首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Numerous proteins have been identified in yeast and mammalian cells which are involved in trafficking between the endoplasmic reticulum and the Golgi apparatus. A great number of partial cDNA sequences now available from the two major plant model species, Arabidopsis thaliana and Oryza sativa, makes it possible to identify putative plant homologues of known genes/proteins from non-plant species. The authors used this approach to screen the database of Expressed Sequence Tags (dbEST) in order to detect plant homologues of proteins involved in membrane transport between ER and Golgi. Availability of these partial sequences will facilitate the screening of cDNA and genomic libraries otherwise performed using heterologous probes derived from animal and yeast genes. As the plant Golgi complex differs in many respects from its mammalian and yeast counterparts, the dbEST clones found can be directly used for various functional assays (immunoprecipitation, two-hybrid analysis, transgenic plants etc.) to test the exact roles of the encoded proteins and identify their functional partners, some of which may be specific for plants.  相似文献   

2.
The knowledge of higher plant microtubule-associated proteins (MAPs) remains limited to a few examples that illustrate essentially their binding properties to preformed microtubules as described in carrots. Using taxol-stabilized microtubules a putative MAP-enriched fraction has been isolated in maize cultured cell extracts, one of these polypeptides is immunologically related to neural tau. At present, these proteins are being characterized by co-assembly assays that were not possible before. Similar experiments were done also in a heterologous system using brain tubulin. Three polypeptides out of seven that constituted the MAP fraction were found to co-assemble specifically with tubulin subunits of both origins. Their apparent molecular weights are 67, 83 and 125 kDa. A two-dimensional gel immunoblot of the 83 kDa polypeptide with tau antibodies revealed one major spot. Polypeptides were quantiated by scanning the gels. These results shed light on the present debate on higher plant MAPs and their potential activity in the regulation of microtubule assembly and function in the higher plant cell.  相似文献   

3.
Tubulin from the brine shrimp Artemia readily assembles in vitro in the absence of microtubule-associated proteins under conditions which do not permit assembly of tubulin from brain. Heated microtubule-associated protein preparations from bovine brain do, however, interact with Artemia tubulin, resulting in stimulation of tubulin assembly and formation of morphologically normal cold-sensitive microtubules. Addition of vinblastine to mixtures containing microtubules assembled in the presence of neural microtubule-associated proteins caused a drop and then a rise in turbidity of the solution. The turbidity changes were accompanied by the appearance of coils, presumably derived from the microtubules which disappeared upon addition of vinblastine. Coils also resulted when microtubule-associated proteins and vinblastine were added to tubulin before polymerization was initiated. Vinblastine prevented normal assembly and caused disruption of Artemia microtubules polymerized in the absence of microtubule-associated proteins. Under these conditions clumped or compact coils, different in appearance from those formed in the presence of the microtubule-associated proteins, were observed. The data confirm that tubulin from Artemia, an organism that is phylogenetically far removed from mammals, has retained binding sites for vinblastine and microtubule-associated proteins and that the interrelationship of these sites has been at least partially preserved. The incomplete depolymerization of Artemia microtubules in response to vinblastine when microtubule-associated proteins are absent suggests that the longitudinal tubulin-tubulin interactions involved in microtubule formation are more stable for Artemia than for neural tubulin.  相似文献   

4.
Gardiner J  Marc J 《Protoplasma》2003,222(1-2):61-74
Summary. Plant microtubule-associated proteins (MAPs) are important in modulating the function of the microtubule cytoskeleton. Various plant MAPs have already been described. However, because of the complexity of the plant microtubule cytoskeleton and its responses to developmental and environmental stimuli, there are undoubtedly many more MAPs to be discovered. We have used a literature search and the BLAST protein comparison program to identify which model MAPs from other taxa have close homologues in Arabidopsis thaliana. The search revealed Arabidopsis homologues of 14 model MAPs, with E values (numbers of proteins that will match the model protein merely by chance) of <1×10–10 and homologous domains spanning 98–599 amino acid residues, representing 57.1–97.0% of the model MAP sequence, as well as 22.5–72.8% amino acid identities and 76.3–96.2% conservation of secondary structure in the homologous domain. All of the Arabidopsis homologues have either a full cDNA clone or an expressed sequence tag in the GenBank database and therefore are expressed. The proteins are likely to regulate a variety of functions, including tubulin folding, microtubule nucleation and polymerisation dynamics, microtubule-dependent cell cycle control, organisation of microtubule arrays, interaction of microtubules with plasma-membrane-associated protein complexes, and interactions with various other proteins. The exact functions of these putative MAPs in the plant cell remain to be elucidated empirically. The identification of these putative MAPs opens new avenues for the investigation of the complexities of the plant microtubule cytoskeleton.Present address: School of Biological Sciences, University of Manchester, Manchester, United Kingdom.Correspondence and reprints: School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.Received October 21, 2002; accepted December 30, 2002; published online September 23, 2003  相似文献   

5.
The organization and function of microtubules in plant cells are important in many developmental stages. Connections between microtubules and the endomembrane system of plant cells have been discovered by microscopy, but the molecular characteristics of these relationships are mostly unknown except for a few cases. Using two antibodies raised against microtubule-associated proteins (MAPs) from maize, we have identified two polypeptides that share properties of the MAP family in the pollen tube of Nicotiana tabacum. The two polypeptides (with an apparent Mr of 161 and 90 kDa) bind efficiently to animal and plant microtubules and are found in association with the cellular membranes of the pollen tube, from which they can be solubilized with a zwitterionic detergent. One of these proteins has been purified and shown to promote the assembly of tubulin and, to a lesser extent, the bundling of microtubules. Subcellular fractionation indicated that the two proteins are associated with the plasma membrane compartment. The two proteins are found to co-localize in situ with cortical microtubules in the vegetative cytoplasm of tobacco pollen tubes; co-localization is also evident in the generative cell. According to these data, both the 161 and 90 kDa polypeptides are likely to mediate the interactions between the plasma membrane and microtubules in pollen tubes. In addition, functional data indicate that these MAP-like proteins take part in the process of microtubule assembly and reorganization occurring during cell growth. The evidence that both proteins associate with different cellular compartments also suggests a broad-spectrum role in mediating the dynamic relationships between microtubules and plant cell membranes.  相似文献   

6.
We have used a combination of quick-freezing/deep-etching and colloidal gold immunocytochemistry (i) to analyze the molecular organization of the microtubular membrane skeleton and the flagellum of Trypanosoma brucei, and (ii) to localize two defined cytoskeletal proteins within these structures. The cell body of trypanosomatids is enveloped by a membrane skeleton consisting of a tightly packed array of microtubules which are closely associated with the cell membrane. The membrane-oriented face of these microtubules is richly decorated with microtubule-associated proteins, which form intermicrotubule and microtubule-membrane linkers. In contrast, the cytoplasmic faces of the microtubules have a smooth, nondecorated appearance. A previously identified, highly repetitive microtubule-associated protein is confined to the membrane-oriented face of the microtubular array, suggesting that the function of this protein may be that of a microtubule-membrane linker. Quickfreezing has also been used to reveal the geometric organization of the paraflagellar rod structure in the flagellum, its interaction with the cell body, and a unique series of fleur-de-lis-like molecules which link this organelle to axonemal microtubules. Immunohistochemistry using an antibody against human erythrocyte spectrin suggests that these linker structures may contain ancestral spectrin-like molecules.  相似文献   

7.
For thousands of years, plant based herbal medicines have been utilized by millions of people all over the world. Plant materials or products are used in different folk/traditional medical systems, such as the Chinese, African and Indian medical systems, like Siddha, Ayurveda, Unani, and Homeopathy. Tinospora cordifolia (TC) is a medicinal plant belonging to the family Menispermaceae. It is a big deciduous, climbing shrub growing prevalently in the tropical part of Indian subcontinent regions such as India, Pakistan, Nepal, Bhutan, Bangladesh and Srilanka, and in Myanmar, and China. Guduchi, Giloy, Shindilkodi, and Amritha are all the common names for this plant. Extracts from different parts of this herbal plant have been used to treat many diseases. In Ayurvedic medicine, extract from this plant is used for preparing “rasayanas”, which is known to cure diabetes, skin diseases, allergic conditions, jaundice, cardiovascular diseases, rheumatoid arthritis, poisoning, and microbial infections. T. cordifolia has a many bioactive phytochemicals that have been isolated from its aerial parts and roots. Many bioactive principles have been reported from this plant which belong to various classes like alkaloids, aliphatic compounds, diterpenoid lactones, phenolics, flavonoids, glycosides, sesquiterpenoids, lignans, steroids and polysaccharides. T. cordifolia possesses medicinal properties such as antioxidant, antiallergic, antiinflammatory, antimicrobial, antiviral, antidote, antitumor, antileprotic, antispasmodic, and antidiabetic properties. The present review will provide a comprehensive therapeutic potential of T. cordifolia.  相似文献   

8.
Microtubules perform essential functions in plant cells and govern, with other cytoskeletal elements, cell division, formation of cell walls and morphogenesis. For microtubules to perform their roles in the cell their organization and dynamics must be regulated and microtubule-associated proteins bear the main responsibility for these activities. We are just beginning to identify these plant microtubule-regulating proteins. Biochemical, molecular and genetic procedures have identified plant homologues of known microtubule-associated proteins, such as kinesins, katanin and XMAP215, and novel classes of plant microtubule-associated proteins, such as MAP65 and MAP190. Showing how these proteins coordinate the microtubule cytoskeleton in vivo is now the challenge. The recent identification and characterization of the Arabidopsis thaliana microtubule organization mutant, mor1, begins to address this challenge and here we highlight the significance of this work.  相似文献   

9.
K. S. Antonets 《朊病毒》2017,11(5):300-312
Amyloids represent protein fibrils that have highly ordered structure with unique physical and chemical properties. Amyloids have long been considered lethal pathogens that cause dozens of incurable diseases in humans and animals. Recent data show that amyloids may not only possess pathogenic properties but are also implicated in the essential biological processes in a variety of prokaryotes and eukaryotes. Functional amyloids have been identified in archaea, bacteria, fungi, and animals, including humans. Plants are one of the most poorly studied groups of organisms in the field of amyloid biology. Although amyloid properties have not been shown under native conditions for any plant protein, studies demonstrating amyloid properties for a set of plant proteins in vitro or in heterologous systems in vivo have been published in recent years. In this review, we systematize the data on the amyloidogenic proteins of plants and their functions and discuss the perspectives of identifying novel amyloids using bioinformatic and proteomic approaches.  相似文献   

10.
Xie Z  Moy LY  Sanada K  Zhou Y  Buchman JJ  Tsai LH 《Neuron》2007,56(1):79-93
Centrosome- and microtubule-associated proteins have been shown to be important for maintaining the neural progenitor pool during neocortical development by regulating the mitotic spindle. It remains unclear whether these proteins may control neurogenesis by regulating other microtubule-dependent processes such as nuclear migration. Here, we identify Cep120, a centrosomal protein preferentially expressed in neural progenitors during neocortical development. We demonstrate that silencing Cep120 in the developing neocortex impairs both interkinetic nuclear migration (INM), a characteristic pattern of nuclear movement in neural progenitors, and neural progenitor self-renewal. Furthermore, we show that Cep120 interacts with transforming acidic coiled-coil proteins (TACCs) and that silencing TACCs also causes defects in INM and neural progenitor self-renewal. Our data suggest a critical role for Cep120 and TACCs in both INM and neurogenesis. We propose that sustaining INM may be a mechanism by which microtubule-regulating proteins maintain the neural progenitor pool during neocortical development.  相似文献   

11.
One of the major groups of microtubule-associated proteins (MAPs) found associated with the microtubules isolated from HeLa cells has a molecular weight of just over 200,000. Previous work has demonstrated that these heLa MAPs are similar in several properties to MAP-2, one of the major MAPs of mammalian neural microtubules, although the two types of proteins are immunologically distinct. The 200,000 mol wt HeLa MAPs have now been found to remain soluble after incubation in a boiling water bath and to retain the ability to promote tubulin polymerization after this treatment, two unusual properties also shown by neural MAP- 2. This property of heat stability has allowed the development of a simplified procedure for purification of the 200,000 HeLa MAPs and has provided a means for detection of these proteins, even in crude cell extracts. These studies have also led to the detection of a protein in crude extracts of HeLa cells and in cycled HeLa microtubules which has been identified as MAP-2 on the basis of (a) comigration with calf brain MAP-2 on SDS PAGE, (b) presence in purified microtubules, (c) heat stability, and (d) reaction with two types of antibodies prepared against neural high molecular weight-MAPs, one of these a monoclonal antibody against hog brain MAP-2, although present in HeLa cells, is at all stages of microtubule purification a relatively minor component in comparison to the 200,000 HeLa MAP's.  相似文献   

12.
Cocoa seed storage proteins play an important role in flavour development as aroma precursors are formed from their degradation during fermentation. Major proteins in the beans of Theobroma cacao are the storage proteins belonging to the vicilin and albumin classes. Although both these classes of proteins have been extensively characterized, there is still limited information on the expression and abundance of other proteins present in cocoa beans. This work is the first attempt to characterize the whole cocoa bean proteome by nano‐UHPLC‐ESI MS/MS analysis using tryptic digests of cocoa bean protein extracts. The results of this analysis show that >1000 proteins could be identified using a species‐specific Theobroma cacao database. The majority of the identified proteins were involved with metabolism and energy. Additionally, a significant number of the identified proteins were linked to protein synthesis and processing. Several proteins were also involved with plant response to stress conditions and defence. Albumin and vicilin storage proteins showed the highest intensity values among all detected proteins, although only seven entries were identified as storage proteins. A comparison of MS/MS data searches carried out against larger non‐specific databases confirmed that using a species‐specific database can increase the number of identified proteins, and at the same time reduce the number of false positives. The results of this work will be useful in developing tools that can allow the comparison of the proteomic profile of cocoa beans from different genotypes and geographic origins. Data are available via ProteomeXchange with identifier PXD005586.  相似文献   

13.
Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far‐reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally because of collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis; however, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10–L (IRX10‐L) and ESKIMO1/TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O‐acetyltransferase, we have resolved two long‐standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways used by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties.  相似文献   

14.
The major component of the cytoskeleton of the parasitic hemoflagellate Trypanosoma brucei is a membrane skeleton which consists of a single layer of tightly spaced microtubules. This array encloses the entire cell body, and it is apposed to, and connected with, the overlying cell membrane. The microtubules of this array contain numerous microtubule-associated proteins. Prominent among those is a family of high molecular weight, repetitive proteins which consist to a large extent of tandemly arranged 38-amino acid repeat units. The binding of one of these proteins, MARP-1, to microtubules has now been characterized in vitro and in vivo. MARP-1 binds to microtubules via tubulin domains other than the COOH-termini used by microtubule-associated proteins from mammalian brain, e.g., MAP2 or Tau. In vitro binding assays using recombinant protein, as well as transfection of mammalian cell lines, have established that the repetitive 38-amino acid repeat units represent a novel microtubule-binding motif. This motif is very similar in length to those of the mammalian microtubule-associated proteins Tau, MAP2, and MAP-U, but both its sequence and charge are different. The observation that the microtubule-binding motifs both of the neural and the trypanosomal proteins are of similar length may reflect the fact that both mediate binding to the same repetitive surface, the microtubule, while their sequence and charge differences are in agreement with the observation that they interact with different domains of the tubulins.  相似文献   

15.
16.
Protein function in vivo can be studied by deleting (knock-out) the gene that encodes it, and search for the consequences. This procedure involves different technologies, including recombinant DNA procedures, cell biology methods and histological and immunocytochemical analysis. In this work we have reviewed these procedures when they have been applied to ascertain the function of several microtubule-associated proteins. These proteins have been previously involved, through in vitro experiments, in having a role in the microtubule stabilization. Here, we will summarize the generation and characterization of different microtubule-associated protein knock-out mice. Special attention will be paid to MAP1B knock-out mice. Amongst the different MAPs knock-out mice these show the strongest phenotype, the most likely for being MAP1B, the MAP that is expressed earliest in neurogenesis. Molecular genetics could be considered as a valid and useful procedure to truly establish the in vivo functions of a protein, although it is necessary to be aware of possible artifacts such as the generation of some kinds of RNA alternative splicing. To avoid this the best strategy to be used must consider the deletion of the exon that contains the functional domains of the protein.  相似文献   

17.
植物脂质转运蛋白的研究进展   总被引:6,自引:0,他引:6  
高等植物脂质转运蛋白(lipid-transfer proteins,LTP)是一类小分子(约9 ku)的碱性蛋白质,已从多种植物中纯化出了LTP,且编码LTP的cDNA及基因也从不同植物中克隆.LTP能够在生物膜之间转运磷脂,因而认为LTP参与了细胞内生物膜形成.而近期的研究又发现LTP具信号肽,可从细胞内分泌到细胞外,位于细胞壁上,因而又对其在细胞内的转运脂质能力产生疑问.而有证据表明LTP参与了角质与腊质的形成、植物的抗病反应和植物对环境变化(温度、盐、干旱协迫)的适应.  相似文献   

18.
The HSP90 (heat shock protein 90), SGT1 (suppressor of G-two allele ofSkp1), and RAR1 (required forMla12 resistance) proteins in plants form a molecular chaperone complex which is involved in diverse biological signaling including development and disease resistance. The three components of this complex interact via specific protein binding motifs and recruit client proteins to initiate a specific signaling cascade in response to cellular or environmental cues. Although the functions of this chaperone complex during development/growth have not been well characterized, the HSP90 chaperone and SGT1 and RAR1 co-chaperones have been demonstrated to be essential signaling components of plant immune responses. These three proteins also play important roles in activation of the mammalian Nod genes, which possess a structurally conserved plant resistance (R) protein motif, NB-LRR (nucleotide binding site-leucine rich repeat). In this review, we summarize the structures and functions of these molecular chaperones, and discuss their putative modes of action in plant immune responses.  相似文献   

19.
Odorant-binding proteins (OBPs) are translators of the external chemical signals, which are critical for maintaining insect life. However, few OBPs were reported in the yellow peach moth (YPM), Conogethes punctiferalis (Guenée). In the current study, five OBPs (CpunOBP1, CpunOBP2, CpunOBP7, CpunPBP2 and CpunPBP4) were expressed and purified from the antennae of the YPM. The results showed that the proteins encoded by five CpunOBPs had six conserved cysteine residues, which were typical structural features of classic OBPs. Moreover, the fluorescence competitive binding assays indicated that the binding affinity of five CpunOBPs to the selected YPM female sex pheromones, host plant volatiles and Penicillium-inoculated apple volatiles was obviously different. The binding affinities of CpunOBP1 and CpunOBP2 with β-ionone were the strongest. CpunOBP7 could bind with 12 host plant volatiles but was unable to interact with any one of the three tested female sex pheromones. CpunPBP2 and CpunPBP4 exhibited the highest binding affinity to female sex pheromone trans-10-hexadecenal among 30 tested compounds. In conclusion, these results suggest the functional differentiation of the CpunOBPs in recognizing sex pheromones, host plant volatiles and fungus-infected host plant volatiles, which will provide new insights into selecting target proteins for YPM biocontrol.  相似文献   

20.
The Xenopus oocyte provides a powerful system for the expression and characterisation of plant membrane proteins. Many different types of plant membrane proteins have been expressed and characterised using this system. As there are already several general reviews on the methodology for oocyte expression of channel proteins, we have summarised the particular advantages and disadvantages of using the system for the characterisation of plant cotransporter proteins. As an example of how the system can be used to identify transporters, we describe evidence for a low affinity nitrate transporter in oocytes injected with poly(A) RNA extracted from nitrate-induced barley roots. Furthermore, we describe evidence that the expression of some transporters in oocytes can modify the properties of endogenous membrane proteins. We conclude that although care must be taken in the interpretation of results and in choosing appropriate controls for experiments, oocyte expression is an excellent tool which will have an important role in characterising plant membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号