenoid matrix. The nucleus is eccentric to peripheral and Golgi bodies are scattered throughout the cell and associated with endoplasmic reticulum. Cells have a slow random gliding motility. The low molecular weight carbohydrate mannitol is present in the cells. Molecular phylogenetic analysis indicates that this alga is closely related to members of the genus Rhodella. A new order, Dixoniellales, is established for Dixoniella, Neorhodella and Glaucosphaera based on molecular and ultrastructural evidence (Golgi bodies associated only with the nucleus). The redefined order Rhodellales in which Rhodella and Corynoplastis are placed is characterized ultrastructurally by Golgi bodies scattered throughout the cytoplasm and associated with endoplasmic reticulum.  相似文献   

3.
A new coccoid rhodophytan species is described and compared with other species in the genus Rhodella. Thylakoids in the pyrenoid characterize the new species and indicate a closer relationships of Rhodella to Porphyridium than was previously indicated.  相似文献   

4.
Yokoyama  Akiko  Sato  Kazumichi  Hara  Yoshiaki 《Hydrobiologia》2004,512(1-3):177-183
We investigated the cellular features and molecular phylogeny of Rhodella species and related unicellular red algae including undescribed species that we isolated. Results provide a new taxonomic interpretation at both generic and specific levels. The genus Rhodella is defined by its pyrenoid that is free from any internal structures. Based on phylogenetic analysis using 18SrDNA, there are two possibilities for the generic delimitation of Rhodella: Rhodella sensu stricto and Rhodella sensu lato. The generic autonomy of Dixoniella and the taxonomic position of R. cyanea were also discussed.  相似文献   

5.
The Texas brown tide alga (strain TBA-2) is described as Aureoumbra lagunensis Stockwell, DeYoe, Hargraves, et Johnson, gen. et sp. nov. Pigment composition, chloroplast structure, and 18s ribosomal RNA gene sequence data indicate that A. lagunensis and the east coast brown tide alga Aureococcus anophagefferens (originally placed in the Chrysophyceae) belong in the class Pelagophyceae. The new genus Aureoumbra with A. lagunensis as the type species differs from Aureococcus in 18s ribosomal RNA gene sequence, pyrenoid form, nitrogen physiology, and possession of basal bodies. The genus Aureococcus is placed in the order Pelagomonadates and family Pelagomonadaceae while ordinal placement of Aureoumbra is deferred.  相似文献   

6.
The mannitol cycle has been verified in a unicellular red alga (Rhodellophyceae) for the first time. All four enzymes involved in the cycle (mannitol-1-phosphate dehydrogenase, Mt1PDH: EC 1.1.1.17; mannitol-1-phosphatase, Mt1Pase: EC 3.1.3.22; mannitol dehydrogenase, MtDH: 1.1.1.67; hexokinase, HK: 2.7.1.1.) were detected and characterized in crude algal extracts from Dixoniella grisea. These enzymes, with the exception of Mt1Pase, were specific to their corresponding substrates and nucleotides. The activities of enzymes in the anabolic pathway (fructose-6-P reduction by Mt1PDH and mannitol-6-P reduction by Mt1Pase) were at least 2- to 4-fold greater than those of the catabolic pathway (mannitol oxidation by MtDH and fructose oxidation by HK). There appears to be, therefore, a net carbon flow in D. grisea towards a high intracellular mannitol pool. The mannitol cycle guarantees a rapid accumulation or degradation of mannitol within algal cells in response to changing salinity in natural habitats. Moreover, the demonstration of the mannitol cycle within the Rhodellophyceae provides evidence that this metabolic pathway is of ancient origin in the red algal lineage.  相似文献   

7.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite.  相似文献   

8.
The tiny jumping flagellate originally described as Pedinomonas mikron Throndsen was isolated into pure culture from Australian waters and its ultrastructure critically examined. Pedinomonas mikron differs in behavior and in features of the flagellar apparatus from P. minor, the type species from freshwater, and is referred to the new genus Resultor. The two genera are closely related and form the new class Pedinophyceae, which is characterized by features of the flagellar apparatus, mitosis, and cytokinesis. The flagella show the 11/5 orientation otherwise characteristic of Ulvophyceae and Pleurastrophyceae, but they are arranged end to end as in the Chlorophyceae. The flagellar root system is asymmetric and includes a rhizoplast that emerges from the base of one flagellum but subsequently associates with a microtubular root from the second basal body. Mitosis studied previously by Pickett-Heaps and Ott in Pedinomonas is closed, unlike in other green algae, and the spindle is persistent. No phycoplast or phragmoplast is formed during cytokinesis. The eyespot of the Pedinophyceae is located at the opposite end of the cell from the flagella and adjacent to the pyrenoid, as in the most primitive members of the Prasinophyceae. Members of the Pedinophyceae lack prasinoxanthin and Mg 2,4D, characteristic of certain other primitive green algae. The primitive green algae include the classes Prasinophyceae and Pedinophyceae. Micromonadophyceae Mattox et Stewart is considered a synonym of Prasinophyceae. Two new orders are established, Pedinomonadales, containing all known members of the Pedinophyceae, and Scourfieldiales, with the single family Scourfieldiaceae fam. nov. and the single genus Scourfieldia.  相似文献   

9.
A Comparative Study Was Made Of The Fine Structure of Cladonia Cristatella and its algal Symbiont Trebouxia Erici in their lichenized and cultured ( nonlichenized) states. Pyrenoglobuli were produced by the alga in the symbiotic and free conditions. Starch was formed during hydrated conditions. Pyrenoglobbuli migrated to the outer parts of the pyrenoid only during dry periods. Dictyosomes and eyespots were observed for the first time in Trebouxia. The pyrenoid divided by fragmentation. Ellipsoidal bodies were common in the hyphae of the lichenized fungus and absent in cultured hyphae, except for 1 colony which had been induced to form pycnidia. The ellipsoidal bodies were associated closely with the internal membrane system of the mycobiont. Haustoria seemed to penetrate the algal cells by enzymatic digestion. Intrahyphal hyphae were common.  相似文献   

10.
A new chlorarachniophytan alga, Gymnochlora stellata Ishida et Y. Hara gen. et sp. nov., has been isolated from Anae Island in Guam. It is a green, star-shaped, unicellular, amoeboid organism with several filopodia that do not form a reticulopodial network. Neither zoospores nor walled coccoid cells have been observed throughout the life cycle. The chloroplast ultrastructure is similar to those of described species; however, the pyrenoid matrix, which is invaded by many tubular structures originating from the inner membrane of the chloroplast envelope, is unique. A classification system is proposed for the Chlorarachniophyta. In this system, the ultrastructural features of the pyrenoid and the location of the nucleomorph in the periplastidial compartment are used as generic criteria, while the morphological features of the vegetative cells and life cycle patterns are used for species criteria. The described species, except for Cryptochlora perforans Calderon-Saenz et Schnetter, are also reassessed under the new system, and consequent nomenclatural requirements for the genus Chlorarachnion are dealt with in this paper. The taxonomic rank of a previously described species, Chlorarachnion globosum Ishida et Y. Hara, is elevated and Lotharella globosa (Ishida et Y. Hara) Ishida et Y. Hara gen. nov. et comb. nov. is proposed.  相似文献   

11.
Glutamine synthetase (GS) is encoded by three distinct gene families (GSI, GSII, and GSIII) that are broadly distributed among the three domains of life. Previous studies established that GSII and GSIII isoenzymes were expressed in diatoms; however, less is known about the distribution and evolution of the gene families in other chromalveolate lineages. Thus, GSII cDNA sequences were isolated from three cryptophytes (Guillardia theta D. R. A. Hill et Wetherbee, Cryptomonas phaseolus Skuja, and Pyrenomonas helgolandii Santore), and GSIII was sequenced from G. theta. Red algal GSII sequences were obtained from Bangia atropurpurea (Mertens ex Roth) C. Agardh; Compsopogon caeruleus (Balbis ex C. Agardh) Mont.; Flintiella sanguinaria F. D. Ott and Porphyridium aerugineum Geitler; Rhodella violacea (Kornmann) Wehrmeyer and Dixoniella grisea (Geitler) J. L. Scott, S. T. Broadwater, B. D. Saunders, J. P. Thomas et P. W. Gabrielson; and Stylonema alsidii (Zanardini) K. M. Drew. In Bayesian inference and maximum‐likelihood (ML) phylogenetic analyses, chromalveolate GSII sequences formed a weakly supported clade that nested among sequences from glaucophytes, red algae, green algae, and plants. Red algal GSII sequences formed two distinct clades. The largest clade contained representatives from the Cyanidiophytina and Rhodophytina and grouped with plants and green algae. The smaller clade (C. caeruleus, Porphyra yezoensis, and S. alsidii) nested within the chromalveolates, although its placement was unresolved. Chromalveolate GSIII sequences formed a well‐supported clade in Bayesian and ML phylogenies, and mitochondrial transit peptides were identified in many of the sequences. There was strong support for a stramenopile‐haptophyte‐cryptophyte GSIII clade in which the cryptophyte sequence diverged from the deepest node. Overall, the evolutionary history of the GS gene families within the algae is complex with evidence for the presence of orthologous and paralogous sequences, ancient and recent gene duplications, gene losses and replacements, and the potential for both endosymbiotic and lateral gene transfers.  相似文献   

12.
A new species of a chlorarachniophyte alga, Bigelowiella longifila sp. nov., is described. It is classified as a member of Bigelowiella as flagellate cells constitute the main stage of the life cycle. However, this alga is different from the only described species of the genus, B. natans Moestrup, in having a unique amoeboid stage in the life cycle. We observed an interesting behavior of amoeboid daughter cells after cell division: One of the two daughter cells inherits the long filopodium of the parental cell, and it subsequently transports its cell contents through the filopodium to develop at its opposite end. The other daughter cell forms a new filopodium. This unequal behavior of daughter cells may have evolved before the chlorarachniophytes and some colorless cercozoans diverged.  相似文献   

13.
The ultrastructure, morphology and life cycle of a new chlorarachniophyte alga collected from Okinawa in Japan have been studied. The life cycle of this alga consists of amoeboid, wall‐less round, coccoid and flagellated cells in culture condition; however, the coccoid and flagellate cells are very rare. The pyrenoid ultra‐structure of this alga is the same as that of a previously described species, Lotharella globosa. Since pyrenoid ultrastructure has been adopted as the main criterion for the generic classification of the chlorarachniophytes, the present alga is placed in Lotharella. However, the present alga has a dominant amoeboid cell stage and a reduced walled‐cell stage in the life cycle, while in L. globosa, the walled‐cell stage is dominant and there is no amoeboid cell stage. Therefore the present alga is described as a new species of Lotharella: Lotharella amoeboformis Ishida et Y. Hara sp. nov.  相似文献   

14.
The brown algal family Ishigeaceae currently includes a single genus, Ishige Yendo, with two species. The relationship of the family to other brown algal lineages is less studied in terms of their plastid ultrastructure and molecular phylogeny. We determined the sequences of rbcL from four samples of the two Ishige species and nine putative relatives and the psaA and psbA sequences from 37 representatives of the brown algae. Analyses of individual and combined data sets resulted in similar trees; however, the concatenated data gave greater resolution and clade support than each individual gene. In all the phylogenies, the Phaeophyceae was well resolved, the Ectocarpales being placed in a terminal position and the Ishigeaceae ending up in a basal position. From our ultrastructural study, we concluded that the pyrenoid is absent in the Ishigeaceae, despite the presence of a rudimentary pyrenoid in I. okamurae. These results suggest that the Ishigeaceae is an early diverging brown lineage. Our molecular and morphological data, therefore, lead us to exclude the Ishigeaceae from the Ectocarpales s.l., which have an elaborate pyrenoid, and to propose its own order Ishigeales ord. nov. The Ishigeales is distinguished by oligostichous structure of thalli, phaeophycean hairs formed within cryptostomata, unilocular sporangia transformed from terminal cortical cells, and plurilocular sporangia lacking sterile terminal cells. This study is the first to document the utility of the psaA and psbA sequences for brown algae and also the first report on the multigene phylogeny of the Phaeophyceae based on three protein‐coding plastid genes.  相似文献   

15.
16.
17.
A new ceramiaceous alga, Sciurothamnion stegengae De Clerck et Kraft, gen. et sp. nov., is described from the western Indian Ocean and the Philippines. Sciurothamnion appears related to the tribe Callithamnieae on the basis of the position and composition of its procarps and by the majority of post‐fertilization events. It differs, however, from all current members of the tribe by the presence of two periaxial cells bearing determinate laterals per axial cell. Additionally, unlike any present representative of the subfamily Callithamnioideae, no intercalary foot cell is formed after diploidization of the paired auxiliary cells. The genus is characterized by a terminal foot cell (“disposal cell”), which segregates the haploid nuclei of the diploidized auxiliary cell from the diploid zygote nucleus. The nature of three types of foot cells reported in the Ceramiaceae (intercalary foot cells containing only haploid nuclei, intercalary foot cells containing haploid nuclei and a diploid nucleus, and terminal foot cells containing only haploid nuclei) is discussed.  相似文献   

18.
An algal extracellular biopolymer (over 8.5 × 105 Da) composed of carbohydrates (52%) and protein (∼13%) has been isolated from a red alga Rhodella grisea growing in natural conditions by concentration of water medium, alcohol precipitation, dialysis and freeze-drying. This mucilagineous biopolymer contained xylose and its 3-O- and 4-O-methyl derivatives (∼63%), galactose (∼12%), glucuronic acid (11-12%), glucose (∼5%), rhamnose (∼4%), fucose (∼3-4%) and low content of others accompaning sugars. When tested on the citric acid-induced cough and reactivity of airways smooth muscle in vivo in the test system guinea pigs, this biopolymer assigned a significant cough suppressing effect. The reactivity of airways smooth muscle was not affected indicating that expectoration effect was not suppressed by biopolymer application, which is important from the pharmacological point of view.  相似文献   

19.
A diminutive, distromatic ulvaceous green alga was collected in southern California and studied in culture. The initial stages of development resemble those found in the Ulvaceae sensu Bliding. Germlings pass through a uniseriate filamentous stage, a multiseriate stage and a monostromatic saccate stage. At this stage the development departs from the developmental patterns found in the Ulvaceae. Each cell of the monostromatic upright portion of the germling undergoes a single division in a plane parallel to the surface of the germling to form a distromatic saccate germling. Rupture of the apical end of the germling and continued growth eventually results in a peltate distromatic alga superficially resembling Ulva. Based on the developmental pattern, which is unique to the green algae, the new genus Chloropelta gen. nov. and new species Chloropelta caespitosa sp. nov. are proposed for this alga.  相似文献   

20.
The volvocacean genus Pleodorina has been morphologically characterized as having small somatic cells in spheroidal colonies and anisogamous sexual reproduction with sperm packets. In this study we examined two new species that can be assigned to the genus Pleodorina based on morphology: P. starrii H. Nozaki et al. sp. nov. and P. thompsonii F. D. Ott et al. sp. nov. P. starrii was collected from Japan and had 32‐ or 64‐celled colonies with anterior somatic cells and spheroidal individual cellular sheaths that were weakly attached to each other within the colonial envelope. P. thompsonii from Texas (USA) exhibited four or 12 somatic cells in the anterior pole of 16‐ or 32‐celled colonies, respectively, and had a single large pyrenoid in the chloroplast of mature reproductive cells. The chloroplast multigene phylogeny placed P. starrii and P. indica (Iyenger) H. Nozaki in a clade that was robustly separated from the type species P. californica Shaw and P. japonica H. Nozaki. Pleodorina thompsonii was resolved as a basal branch within a large monophyletic group (Eudorina group) composed of Eudorina, Pleodorina and Volvox (excluding section Volvox). Thus, Pleodorina was found among three separate lineages within the Eudorina group in which Eudorina and Volvox were also resolved as nonmonophyletic. The DNA sequences from additional species/strains as well as recognition of morphological attributes that characterize the monophyletic groups within the Eudorina group are needed to construct a natural generic classification within these members of the Volvocaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号