首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary Restriction fragment length polymorphisms (RFLPs) have been used to detect intragenic sequence diversity in Glycine subgenus soja chloroplast DNA. The distribution of these RFLPs allow Glycine max and G. soja accessions to be grouped according to cytoplasmic genetic relatedness. DNA clones from mung bean chloroplast DNA were used to locate the RFLPs to specific regions of the chloroplast genome. In the course of the experiments, several previously unobserved RFLPs were also identified. At least six molecular changes were detected, including both restriction site loss or gain and insertion/deletion events. Three of the fragment polymorphisms detected are due to changes in the juncture region between one inverted repeat region and the large single-copy region. Probes detecting polymorphisms in three representative soybean genotypes were used to screen additional cultivars and Plant Introductions. The distribution of RFLP patterns in these accessions were consistent with the patterns of previously described cytoplasmic groupings, with the exception of one accession, which formed a new plastome group.  相似文献   

2.
Summary DNA from the cultivated mushroom, Agaricus bisporus, was cloned into the bacteriophage lambda vector EMBL3 creating a partial genomic library. Ten random clones from the library were used to probe for restriction fragment length polymorphisms (RFLPs). Six of the ten probes detected polymorphisms and were used to demonstrate variation in wild and cultivated strains of the mushroom. These results suggest that RFLPs could form a basis for genetic finger-printing and subsequent strain protection in A. bisporus. In single spore progeny, RFLPs were used to demonstrate normal meiotic segregation and to differentiate between homokaryons and heterokaryons. RFLPs therefore have great potential in the development of the genetics and breeding of this commercially important species.  相似文献   

3.
Summary Restriction fragment length polymorphisms (RFLPs) were used as markers to determine the transmission of chloroplast DNA (cpDNA) in poplar crosses. The plant material studied included individual trees ofPopulus trichocarpa, P. maximowiczii xtrichocarpa, P. maximowiczii xnigra, and offspring from controlled crosses between these trees. RFLPs were identified by direct observation of stained restriction fragments, as well as by molecular hybridization with heterologous cpDNA probes. Analysis of the restriction fragment patterns in the parents and their progeny showed only the patterns of the maternal tree in the progeny, while no paternal type was found. These results provide clear evidence of a maternal mode of chloroplast inheritance in the poplar clones studied.  相似文献   

4.
Allozyme electrophoresis and restriction fragment length polymorphism (RFLP) analyses were used to examine the genetic diversity of a collection of 18 Rhizobium leguminosarum bv. trifolii, 1 R. leguminosarum bv. viciae, and 2 R. meliloti strains. Allozyme analysis at 28 loci revealed 16 electrophoretic types. The mean genetic distance between electrophoretic types of R. leguminosarum and R. meliloti was 0.83. Within R. leguminosarum, the single strain of bv. viciae differed at an average of 0.65 from strains of bv. trifolii, while electrophoretic types of bv. trifolii differed at a range of 0.23 to 0.62. Analysis of RFLPs around two chromosomal DNA probes also delineated 16 unique RFLP patterns and yielded genetic diversity similar to that revealed by the allozyme data. Analysis of RFLPs around three Sym (symbiotic) plasmid-derived probes demonstrated that the Sym plasmids reflect genetic divergence similar to that of their bacterial hosts. The large genetic distances between many strains precluded reliable estimates of their genetic relationships.  相似文献   

5.
本实验采用RFLP技术,对中国东部栗疫病菌(Cryphonectria parasitica)进行了群体遗传结构的研究。313个参试菌株来自10个省(市)的16个群体(子群体),样本分布在北纬24°N—41°N。各菌株的DNA分别用限制性内切酶Pst Ⅰ和EcoR Ⅰ酶切,先后以10个低拷贝DNA探针和1个DNA指纹图谱探针进行了杂交和检测。结果表明,两个探针(pCB29和pMS29.1)的杂交图谱呈单态性;探针pCB19的杂交图谱显示,菌株DNA以PstⅠ酶切的为单态性,以EcoR Ⅰ酶切的则呈多态性;其他7个低拷贝探针的杂交图谱都呈多态性(Pst Ⅰ酶切)、指纹图谱探针的检测结果显示,辽宁凤城群体的菌株与中国东部其他群体的菌株相比,具有更多的限制性杂交片段,菌株间的遗传变异性也更大。  相似文献   

6.
Thirty-seven isolates of Pseudocercosporella herpotrichoides belonging to W-type and 31 isolates belonging to R-type were analysed for DNA restriction fragment length polymorphisms (RFLPs). They represent diverse geographic origins and different phenotypes related to sensitivity to fungicides. Total DNA digested with EcoRI was hybridized with 22 random DNA probes from a P. herpotrichoides EcoRI-restricted DNA library. Four probes showing polymorphisms among isolates within W-type and R-type and generating a total of 44 RFLPs were retained for cluster analysis. Two main groups were distinguished corresponding to W- and R-types. The genetic diversity among isolates was greater for the W-type than for the R-type isolate, four and three distinct EcoRI-restricted mitochondrial DNA patterns were identified in W- and R-type isolates, respectively. The variability of profiles within each pathotype confirmed a higher degree of polymorphism in the W-type.  相似文献   

7.
Summary Fifty-six accessions of cultivated and wild sorghum were surveyed for genetic diversity using 50 low-copy-number nuclear DNA sequence probes to detect restriction fragment length polymorphisms (RFLPs). These probes revealed greater genetic diversity in wild sorghum than in cultivated sorghum, including a larger number of alleles per locus and a greater portion of polymorphic loci in wild sorghum. In comparison to previously published isozyme analyses of the same accessions, RFLP analysis reveals a greater number of alleles per locus. Furthermore, many RFLP alleles have frequencies between 0.25–0.75, while the vast majority of isozyme alleles are either rare (< 0.25) or near fixation (> 0.75). Correlations between genetic and geographic distances among the accessions were stronger when calculated with RFLP than with isozyme data. Systematic relationships revealed by nuclear and chloroplast restriction site analysis indicate that cultivated sorghum is derived from the wild ssp. arundinaceum. The portion of the wild gene pool most genetically similar to the cultivars is from central-northeastern Africa. Previous published data also suggested that this is most likely the principal area of domestication of sorghum. Introgression between wild and cultivated sorghum was inferred from disconcordant relationships shown by nuclear and chloroplast DNA markers. Introgression apparently occurs infrequently enough that the crop and its wild relatives maintain distinct genetic constitutions.  相似文献   

8.
Three KJ-races of Magnaporthe grisea (virulent to only japonica type rice cultivars) and seven KI-races (virulent to either indica or japonica type cultivars) isolated from various rice-growing areas of Korea were assayed for restriction fragment length polymorphisms (RFLPs) in mitochondrial and nuclear DNAs of the fungus. The size of mitochondrial DNA of M. grisea was estimated to be approximately 39. 8 kb. No RFLP in the mt DNA was detected among the 10 Korean races, indicating an extensive conservation in the gene composition of mt DNA without sequence variation. The identical restriction patterns of mt DNA also suggest that mt DNA of M. grisea may not be responsible for pathotypic diversity and variability. Southern blot analysis with five single-copy DNA probes showed considerable polymorphisms. Much diversity was detected in the three KI-races predominated during 1978–1985 in Korea. In contrast, no genetic variation was detected between other four KI-races and three KJ-races. RFLPs in nuclear DNA were correlated to some extent with the prevailing races in Korea. However, relationship between RFLPs in nuclear DNA and virulence of M. grisea races was inconclusive.  相似文献   

9.
We examined genetic variation in allozyme loci, nuclear DNA restriction fragment length polymorphisms (RFLPs), and random amplified polymorphic DNAs (RAPDs) in 130 trembling aspen (Populus tremuloides) and 105 bigtooth aspen (P. grandidentata) trees. In trembling aspen 10 out of 13 allozyme loci assayed (77%) were polymorphic (P), with 2.8 alleles per locus (A) and an expected heterozygosity (He) of 0.25. In contrast, bigtooth aspen had a much lower allozyme genetic variability (P=29%; A=1.4; He=0.08). The two species could be distinguished by mutually exclusive alleles at Idh-1, and bigtooth aspen has what appears to be a duplicate 6PG locus not present in trembling aspen. We used 138 random aspen genomic probes to reveal RFLPs in HindIII digests of aspen DNA. The majority of the probes were from sequences of low copy number. RFLP results were consistent with those of the allozyme analyses, with trembling aspen displaying higher genetic variation than bigtooth aspen (P=71%, A=2.7, and He=0.25 for trembling aspen; P=65%, A=1.8, and He=0.13 for bigtooth aspen). The two species could be distinguished by RFLPs revealed by 21 probes (15% of total probes assayed). RAPD patterns in both species were studied using four arbitrary decamer primers that revealed a total of 61 different amplified DNA fragments in trembling aspen and 56 in bigtooth aspen. Assuming a Hardy-Weinberg equilibrium, estimates of P=100%, A=2, and He=0.30 in trembling aspen and P=88%, A=1.9, and He=0.31 in bigtooth aspen were obtained from the RAPD data. Five amplified DNA fragments were species diagnostic. All individuals within both species, except for 2 that likely belong to the same clone, could be distinguished by comparing their RAPD patterns. These results indicate that (1) RFLPs and allozymes reveal comparable patterns of genetic variation in the two species, (2) trembling aspen is more genetically variable than bigtooth aspen at both the allozyme and DNA levels, (3) one can generate more polymorphic and species-specific loci with DNA markers than with allozymes in aspen, and (4) RAPDs provide a very powerful tool for fingerprinting aspen individuals.  相似文献   

10.
Cai HW  Wang XK  Morishima H 《Heredity》2004,92(5):409-417
We investigated genetic diversity among and within natural populations of Asian common wild rice, Oryza rufipogon, from three different classes of data: quantitative traits, allozymes, and restriction fragment length polymorphisms (RFLPs). The seven populations examined showed polymorphism to varying degrees. The amount of intrapopulation variability appeared to be influenced not only by breeding system but also by the evolutionary history of each population. Interpopulation differentiation was clear, but different classes of data elucidated different patterns. Quantitative traits revealed ecotype differentiation into perennial and annual types of population, whereas allozyme and RFLP analyses revealed geographical differentiation among populations. These results suggest that the diversity patterns shown by quantitative trait analysis reflect mainly the occurrence of adaptive differentiation in response to habitat conditions and that those shown by allozyme and RFLP analyses reflect mainly the effect of isolation by distance. Population differentiation parameters (F(ST)) were highly variable among loci in allozymes as well as in RFLPs.  相似文献   

11.
Restriction fragment length polymorphisms (RFLPs) of plasmid DNAs in Xanthomonas campestris pv. vesicatoria were analysed using 77 strains from the United states, Argentina, Australia, Taiwan, and Korea. One or more plasmids were detected in all tested strains, irrespective of geographic origin, host plant from which isolated, or chemical resistance. All Korean strains contained a few plasmids of similar high molecular weight, whereas some small plasmids occured only in strains from the United States, Argentina, and Taiwan. After digesting total plasmid DNAs with each of four restriction endonucleases, 18 fragments with sizes from about 1 to 23 kb were visualized. Seventy-seven strains of diverse geographic origins, with different levels of resistance to streptomycin and copper, were classified into the 14 RFLP groups based on the restriction endonuclease digestion patterns of their plasmid DNAs. Strains belonging to each group shared DNA fragments of identical size, suggesting the possible presence of similar plasmids in these strains. A 5.8-kb EcoRI plasmid DNA probe prepared from the United States strain 81-23 hybridized to EcoRI plasmid digests from all tested strains. Other plasmid DNA fragments of the strain81-2,3 used as probes had no homology to plasmid DNA fragments from several strains around the world. The variation in hybridization profiles of plasmid DNA was very similar to the results obtained by RFLP analysis of plasmid DNA digested by four restriction enzymes. Most of the Korean strains tested were highly sensitive to streptomycin and copper, whereas most strains from other geographic areas showed a high level of resistance to one or two of the chemicals. Cluster analysis of genetic distance between the strains based on the data obtained generated the dendrograms that separated all Korean strains from the other strains, suggesting that plasmid DNA of the Korean strains may be genetically very different from those of the others.  相似文献   

12.
Summary A systematic search for restriction fragment length polymorphisms (RFLPs) on the human Y chromosome was performed. DNA samples from 16–34 individuals were screened with five restriction enzymes and 12 Y-chromosomal probes, 3 of which detect lowly repetitive sequences and 9 of which are apparently single copy in genomic DNA. None of the single-copy probes revealed any variation. The repetitive sequence probe p21A1 (DYZ?) revealed a TaqI RFLP with q = 0.05. The frequency of fixed point mutations in Y-chromosomal DNA outside the pseudoautosomal region is probably less than 1 in 18000 bp.  相似文献   

13.
Twelve restriction fragment length polymorphisms (RFLPs) were detected in common chimpanzee using two restriction enzymes (HindIII andMspI) and four DNA probes to the coding regions of the human glycophorin A (GPA) and glycophorin B (GPB) genes and their 3-untranslated regions. Seven RFLPs correlated with red cell expression of the Vc determinant of the MN blood group-related V-A-B-D system and five RFLPs correlated with nonexpression of this antigen. Animals heterozygous for theV allele that encodes the Vc determinant had all 12 polymorphic restriction fragments and appeared to show reduced intensity of probe hybridization to these fragments, consistent with the presence of aV and a non-V allele. No RFLPs were detected withEcoRI,SstI, orBamHI, in spite of the relatively large segment of DNA (at least 20 kb) involved in the polymorphisms. The RFLPs were chimpanzee specific and were not found in man, gorilla, orangutan, or gibbon. Multiple RFLPs distinguishing primate species are rare and may be useful markers for molecular evolution.This work was supported in part by National Institutes of Health Grants AM 33463 and CA 33000.  相似文献   

14.
Summary Cybrids have been regenerated following protoplast fusion of iodoacetamide-treated leaf mesophyll cells of Lycopersion esculentum cv UC82 and gamma-irradiated cell suspensions of L. pennellii, LA716. The cybrids were recovered in the regenerant population at a frequency of 19%, no selection pressure was applied for the persistence of the donor cytoplasm. The nuclear genotype of ten cybrids was characterized extensively using isozyme markers, cDNA-based restriction fragment length polymorphisms (RFLPs), and the morphology of the plants. No nuclear genetic information from L. pennellii was detected in the cybrids. The organellar genotype of the cybrids was determined using cloned probes and species-specific RFLPs. All the cybrids had inherited the tomato chloroplast genome and had varying amounts of L. pennellii mitochondrial DNA. The cybrids all had a diploid chromosome number of 24, produced pollen, and set seed.  相似文献   

15.
L C Amar  D Arnaud  J Cambrou  J L Guenet    P R Avner 《The EMBO journal》1985,4(13B):3695-3700
Two libraries enriched in murine X chromosome material have been constructed in the lambda vector NM 1149 from flow-sorted chromosomes. Inserts of unique genomic sequence DNA were purified and their X chromosome specificity characterised by hybridisation to a panel of somatic cell hybrid lines. Of the first five such X chromosome-specific probes characterised, all detect restriction fragment length polymorphisms (RFLPs) between inbred mouse laboratory strains such as C57BL/6 and BALB/c and the SPE/Pas mouse strain established from a wild Mus spretus mouse, when their DNAs are digested with the restriction enzyme TaqI. Taking advantage of these RFLPs, all five probes have been localised on the X chromosome using an interspecific backcross between the B6CBARI and SPE/Pas mouse strains segregating the X chromosome markers hypoxanthine phosphoribosyl transferase (Hprt) and Tabby (Ta). Three of the probes map to the region between the centromere and Hprt, and two distal to Ta. Since such X-specific sequence probes detect RFLPs between M. spretus and M. musculus domesticus DNAs with high frequency, a large panel of well localised probes should soon be available for studies of biological problems associated with the X chromosome which can best be approached using the murine species.  相似文献   

16.
During a two year period 457 clones of the diatom Skeletonema costatum were isolated prior to and during the summer-fall and winter-spring blooms of this species in Narragansett Bay, R.I. Their allozyme banding patterns were examined for 5 enzyme loci. Genotypic frequencies indicated that the winter bloom populations were genetically different from the prevalent summer bloom populations of the same species. Genetic differences between seasonal blooms are as great as those found between species of terrestrial organisms, but are not accompanied by morphological variation. Although blooms have distinct prevalent forms, they are not genetically homogeneous. No single clone is ever representative of all populations of S. costatum. The dynamics of these allochronic populations appear to be governed by a form of cyclic natural selection, and are probably a regular feature of the cycles of abundance of this species in this area. These results cast doubt on some of the assumptions often made in the “autecological approach” to phytoplankton ecology. This study comprises the first quantitative examination of the population genetics of a microalga.  相似文献   

17.
Intraspecific chloroplast DNA polymorphisms were examined for 51 populations of seven species in the genus Krigia. A total of 1,100 restriction sites was surveyed and 46 of these were variable at the intraspecific level. Twenty-two of the variable sites were found within K. virginica, giving this species one of the highest levels of intraspecific chloroplast DNA divergence of any examined species. In contrast, no restriction site variation was detected within K. dandelion, K. wrightii, and K. occidentalis. Five polymorphisms were identified from the 16 populations of the K. cespitosa-gracilis complex, but no mutations distinguished the K. cespitosa and K. gracilis types. Krigia montana and K. biflora showed 11 and eight restriction site polymorphisms, respectively. The chloroplast genome of the hexaploid K. montana was derived from the diploid K. biflora rather than the tetraploid K. montana. High levels of polymorphism were found in species having different ploidy levels, such as K. virginica, K. biflora, and K. montana. Furthermore, most mutations found in these three species were recorded from the tetraploid lineages. As a result, evolutionary rates between different ploidy levels differ significantly. The chloroplast DNA restriction site data suggest that all surveyed populations of the autotetraploid K. virginica originated from a common ancestor. Our results also indicate that certain regions of the chloroplast genome have changed more rapidly than others and have the potential to resolve evolutionary questions at the population level.  相似文献   

18.
Y. P. Hong  V. D. Hipkins    S. H. Strauss 《Genetics》1993,135(4):1187-1196
The amount, distribution and mutational nature of chloroplast DNA polymorphisms were studied via analysis of restriction fragment length polymorphisms in three closely related species of conifers, the California closed-cone pines-knobcone pine: Pinus attenuata Lemm.; bishop pine: Pinus muricata D. Don; and Monterey pine: Pinus radiata D. Don. Genomic DNA from 384 trees representing 19 populations were digested with 9-20 restriction enzymes and probed with cloned cpDNA fragments from Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] that comprise 82% of the chloroplast genome. Up to 313 restriction sites were surveyed, and 25 of these were observed to be polymorphic among or within species. Differences among species accounted for the majority of genetic (haplotypic) diversity observed [G(st) = 84(+/-13)%]; nucleotide diversity among species was estimated to be 0.3(+/-0.1)%. Knobcone pine and Monterey pine displayed almost no genetic variation within or among populations. Bishop pine also showed little variability within populations, but did display strong population differences [G(st) = 87(+/-8)%] that were a result of three distinct geographic groups. Mean nucleotide diversity within populations was 0.003(+/-0.002)%; intrapopulation polymorphisms were found in only five populations. This pattern of genetic variation contrasts strongly with findings from study of nuclear genes (allozymes) in the group, where most genetic diversity resides within populations rather than among populations or species. Regions of the genome subject to frequent length mutations were identified; estimates of subdivision based on length variant frequencies in one region differed strikingly from those based on site mutations or allozymes. Two trees were identified with a major chloroplast DNA inversion that closely resembled one documented between Pinus and Pseudotsuga.  相似文献   

19.
Recent work towards the completion of a saturated molecular genetic linkage map for the lepidopteran silkworm, Bombyx mori (n = 28), has provided evidence for existing polymorphisms in the inbred strain C108. Two inbred parental strains, p50 and C108, were crossed to produce the F1 (P/C) hybrid offspring. The populations used in this project were comprised of a combination of 29 F2 (F1 x F1) and 31 reciprocal backcross (P/C x C/C, P/C x P/P) progeny. All restriction fragment length polymorphisms (RFLPs) for the initial analysis were hybridized with anonymous probes derived from a random early follicular cDNA (Rcf) library from Bombyx. A total of 19 Rcf probes were selected as showing scorable codominant polymorphic patterns when screened against F2 and backcross DNAs digested with the restriction enzymes EcoRI, HindIII, or PstI, and Southern blotted to nylon membranes for hybridization. Of the newly reported Rcf probes, 7 (37%) were characterized as producing 'simple' polymorphic patterns, while 12 (63%) were characterized as producing 'complex' polymorphic patterns. Further characterization of the complex patterns subdivided this group into two general classes: polymorphisms that contained an additional allele, and multiple bands that contained an easily scored two banded polymorphism. Because the extra allele class was limited to the (P/C x C/C) backcross progeny, it is suggested that the inbred parental strain C108 harbors polymorphic loci that are inherited in a simple Mendelian fashion. A genetic analysis discussing plausible origins and maintenance of these polymorphisms is presented.  相似文献   

20.
Restriction site variation in chloroplast DNA (cpDNA) was surveyed to analyze population dynamics in Liriodendron tulipifera L., a woody angiosperm found in eastern North America. Two cpDNA haplotypes, differing by the presence or absence of five restriction site changes (nucleotide sequence divergence estimated as approximately 0.15%) are geographically structured; 61 widespread populations possess the “northern” haplotype and three isolated populations of central Florida possess the “southern” haplotype. This geographic break in cpDNA distribution corresponds to patterns of geographic distribution revealed by a previous survey of allozyme variation, with the exception that analyses of allozyme data further divided the populations containing the northern cpDNA haplotype into two groups, a widespread upland group and a coastal intermediate group. Analyses of these two independent data sets together support the hypothesis that L. tulipifera survived the glacial advances of the Pleistocene in two distinct refugia, possibly as different taxa, and the intermediate coastal group was putatively formed from recent hybridizations between these entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号