首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of cytoplasmic pH regulation in alkaliphilic strains of Bacillus   总被引:1,自引:0,他引:1  
The central challenge for extremely alkaliphilic Bacillus species is the need to establish and sustain a cytoplasmic pH that is over two units lower than the highly alkaline medium. Its centrality is suggested by the strong correlation between the growth rate in the upper range of pH for growth, i.e., at values above pH 10.5, and the cytoplasmic pH. The diminishing growth rate at extremely high pH values correlates better with the rise in cytoplasmic pH than with other energetic parameters. There are also general adaptations of alkaliphiles that are crucial prerequisites for pH homeostasis as well as other cell functions, i.e., the reduced basic amino acid content of proteins or segments thereof that are exposed to the medium, and there are other challenges of alkaliphily that emerge from solution of the cytoplasmic pH problem, i.e., reduction of the chemiosmotic driving force. For cells growing on glucose, strong evidence exists for the importance of acidic cell wall components, teichuronic acid and teichuronopeptides, in alkaliphily. These wall macromolecules may provide a passive barrier to ion flux. For cells growing on fermentable carbon sources, this and other passive mechanisms may have a particularly substantial role, but for cells growing on both fermentable and nonfermentable substrates, an active Na1-dependent cycle is apparently required for alkaliphily and the alkaliphile's remarkable capacity for pH homeostasis. The active cycle involves primary establishment of an electrochemical gradient via proton extrusion, a secondary electrogenic Na+/H+ antiport to achieve net acidification of the cytoplasm relative to the outside pH, and mechanisms for Na+ re-entry. Recent work in several laboratories on the critical antiporters involved in this cycle has begun to clarify the number and characteristics of the porters that support active mechanisms of pH homeostasis. Received: August 1, 1997 / Accepted: August 5, 1995  相似文献   

2.
Summary Light and transmission electron microscopy were used to examine hyphal tip cells of the fungusAllomyces macrogynus (Chytridiomycetes). A well defined apical body, i.e., Spitzenkörper, was observed at the extreme apex of hyphal cells. This distinctive, spherical cytoplasmic region consisted of a granular matrix devoid of ribosomes and most organelles. To our knowledge this is the first report describing such a structure in hyphae of an aseptate fungus. Vesicles (45–65 nm diameter) were concentrated in the peripheral cytoplasm of the apex, while relatively few were observed within the Spitzenkörper. Filasomes, spherical patches of dense fibrillar material containing a microvesicle core, were abundant in the apical regions near the plasma membrane. Microtubules traversed the Spitzenkörper at various angles and were in close association with the plasma membrane. Microfilaments were observed as individual elements in the cytoplasm or were organized into bundles. Individual microfilaments were frequently in close association with the plasma membrane, vesicles and microtubules. In the immediate subapical region mitochondria, multivesicular bodies, microbodies, Golgi equivalents and nuclei were abundant.Abbreviations CW cell wall - F filasome - M mitochondria - N nucleus - PM plasma membrane - TEM transmission electron microscopy  相似文献   

3.
Dodonova SO  Bulychev AA 《Protoplasma》2011,248(4):737-749
Cytoplasmic streaming in plant cells is an effective means of intracellular transport. The cycling of ions and metabolites between the cytosol and chloroplasts in illuminated cell regions may alter the cytoplasm composition, while directional flow of this modified cytoplasm may affect the plasma membrane and chloroplast activities in cell regions residing downstream of the illumination area. The impact of local illumination is predicted to be asymmetric because the cell regions located downstream and upstream in the cytoplasmic flow with respect to illumination area would be exposed to flowing cytoplasm whose solute composition was influenced by photosynthetic or dark metabolism. This hypothesis was checked by measuring H+-transporting activity of plasmalemma and chlorophyll fluorescence of chloroplasts in shaded regions of Chara corallina internodal cells near opposite borders of illuminated region (white light, beam width 2 mm). Both the apoplastic pH and chlorophyll fluorescence, recorded in shade regions at equal distances from illuminated area, exhibited asymmetric light-on responses depending on orientation of cytoplasmic streaming at the light–shade boundary. In the region where the cytoplasm flowed from illuminated area to the measurement area, the alkaline zone (a zone with high plasma membrane conductance) was formed within 4-min illumination, whereas no alkaline zone was observed in the area where cytoplasm approached the boundary from darkened regions. The results emphasize significance of cyclosis in lateral distribution of a functionally active intermediate capable of affecting the membrane transport across the plasmalemma, the functional activity of chloroplasts, and pattern formation in the plant cell.  相似文献   

4.
A microelectrode study with Chara corallina cells has shown that post-excitation changes of membrane potential and plasmalemma resistance, induced by the action potential (AP) generation, differ substantially for cell areas producing zones of high and low external pH. In cell regions producing alkaline zones, the AP generation was followed by post-excitation hyperpolarization by about 50 mV, concomitant with four- to eightfold increase in plasmalemma resistance and a considerable drop of pericellular pH. In the acidic areas the post-excitation hyperpolarization was weak or absent, and the membrane resistance showed no significant increase within 1–2 min after AP. The membrane excitation in the acidic zones was accompanied by a noticeable pH increase near the cell surface, indicative of the inhibition of plasma membrane H+ pump. The results suggest that the high local conductance of the plasmalemma is closely related to alkaline zone formation and the depolarized state of illuminated cell under resting conditions. Excitation-induced changes of membrane potential and pH in the cell vicinity were fully reversible, with the recovery period of ∼15 min at a photon flux density of ∼100 μE/(m2 s). At shorter intervals between excitatory stimuli, differential membrane properties of nonuniform regions turned smoothed and could be overlooked. It is concluded that the origin of alkaline zones in illuminated Chara cells cannot be ascribed to hypothetical operation of H+/HCO3 symport or OH/HCO3 antiport.  相似文献   

5.
The formation of chlortetracycline(CTC)-induced wall appositions (callose plugs) in Nitella flexilis (L.)Ag. was pH-dependent in the range between 4.3-8.3. Plug number and plug diameter increased with the pH of the CTC solution. At pH 4.3 plug formation was light-dependent and occurred below the alkaline regions of the cell surface which form during photo synthetic assimilation of HCO3?. Inhibition of photosynthesis by 3–(3′,4′-dichlorophenyl)-1, 1-dimethylurea prevented plug formation in the light. Dark-treated cells could be induced to form plugs by raising the pH of the CTC solution. The formation of large but incomplete plugs in the presence of cytochalasin B is explained by the formation of numerous weak alkaline sites. I suggest that CTC enhances locally the Ca2+content at the cytoplasm near the plasmamembrane. The ionophoric character of CTC is probably more pronounced at high pH mainly because of a weaker binding with cations and a closer contact with the membrane.  相似文献   

6.
Melanin is a highly irregular heteropolymer consisting of monomeric units derived from the enzymatic oxidation of the amino acid tyrosine. The process of melanin formation takes place in specialized acidic organelles (melanosomes) in melanocytes. The process of melanin polymerization requires an alkaline pH in vitro, and therefore, the purpose of an acidic environment in vivo remains a mystery. It is known that melanin is always bound to protein in vivo. It is also seen that polymerization in vitro at an acidic pH necessarily requires the presence of proteins. The effect of various model proteins on melanin synthesis and their interaction with melanin was studied. It was seen that many proteins could increase melanin synthesis at an acidic pH, and that different proteins resulted in the formation of different states of melanin, i.e., a precipitate or a soluble, protein‐bound form. We also present evidence to show that soluble protein‐bound melanin is present in vivo (in B16 cells as well as in B16 melanoma tissue). An acidic pH appeared to be necessary to ensure the formation of a uniform, very high molecular weight melano–protein complex. The interaction between melanin and proteins appears to be largely charge‐dependent as evidenced by zeta potential measurements, and this interaction is also increased in an acidic pH. Thus, it appears that an acidic intramelanosomal pH is essential to ensure maximum interaction between protein and melanin, and also to ensure that all the melanin formed is protein‐bound.  相似文献   

7.
Eva Johannes  Hubert Felle 《Planta》1987,172(1):53-59
By means of pH-sensitive microelectrodes, cytoplasmic pH has been monitored continuously during amino-acid transport across the plasmalemma of Riccia fluitans rhizoid cells under various experimental conditions. (i) Contrary to the general assumption that import of amino acids (or hexoses) together with protons should lead to cytoplasmic acidification, an alkalinization of 0.1–0.3 pHc units was found for all amino acids tested. Similar alkalinizations were recorded in the presence of hexoses and methylamine. No alkalinization occurred when the substrates were added in the depolarized state or in the presence of cyanide, where the electrogenic H+-pump is inhibited. (ii) After acidification of the cytoplasm by means of various concentrations of acetic acid, amino-acid transport is massively altered, although the protonmotive force remained essentially constant. It is suggested that H+-cotransport is energetically interconnected with the proton-export pump which is stimulated by the amino-acid-induced depolarization, thus causing proton depletion of the cytoplasm. It is concluded that, in order to investigate H+-dependent cotransport processes, the cytoplasmic pH must be measured and be under continuous experimental control; secondly, neither pH nor the protonmotive force across a membrane are reliable quantities for analysing a proton-dependent process.Abbreviations 3-OMG 3-oxymethylglucose - pHc cytoplasmic pH - m electrical potential difference across the respective membrane, i.e. membrane potential - H+/F (=pmf) electrochemical proton gradient  相似文献   

8.
The microenvironment near the apical membrane of MDCK cells was studied by quantitation of the fluorescence of wheat germ agglutin attached to fluorescein (WGA). WGA was shown to bind to sialic acid residues attached to galactose at the α-2,3 position in the glycocalyx on the apical membrane. Young MDCK cells (5–8 days after splitting) showed a patchy distribution of WGA at stable sites that returned to the same locations after removal of sialic acid residues by neuraminidase treatment. Other lectins also showed stable binding to patches on the apical membrane of young cells. The ratio of WGA fluorescence emission at two excitation wavelengths was used to measure near-membrane pH. The near-membrane pH was markedly acidic to the pH 7.4 bathing solution in both young and older cells (13–21 days after splitting). Patches on the apical membrane of young cells exhibited a range of near-membrane pH values with a mean ±sem of 6.86 ± 0.04 (n= 121) while the near-membrane pH of older cells was 6.61 ± 0.04 (n= 120) with a uniform WGA distribution. We conclude that the distribution of lectin binding sites in young cells reflects the underlying nonrandom location of membrane proteins in the apical membrane and that nonuniformities in the pH of patches may indicate regional differences in membrane acid-base transport as well as in the location of charged sugars in the glycocalyx. Received: 15 December 1999/Revised: 16 March 2000  相似文献   

9.
Meira Weiss  Uri Pick 《Planta》1991,185(4):494-501
The fluorescent indicator atebrin (3-chloro-9-(4-diethylamino-1-methylbutyl)-7-methyoxy-acridine) is taken up by Dunaliella salina cells at alkaline external pH and accumulates in acidic vacuoles. The uptake is unaffected by light, by photosynthetic inhibitors, by protonophores or by ionophores; however, the dye can be released by amines, indicating that it is specifically accumulating in acidic vacuoles. Amines induce a biphasic enhancement of atebrin fluorescence — a fast phase, accompanied by redistribution within the cell, consistent with release of the dye from the vacuoles to the cytoplasm, and a slow phase, correlated with release of atebrin from the cells. These results are interpreted to indicate a slow equilibration of atebrin across the plasma membrane and a fast equilibration across the vacuolar membrane. Part of the dye cannot be released by the amines, and appears to be internally bound. Atebrin uptake is inhibited by cholesteryl hemisuccinate and is stimulated by lysophosphatidylcholine, indicating that modification of the lipid composition of the plasma membrane affects the permeability to atebrin. Analysis of the pH dependence of atebrin uptake indicates that the dye enters the cells by fluid-phase permeation. Different stresses enhance the rate of atebrin uptake and release, indicating that they modify plasma-membrane structure or composition. Atebrin may serve as a specific marker for acidic vacuoles, as an indicator for amine uptake, and as a probe for subtle changes in the permeability of the plasma membrane.Abbreviations Atebrin 3-chloro-9-(4-diethylamino-1-methylbutyl)-7-methoxy-acridine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - SF-6847 3,5-ditertbutyl-4-hydroxybenzylidenemalonitrile  相似文献   

10.
G. Thiel 《Protoplasma》1994,179(1-2):26-33
Summary The present paper describes the construction and properties of a Pt/Ir-semi-microelectrode and its application as a redoxsensitive electrode in intact cells of the giant algaNitella. For compartmental analysis of the stationary redox-state voltage (ERED), a value reflecting the interaction of the dominant redox couples with a Pt/Ir-electrode, the redox-sensitive electrode was inserted into the vacuole of leaf cells or cytoplasm enriched fragments (CEF) fromNitella internodal cells. After correction for the membrane voltage, measured with a second, conventional voltage electrode, ERED values of+237±93mVand+419±51 mV with respect to a normal H+-electrode were obtained for cytoplasm and vacuole, respectively. The redox-state of the cell culture medium was+604 mV. The steady state ERED in the cytoplasm can be perturbed by experimental treatments: indirect acidification of the cytoplasm by an external pH jump from 7.5 to 5.8 and direct acidification, by acid loading with 5 mM butyrate, both resulted in a positive shift of ERED, i.e., to an increase in cytoplasmic oxidation. At the same time the membrane depolarized electrically following the external pH jump, but hyperpolarized in response to acid loading. The data demonstrate the direct dependence of cytoplasmic redox state on intracellular pH, probably due to enhanced oxidation of protonated redox couples favoured by mass action. The electrical membrane voltage changes were not correlated with the shift in cytoplasmic ERED. This demonstrated that redox energy does not determine the electrical membrane voltage. Cytoplasmic ERED was also affected by photosynthesis. When CEFs were transferred from light to dark, or exposed to 10M 3-(3,4-dichlorophenyl)-1,l-dimethylurea (DCMU), ERED shifted negatively (more reduced) by 6.4±4.5mV or 4.2±2mV, respectively. These data compare favourably with biochemical estimates of cytoplasmic pyridin nucleotides which also show an increase in cytoplasmic reduction in the dark. Therefore, it is unlikely that diffusable reducing equivalents are supplied to the cytoplasm from photosynthetically-active chloroplasts to act as secondary messengers.Abbreviations EM transmembrane voltage - ERED redox-state voltage - E0 midpoint-redox-voltage - APW artificial pond water - CEF cytoplasm enriched fragment  相似文献   

11.
Cells of Saccharomyces cerevisiae grown in media with an initial pH of 2.5–6.0, acidified with a strong acid (HCl), exhibited the highest plasma membrane H+-ATPase-specific activity at an initial pH of 6.0. At a lower pH (above pH 2.5) ATPase activity (62–83% of the maximum level) still allowed optimal growth. At pH 2.5, ATPase activity was about 30% of the maximum value and growth was impaired. Quantitative immunoassays showed that the content of ATPase protein in the plasma membrane was similar across the entire pH range tested, although slightly lower at pH 2.5. The decrease of plasma membrane ATPase activity in cells grown at low pH was partially accounted for by its in vitro stability, which decreased sharply at pH below 5.5, although the reduction of activity was far below the values expected from in vitro measurements. Yeast growth under acid stress changed the pattern of gene expression observed at optimal pH. The level of mRNA from the essential plasma-membrane-ATPase-encoding gene PMA1 was reduced by 50% in cells grown at pH 2.5 as compared with cells grown at the optimal pH 5.0, although the content of ATPase in the plasma membrane was only modestly reduced. As observed in response to other kinds of stress, the PMA2 promoter at the optimal pH was up to eightfold more efficient in cells grown at pH 2.5, although it remained several hundred times less efficient than that of the PMA1 gene. Received: 22 April 1996 / Accepted: 6 August 1996  相似文献   

12.
Hydrostatic pressure is a distinctive feature of deep-sea environments, and this thermodynamic parameter has potentially inhibitory effects on organisms adapted to living at atmospheric pressure. In the yeast Saccharomyces cerevisiae, hydrostatic pressure causes a delay in or cessation of growth. The vacuole is a large acidic organelle involved in degradation of cellular proteins or storage of ions and various metabolites. Vacuolar pH, as determined using the pH-sensitive fluorescent dye 6-carboxyfluorescein, was analyzed in a hydrostatic chamber with transparent windows under elevated hydrostatic pressure conditions. A pressure of 40–60 MPa transiently reduced the vacuolar pH by approximately 0.33. A vma3 mutant defective in vacuolar acidification showed no reduction of vacuolar pH after application of hydrostatic pressure, indicating that the transient acidification is mediated through the function of vacuolar H+-ATPase. The vacuolar acidification was observed only in the presence of fermentable sugars, and never observed in the presence of ethanol, glycerol, or 3-o-methyl-glucose as the carbon source. Analysis of a glycolysis-defective mutant suggested that glycolysis or CO2 production is involved in the pressure-induced acidification. Hydration and ionization of CO2 is facilitated by elevated hydrostatic pressure because a negative volume change (ΔV < 0) accompanies the chemical reaction. Moreover the glucose-induced cytoplasmic alkalization is inhibited by elevated hydrostatic pressure, probably because of inhibition of the plasma membrane H+-ATPase. Therefore, the cytoplasm tends to become acidic under elevated hydrostatic pressure conditions, and this could be crucial for cell survival. To maintain a favorable cytoplasmic pH, the yeast vacuoles may serve as proton sequestrants under hydrostatic pressure. We are investigating the physiological effects of hydrostatic pressure in the course of research in a new experimental field, baro- (piezo-) physiology. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

13.
Hydraulic conductivity (Lp) of the plasma membrane of Chara corallina was inhibited by HgCl2 maximally by about 95%. The inhibition was reversed by 2-mercaptoethanol, reconfirming the observation obtained by Henzler and Steudle (1995). The results suggest that osmotic water transport through Chara cells occurs mostly via mercury-sensitive water channels containing thiol groups. ZnCl2 dissolved in APW (pH 5.6) also inhibited Lp by about 80% within 1–2 h, while ZnCl2 dissolved in Hepes-Tris buffer (pH 7.4) inhibited it by about 90% within several minutes. Inhibition of Lp by ZnCl2 was also reversed by 2-mercaptoethanol, suggesting that zinc acts also on thiol groups of water channel proteins. Cells from which tonoplast had been removed by ECTA were as sensitive to both HgCl2 and ZnCl2 (pH 7.4) as normal cells. This demonstrates that water channels sensitive to thiol reagents really exist in the plasma membrane. On the other hand, ZnCl2 (pH 5.6) did not inhibit Lp of tonoplast-free cells. This may be accounted for by assuming first that Hg- and Zn-sensitive thiol groups of water channels may exist on the cytoplasmic side, and second that ZnCl2 in acidic medium may exist in ionized species which can be chelated by EGTA after permeation. The polar water permeability, or the endoosmotic Lp being larger than the exoosmotic one, was not affected by lowering the rate of osmosis by decreasing the osmotic gradient for transcellular osmosis down to 0.02 M sorbitol. The polarity disappeared when osmotic water flow through water channels was completely inhibited by HgCl2. Thus the polarity is assumed to be intrinsic to water channels in the plasma membrane.  相似文献   

14.
The ELF-97 phosphatase substrate was used to examine phosphatase activity in four strains of the estuarine heterotrophic dinoflagellate, Pfiesteria shumwayae. Acid and alkaline phosphatase activities also were evaluated at different pH values using bulk colorimetric methods. Intracellular phosphatase activity was demonstrated in P. shumwayae cells that were actively feeding on a fish cell line and in food limited cells that had not fed on fish cells for 3 days. All strains, whether actively feeding or food limited showed similar phosphatase activities. P. shumwayae cells feeding on fish cells showed ELF-97 activity near, or surrounding, the food vacuole. Relatively small, spherical ELF-97 deposits were also observed in the cytoplasm and sometimes near the plasma membrane. ELF-97 fluorescence was highly variable among cells, likely reflecting different stages in digestion and related metabolic processes. The location of enzyme activity and supporting colorimetric measurements suggest that, as in other heterotrophic protists, acid phosphatases predominate in P. shumwayae and have a general catabolic function.  相似文献   

15.
We have investigated the electrophysiological basis of potassium inward rectification of the KAT1 gene product from Arabidopsis thaliana expressed in Xenopus oocytes and of functionally related K+ channels in the plasma membrane of guard and root cells from Vicia faba and Zea mays. The whole-cell currents passed by these channels activate, following steps to membrane potentials more negative than –100 mV, with half activation times of tens of milliseconds. This voltage dependence was unaffected by the removal of cytoplasmic magnesium. Consequently, unlike inward rectifier channels of animals, inward rectification of plant potassium channels is an intrinsic property of the channel protein itself. We also found that the activation kinetics of KAT1 were modulated by external pH. Decreasing the pH in the range 8.5 to 4.5 hastened activation and shifted the steady state activation curve by 19 mV per pH unit. This indicates that the activity of these K+ channels and the activity of the plasma membrane H+-ATPase may not only be coordinated by membrane potential but also by pH. The instantaneous current-voltage relationship, on the other hand, did not depend on pH, indicating that H+ do not block the channel. In addition to sensitivity towards protons, the channels showed a high affinity voltage dependent block in the presence of cesium, but were less sensitive to barium. Recordings from membrane patches of KAT1 injected oocytes in symmetric, Mg2+-free, 100 mM-K+, solutions allowed measurements of the current-voltage relation of single open KAT1 channels with a unitary conductance of 5 pS. We conclude that the inward rectification of the currents mediated by the KAT1 gene product, or the related endogenous channels of plant cells, results from voltage-modulated structural changes within the channel proteins. The voltage-sensing or the gating-structures appear to interact with a titratable acidic residue exposed to the extracellular medium. Correspondence to: R. Hedrich  相似文献   

16.
Thomas Graan  Donald R. Ort   《BBA》1982,682(3):395-403
Two saturating single-turnover flashes spaced 100 ms apart are sufficient to achieve ATP formation in isolated chloroplast thylakoids. Two turnovers of the electron carriers result in the accumulation of about 7 nmol H+ / mg chlorophyll. Under the same conditions (i.e., ΔGATP = 38 kJ/mol) a solitary flash is inadequate to produce ATP. The electron flux from the third or any subsequent flash is coupled to ATP formation as efficiently as is observed in continuous light (i.e., ) and produces 0.8 molecules of ATP per coupling factor on each turnover. The yield of ATP per flash increases with declining temperature being largest near 4°C, the lowest value tested. The number of H+ accumulated per flash is independent of temperature so the greater yields of ATP near 4°C indicate that fewer H+ are existing the membrane via nonproductive pathways. The yield of ATP per flash near 4°C is largely independent of flash frequency between 1 and 30 Hz. When the formation of an electrical potential difference is prevented by adequate amounts of valinomycin and potassium the accumulated effects of about eight flashes are required before ATP formation is achieved (i.e., about 26 nmol H+/mg chlorophyll), indicating an average ΔpH/flash in excess of 0.3 units. In the presence of the exchange carrier nigericin, the electrical component of the driving force for ATP formation is enhanced at the expense of the ΔpH. In this case, ATP formation is efficiently coupled to electron flux only at flash frequencies rapid enough to allow a summation of the electrical field. These results clearly demonstrate that any processes which are prerequisites for ATP synthesis (i.e., activation of coupling factor or generation of Δp) are fulfilled by a remarkably small number of charge separations.  相似文献   

17.
Pick U  Zeelon O  Weiss M 《Plant physiology》1991,97(3):1226-1233
Amines at alkaline pH induce in cells of the halotolerant alga Dunaliella a transient stress that is manifested by a drop in ATP and an increase of cytoplasmic pH. As much as 300 millimolar NH4+ are taken up by the cells at pH 9. The uptake is not associated with gross changes in volume and is accompanied by K+ efflux. Most of the amine is not metabolized, and can be released by external acidification. Recovery of the cells from the amine-induced stress occurs within 30 to 60 minutes and is accompanied by massive swelling of vacuoles and by release of the fluorescent dye atebrin from these vacuoles, suggesting that amines are compartmentalized into acidic vacuoles. The time course of ammonia uptake into Dunaliella cells is biphasic—a rapid influx, associated with cytoplasmic alkalinization, followed by a temperature-dependent slow uptake phase, which is correlated with recovery of cellular ATP and cytoplasmic pH. The dependence of amine uptake on external pH indicates that it diffuses into the cells in the free amine form. Studies with lysed cell preparations, in which vacuoles become exposed but retain their capacity to accumulate amines, indicate that the permeability of the vacuolar membrane to amines is much higher than that of the plasma membrane. The results can be retionalized by assuming that the initial amine accumulation, which leads to rapid vacuolar alkalinization, activates metabolic reactions that further increase the capacity of the vacuoles to sequester most of the amine from the cytoplasm. The results indicate that acidic vacuoles in Dunaliella serve as a high-capacity buffering system for amines, and as a safeguard against cytoplasmic alkalinization and uncoupling of photosynthesis.  相似文献   

18.
Durand  Rémi  Bellon  Nicole  Jaillard  Benoît 《Plant and Soil》2001,229(2):305-318
The net flux of charge released by maize, i.e. the strong ion exchange balance between the roots and their environment, was determined in acidic and alkaline solutions, i.e. solutions with a low and a high pH buffering capacity, respectively. The work was based on direct measurement of total alkalinity in culture solutions over a period of several days.The results show there was little difference in the net flux of charge released by maize in acidic and alkaline solutions: In both cases, approximately –1 molc (kg DM)–1 s–1. As the maize was grown in a non-limiting nitrate solution, the charge flux was negative, corresponding to a net release of hydroxyls into the rhizosphere. In contrast, the change in the amounts of free protons in the solution was approximately 1 nmol (kg DM)–1 s–1, i.e. 3 orders of magnitude lower than the net charge flux. Moreover, it was negative in acidic media , i.e. the solution pH increased, and positive in alkaline media, i.e. the solution pH decreased. This decrease probably resulted from the release of inorganic carbon by the roots. The effect on the change in solution pH was only slight in acidic conditions but considerable in alkaline conditions, where it reduced the pH even though the culture solution was alkalinised by the roots.The difference in the way that acidic and alkaline solutions function demonstrates the importance of the pH buffering capacity of the solution in determining the net flux of charge released by the plants. It underlines the difficulty of estimating the net charge flux from pH change measurements in the rhizosphere.  相似文献   

19.
A simplified method for the isolation of a plasma membrane-enriched fraction from plants utilizing an aqueous two-polymer phase system is outlined. Mainly, the plant used was Orchard grass (Dactylis glomerata L.). The two-phase system consisted of 5.6% (w/w) of dextran T500 and 5.6% (w/w) of polyethyleneglycol 4000 in 0.5 molar sorbitol-15 millimolar Tris-maleate (pH 7.3), and 30 millimolar NaCl. In this system, the plasma membranes and the other membranes were preferentially partitioned into the top phase and into the lower phase, respectively. The purity of the isolated plasma membrane was sufficiently high even after a single partition (i.e. about 85% purity) and more than 90% purity was obtained after repeating the partition in a newly prepared lower phase. The plasma membrane was identified with the aid of phosphotungstic acid-chromic acid stain and the association of vanadate-sensitive Mg2+-ATPase. The plasma membrane-associated ATPase had a pH optimum at 6.5 and showed a high specificity for Mg2+ and ATP. KCl stimulation was low (6% stimulation) at the pH optimum, but a relatively high stimulation (23%) occurred at pH 5.5. This method for plasma membrane isolation may be applicable to a wide variety of plants and plant tissue including green leaves.  相似文献   

20.
Summary Endogenous pH profiles were measured around single fertilized eggs of the brown algaPelvetia during the earliest stages of development. Profiles were constructed by measuring the pH near the cell surface at several positions using a pH sensitive microelectrode. Transcellular pH differences in the medium surrounding zygotes were detected soon after fertilization, as the developmental axis was being formed. The future rhizoid end of the cell was relatively alkaline and the presumptive thallus was acidic. At germination and throughout the first 5 d of embryogenesis, the apex of the elongating rhizoid was alkaline with respect to more distal regions. However, conditions that dissipated or reversed this extracellular pH gradient had little or no effect on polarization or growth, indicating that the gradient was not essential for early development.Inhibition of respiratory electron transport by cyanide and antimycin A eliminated the pH gradient, while uncouplers of oxidative phosphorylation [2,4-dinitrophenol (DNP) and carbonylcyanide m-chlorophenylhydrazone (CCCP)] stimulated acidification of the thallus regions. Proton ATPase inhibitors had no effect. Acidification, therefore, is not generated by ATP-dependent proton pumps in the plasma membrane, and instead probably reflects secretion of metabolic acids. Localized metabolism may establish an internal pH gradient that controls regional differentiation, and we are presently investigating this possibility.Abbreviations ASW artificial seawater - CCCP carbonylcyanide m-chlorophenylhydrazone - CD cytochalasin D - DNP 2,4-dinitrophenol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号