首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of the facultative halophyte and CAM species Mesembryanthemum crystallinum L. (Aizoaceae) were stressed for 8 d with 400 mol m−3 NaCl in the root medium. NaCl was then removed from the substratum, and the plants were watered again with NaCl-free solution. A second set of plants was maintained as controls. A small degree of CAM, as indicated by day-night changes in malate levels, was expressed during ageing of the plants. Salinity-stress-dependent CAM induction was reversible by the removal of salt, as indicated by similar Δ malate levels in previously salt-stressed plants and in non-stressed plants on day 19 of the experiment. Tonoplast vesicles were isolated from leaves during the time-course of stress application, stress removal and ageing. Parameters of the tonoplast H+-ATPase were correlated to the application of salinity, the expression of CAM and ageing. It was concluded, first, that a pronounced increase in the amount of tonoplast H+-ATPase is related to salinity per se and a smaller increase to ageing; secondly, that there is an increase in the specific activity of the enzyme related to ageing; thirdly, that the induction of two new polypeptides with molecular masses of 32 and 28 kDa is correlated in time with the expression of CAM, and, fourthly, that the two new polypeptides are part of the tonoplast H+-ATPase holoenzyme.  相似文献   

2.
Dimensions and area densities of membrane particles were studied by electron microscopy of replicas of freeze-fractured suspensions of tonoplast vesicles of Mesembryanthemum crystallinum L. in the C-3 state and after induction of crassulacean acid metabolism (CAM) by salinity. The results are compared with the relative contribution of tonoplast-ATPase protein to total membrane protein obtained from integration of elution profiles in size-exclusion chromatography. Coverage of tonoplast area by globular membrane particles was 20% and 36 % and ATPase in relation to total membrane protein was 33 % and 35 % in C-3 and CAM M. crystallinum, respectively. Thus, by order of magnitude, it is most likely that the particles represent the ATPase. In Kalanchoë daigremontiana Hamet et Perrier de la Bâthie the ATPase also constituted 36% of total tonoplast protein. Induction of CAM in M. crystallinum was associated with an increase in specific ATPase activity of the tonoplast and an increase of the size and area coverage of tonoplast particles, whereas the relative contribution of ATPase protein to total tonoplast protein and the molecular mass of the ATPase holoenzyme, as seen in size-exclusion chromatography, remained almost unchanged.  相似文献   

3.
The supramolecular organization of the thylakoid membranes of the thallus stage in the red alga Porphyra leucosticta is studied in replicas of rapidly frozen and fractured cells. Freeze-fractured thylakoid membranes exhibit only two types of fracture faces (EF and PF), because the lamellae in red algal chloroplasts are not stacked. The PF reveals numerous, tightly packed, but randomly distributed particles (density range from 2970 to 3550 particles/μm2). In contrast, the EF particles appear organized into parallel rows, the spacing of which is about 60–70 nm (about 8–9 particles occur along 100 nm of the line that is formed). Significant numbers of single EF particles are randomly distributed between the EF particle rows. The particles on both fracture faces (PF and EF) fall into two size classes: 10 to 11 nm (major size class) and 14 to 15 nm (minor size class).  相似文献   

4.
5.
Separated T and B lymphocytes from human peripheral blood were studied using the freeze-fracture technique. Quantitative analysis performed on density and size of intramembranous particles (IMPs) present on both fracture faces of the plasma membrane has revealed remarkable differences between cells belonging to the two main lymphocyte populations. In particular: (a) both fracture faces of the cytoplasmic membrane of B lymphocytes exhibit larger particles than T lymphocytes; (b) the mean densities, on both protoplasmic (PF) and external (EF) fracture faces, in B lymphocytes are lower than in T lymphocytes; (c) in B cells the partition ratio of particles between PF and EF is reversed with respect to T cells; (d) on both fracture faces of B lymphocytes, the IMP densities present a normal distribution while on T cells, density values show bimodal distributions indicating the existence of two cell subsets differing in particle density.  相似文献   

6.
Summary Differences in the activity and structure of the vacuolar H+-ATPase (V-ATPase, EC 3.6.1.3) were investigated in the C3/CAM intermediate plantKalanchoë blossfeldiana Poellnitz cv. Tom Thumb, with lower or higher expression of CAM, andHordeum vulgare cv. Carina, grown with or without 150 mM NaCl. InK. blossfeldiana ATP-hydrolysis and H+-transport activity were higher with higher expression of CAM than in plants with very weak CAM. This was mainly due to a larger amount of V-ATPase. Statistical analysis of the diameter of intramembrane particles (IMPs) on freeze-fractures of tonoplast vesicles showed that IMPs were larger in tonoplast vesicle preparations ofK. blossfeldiana with strong CAM expression (9.1 nm) than in preparations ofK. blossfeldiana with low CAM expression (7.3 nm). As there is evidence that the majority of IMPs on freeze-fractures of tonoplast vesicles corresponds to the V0 domain of V-ATPase, the higher activity of V-ATPase inK. blossfeldiana with stronger CAM could be a result of additional structural changes in its membrane-integral domain. The higher activity of V-ATPase inK. blossfeldiana with stronger CAM is discussed in relation to the requirement for a higher proton pumping capacity for nocturnal malate accumulation in the vacuole. The ATP-dependent H+-pumping activity inH. vulgare was higher under salt stress than in control plants, while the rates of ATP-hydrolysis and the size of IMPs were not affected by the salt treatment. The data presented here indicate that different mechanisms might increase the transport capacity of V-ATPase to meet the higher requirements of secondary active transport related to CAM expression and adaptation to salt stress.Abbrevations ATP adenosine triphosphate - CAM crassulacean acid metabolism - IMP intramembrane particles - V-ATPase vacuolar proton-translocating adenosine triphosphatase - V0 domain membrane-integral domain of V-ATPase - V1 domain membrane-peripheral domain of V-ATPase Dedicated to Prof. Dr. Eberhard Schnepf on the occasion of his retirement  相似文献   

7.
The ultrastructure of the cell wall and the thylakoid membranes of the thermophilic cyanobacterium Synechococcus lividus was studied by freezefracture electron microscopy after temperature shifts. Different fracture faces of the outer, the cytoplasmic and the thylakoid membranes were demonstrated when the preparation-temperature was in the range of the optimal growth temperature at 52°C or after fixation at 52°C. In the outer membrane of the cell wall two fracture faces with holes and 7.5 nm intramembrane particles were detected. On both the outer (EF) and inner (PF) leaflet of the cytoplasmic membrane randomly distributed particles were demonstrated. The particle density on the PF-face was approx. three times that of the EF-face. The EF-face of the thylakoid membrane exposed rows of particles with an average diameter of 10 nm. The spacing between the particle rows was 35–50 nm. This regular particle arrangement on the EF-face was demonstrated only in a few cases. Mostly the intramembrane particles were distributed randomly on the thylakoid fracture faces. The particle density of thylakoids with a random distribution was approx. in the same range both on the EF-and PF-face. The EF-particles fall into four groups of 9,10,11, and 12.5 nm. The main particle class was the 10 nm class. The PF-face exposed smaller particles with two maxima at 8.5–9 nm and 10 nm. When Synechococcus lividus OH-53s was chilled to temperatures below 30–35°C before the freeze-etch preparation a phase transition took place after the temperature shift. On the fracture faces of the thylakoid and cytoplasmic membranes particle depleted areas occurred. The size of the areas were different in both membranes and dependent on the velocity of cooling. Contrary to Synechococcus lividus OH-53s in the mesophilic Synechococcus strain 6910 the phase transition point was 15°C. The lower phase transition point may be due to a higher content of unsaturated fatty acids.Dedicated to Prof. D. Peters (Hamburg) on the occasion of the 65th anniversary of his birthday  相似文献   

8.
Freeze-fracturing of Funaria hygrometrica caulonema cells leads to a cleavage within the plasma membrane. The extraplasmatic and the plasmatic fracture faces differ in their particle density. The plasmatic fracture face in caulonema tip cells or in tip cells of side branches, but never in other caulonema cells, is further characterized by the occurrence of particle rosettes. The highest density of rosettes is found at the cell apex but decreases steeply toward the cell base. The shape of the rosettes varies remarkably; 20% of them are found in an incomplete, presumably disintegrating or aggregating state. The complete rosette has a diameter of about 25 nm and consists of five to six particles. The size of the single particles varies between 4 nm to 10 nm. The rosettes are thought to posses cellulose-synthase activity. It is assumed that one rosette produces one elementary fibril; rough calculations, considering the number of rosettes and the estimated amount of cellulose produced in the tip region, indicate that an elementary fibrillar length of 900 nm is formed in 1 min by one rosette. The consequence of the kinetics on the life-time of the rosettes and the cellulose-synthase activity are discussed.Abbreviations EF extraplasmatic fracture face - PF plasmatic fracture face  相似文献   

9.
M. Melkonian  H. Robenek 《Protoplasma》1979,100(2):183-197
Summary The eyespot region of the flagellateTetraselmis cordiformis Stein (Chlorophyceae) was investigated with the freeze-fracture technique. The only fracture faces observed in this region were the two complementary fracture faces (PF and EF) of the outer chloroplast envelope membrane. Intramembranous particle numbers on both fracture faces of this membrane were significantly higher in the eyespot region as compared to regions outside the eye-spot. Higher numbers of particles on the PF face in the eyespot region were mainly caused by an increase in particle numbers of the size class 6–8 mm, while on the EF face particle size distribution was not significantly different between eyespot and other regions. Functional implications are discussed and evidence is presented that the outer chloroplast envelope membrane may be the site of photoreceptor location in green algal phototaxis.  相似文献   

10.
Plants of a rice mutant (Hubei photoperiod-sensitive genic male-sterile rice, Oryza sativa L. Nongken 58S) and its wild type cv. Nongken 58 were cultured in natural summer conditions in Beijing. After induction of proper photoperiods small panicle at the stem tip emerged and developed to the stage of secondary rachis-branch and spikelet primordium formation. Subsequently, part of the rice plants received long day (LD), i.e. 10 h of day-light treatment followed by 5 h of white fluorescent illumination with 1~2 Wm-2) . The others were exposed to daylight for 10 h alternating with a 14 h of dark period as short day (SD) treatment. After 10 days of the photoperiodic treatments, the chloroplast ultrastructure of the first leave below the flag leaf was examined by freeze-fracture rotary and unidirectionally shadowed electron microscopy. At anthesis stage, Nongken 58S plants with LD treatment showed complete pollen sterility, while the same plants with SD treatment exhibited normal fertility. And fertility of Nongken 58 was not affected by photoperiod treatments. The results from electron microscopic observation showed no significant effects of either SD or LD treatment on the freeze-fractured uhrastructure of thylakoid membranes in Nongken 58. No significant difference in particle density and size distribution was found on stacked and unstacked thylakoid membrane regions of the Nongken 58S-SD and those of Nongken 58 rice. However, the particle density of the endoplasmic fracture face in the staked region (EFs) and protoplasmic fracture face in the staked region (PFs) faces detected from the leaf thylakoid membranes of Nongken 58S-SD rice was significantly higher than that of the corresponding faces from Nongken 58S-LD. In some cases much more particles on EFs faces of thylakoid membranes isolated from Nongken 58S-SD rice appeared as paracrystalline particle array, indicating increases in the number of PS Ⅱ reaction centres, LHC I and Cyt b6/f per unit area of thylakoid membrane. The particle density of the endoplasmic fracture face in the unstaked region (EFu) and protoplasmic fracture face in the unstaked region (PFu) faces from unstacked thylakoid membranes of Nongken 58S-LD was less than that of the corresponding faces from Nongken 58S-SD. And the particle density of PFu faces from margin and end of the membranes of the grana thylakoids of LD-treated Nongken 58S leaves was also less than that of unstacked thylakoid membranes from SDtreated rice. In severe cases, most of the particles on endoplasmic fracture face in the unstaked region (EFu) and protoplasmic fracture face in the unstaked region (PFu) faces were even missing, indicating a decrease in the numbers of photosystem Ⅰ , LHCⅠ , Cyt b6/f and ATPase per unit area of' thylakoid membrane. The above results could further provide an augmentation for explaning the photoperiod-sensitive genic male-sterility.  相似文献   

11.
Mesembryanthemum crystallinum plants were irrigated with 400 mol m?3 NaCl to induce CAM and levels of leaf starch, and activities of starch-degrading enzymes were measured. During Crassulacean acid metabolism (CAM) induction, daily starch turnover gradually became more pronounced and was three- to four-fold greater than in leaves of C3 plants after 3 weeks. Activities of α- and β-amylase, D-enzyme and starch phosphorylase all increased 10- to 20-fold within 3 weeks of the start of salt treatment. Activities of α- and β-amylase increased more than fourfold within the first 24 h of salt treatment, which is the fastest increase in enzyme activities so far measured during the induction of CAM with salt solution in intact plants of this species. Most enzyme activities were partially chloroplastic; however, the principal starch-degrading activity was constituted by an extra-chloroplastic β-amylase. CAM starch-phosphorylase activity, which was mainly chloroplastic, exhibited a two- to three-fold diurnal change in parallel with starch content. CAM induction in M. crystallinum is clearly associated with greater starch turnover and enhanced starch-degrading enzyme activities, which as catalysts of the initial reaction to release carbon for synthesis of phosphoenolpyruvate (PEP) appear highly significant for the functioning of the CAM pathway. The diurnal rhythm of phosphorylase activity may be of particular significance.  相似文献   

12.
The classical induction of Crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinum L. by water stress is observed within one week when fourto five-week-old plants (grown under a 16/8 h photoperiod at ca. 600 mol quanta · m–2 · s–1) are irrigated with 350 mM NaCl. The induction of CAM was evaluated by measuring phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) and NADP-malic enzyme (NADP-ME, EC 4.1.1.82) activities and nocturnal increases in malate content and titratable acidity of leaf extracts, and the daily pattern of CO2 exchange and stomatal conductance during the 7-d induction period. Three growth regulators, abscisic acid (ABA), farnesol (an antitranspirant and analog of ABA), and benzylaminopurine (BAP), were found to substitute for NaCl for induction of CAM when fed to plants in nutrient media. Daily irrigation with solutions containing micromolar levels (optimum ca. 10 micromolar) of these growth regulators led to the induction of CAM similar to that by high salt. Application of the growth regulators, like NaCl, caused large increases in the activity of NADP-ME and the activity and level of PEPCase, which are components of the biochemical machinery required for CAM. Western immunoblotting showed that the increased activity of PEPCase on addition of ABA, farnesol and BAP was mainly due to increased levels of the CAM-specific isoforms. Also, dehydration of cut leaves over 8.5 h under light resulted in a severalfold increase in PEPCase activity. An equivalent increase in PEPCase activity in excised leaves was also obtained by feeding 150 mM NaCl, or micromolar levels of ABA or BAP via the petiole, which supports results obtained by feeding the growth regulators to roots. However, the increase in PEPCase activity was inhibited by feeding high levels of BAP to cut leaves prior to dehydration, indicating a more complex response to the cytokinin. Abscisic acid may have a role in induction of CAM in M. crystallinum under natural conditions as there is previous evidence that induction by NaCl causes an increase in the content of ABA, but not cytokinins, in leaves of this species.Abbreviations ABA abscisic acid - BAP 6-benzylaminopurine - CAM Crassulacean acid metabolism - Chl chlorophyll - 2,4D 2,4-dichlorophenoxyacetic acid - NADP-ME NADP-malic enzyme - PEPCase phosphoenolpyruvate carboxylase Methyl jasmonate was generously provided by Dr. Vincent Franceschi (Botany Department, Washington State University). The anti-maize leaf PEPCase was kindly supplied by Dr. Tatsuo Sugiyama (Department of Agricultural Chemistry, Nagoya University, Japan) and the anti-Flaveria trinervia leaf PEPCase was kindly supplied by Dr. Samuel Sun (Department of Plant Molecular Physiology, University of Hawaii, Honulu). This work was funded in part by U.S. Department of Agriculture Competitive Grant 90-37280-5706 and an equipment grant (DMB 8515521) from the National Science Foundation. Ziyu Dai was supported in part by Guangxi Agricultural College and Ministry of Agriculture of the People's Republic of China  相似文献   

13.
14.
The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young’s moduli and Poisson’s ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young’s moduli and compressive strength increased, while Poisson’s ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson’s correlation test, r = ?0.949, 0.943, ?0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young’s moduli, Poisson’s ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.  相似文献   

15.
Freeze-fracture electron microscopy was used to investigate intramembranous particle (IMP) densities and particle distributions in the plasma membrane and tonoplast of the cells of secreting and nonsecreting leaves of Avicennia germinans (L.) Steam. Intramembranous particle densities of the protoplasmic (P) and exoplasmic (E) face of the plasma membrane and tonoplast were significantly higher in hypodermal cells of secreting leaves than of nonsecreting leaves. In contrast, no significant differences in the frequency of intramembranous particles were found in any membrane faces of secreting or nonsecreting mesophyll cells. However, particle densities were higher in the plasma membrane and tonoplast of the mesophyll cells, compared to the hypodermal cells, with the exception of the P-face of hypodermal plasma membranes of secreting tissue, which had the highest particle density measured. Particle distributions were dispersed and no discernible patterns such as paracrystalline arrays or other multi-IMP structures were observed. Results support the hypothesis that secretion is coupled to changes in membrane ultrastructure, and the possibility that salt secretion is an active process driven by integral membrane proteins such as the H+/ATPase. Additionally, the hypodermal cells of the leaf may function as storage reservoirs for salt as well as water, suggesting a regulatory role in salt secretion.  相似文献   

16.
Rabbit antiserum against highly purified reaction center preparations was shown to react specifically with a single component of chromatophore membranes from Rhodopseudomonas spheroides strain R-26. The conjugate of purified gamma globulin and ferritin prepared with toluene diisocyanate was used to determine the localization of reaction centers in the chromatophore membranes. Virtually no antibody was bound by intact membranes. After removing the 9 nm ATPase from these membranes by dilute EDTA treatment, a considerable amount of antibody was bound to the exposed outer membrane surface. The reaction center binding sites were estimated to be uniformly distributed with approx. 1 reaction center per 200 nm2 of membrane surface. These results indicate that the reaction centers are located near the outer membrane surface but below the ATPase particles. Since the distribution of reaction centers and particles on rough faces seen by freeze-fracture electron microscopy are similar, it is suggested that the freeze-fracture particle may be a complex of a reaction center and other electron transfer components localized within the hydrophobic region of the membrane.  相似文献   

17.
Freeze-fractured thylakoids of Fucus serratus L. exhibit three types of faces with a particle density analogous to that of EFs, EFu and PF faces of green plants. However the particle size distribution is unimodal in the three types with a mean of about 8 nm. No obvious distinction between PFs and PFu faces could be detected. The absence on EFs faces of the distinct class of large particles (>13 nm) existing in green plant thylakoids implies a unique organization of pigment proteins, especially of the light-harvesting complexes.  相似文献   

18.
Tonoplast vesicles were isolated from Kalanchoe daigremontiana Hamet et Pierrer de la Bâthie and Mesembryanthemum crystallinum L., exhibiting constitutive and inducible crassulacean acid metabolism (CAM), respectively. Membrane-bound proteins were detergent-solubilized with 2% of Triton X-100. During CAM induction in M. crystallinum, ATPase activity increases four-fold, whereas pyrophosphatase activity decreases somewhat. With all plants, ATPase and pyrophosphatase could be separated by size-exclusion chromatography (SEC, Sephacryl S 400), and the ATPase was further purified by diethylaminoethyl-ion-exchange chromatography. Sodium-dodecyl-sulfate electrophoresis of the SEC fractions from K. daigremontiana containing maximum ATPase activity separates several protein bands, indicating subunits of 72, 56, 48, 42, 28, and 16 kDa. Purified ATPase from M. crystallinum in the C3 and CAM states shows a somewhat different protein pattern. With M. crystallinum, an increase in ATP-hydrolysis and changes in the subunit composition of the native enzyme indicate that the change from the C3 to the CAM state is accompanied by de-novo synthesis and by structural changes of the tonoplast ATPase.Abbreviations CAM Crassulacean acid metabolism - DTT dithiothreitol - kDa kilodalton - PAGE polyacrylamide gel electrophoresis - PPiase pyrophosphatase - SEC size exclusion chromatography - SDS sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

19.
Immuno-electron microscopy of negatively stained isolated tonoplast vesicles was used to quantify stress responses of the H+-transporting tonoplast ATPase (V0V1-ATPase; EC 3.6.1.1) of the C3/CAM intermediate Mesembryanthemum crystallinum L. and the C3 plant Hordeum vulgare L. This approach has the advantage that it relates quantitative adaptations at the level of membrane enzymes directly to membrane area and thus is independent of concomitant changes of relative amounts of other membrane proteins which may perturb conclusions when data are expressed on a tonoplast protein basis. It was shown that in M. crystallinum the amount of V0V1-ATPase per unit membrane area increased slightly with ageing and pronouncedly with salinity stress. In H. vulgare under salt stress there was an increase in V0V1-ATPase amount only in the highly salt tolerant cv. California Mariout and not in the moderately tolerant cv. Carina. This corroborates conclusions from earlier work, where results were expressed on a protein basis, although this was not to be expected a priori. In all comparative ecophysiological studies using tonoplast vesicles at least some key-point tests with the immunonegative staining technique should be included for the sake of prudence. The data obtained here via immunonegative staining of isolated tonoplast vesicles are in very close agreement with much earlier assessments of area and whole cell-related activities given by measurements of entire isolated vacuoles and morphometric analysis, which further corroborates the suitability of the approaches. The data presented here for the first time allow calculations of the coverage of the tonoplast surface of M. crystallinum with V0V1-ATPase holoenzyme protein and with total tonoplast protein, i.e. 1.5 to 2.3 . 10?15 g V0V1-ATPase per μm2 and 7.4 to 8.8 . 10?15 g protein per μm2, respectively.  相似文献   

20.
Winter K  Holtum JA 《Planta》2005,222(1):201-209
The carbon isotope composition of the halophyte Mesembryanthemum crystallinum L. (Aizoaceae) changes when plants are exposed to environmental stress and when they shift from C3 to crassulacean acid metabolism (CAM). We examined the coupling between carbon isotope composition and photosynthetic pathway by subjecting plants of different ages to salinity and humidity treatments. Whole shoot 13C values became less negative in plants that were exposed to 400 mM NaCl in the hydroponic solution. The isotopic change had two components: a direct NaCl effect that was greatest in plants still operating in the C3 mode and decreased proportionally with increasing levels of dark fixation, and a second component related to the degree of CAM expression. Ignoring the presumably diffusion-related NaCl effect on carbon isotope ratios results in an overestimation of nocturnal CO2 gain in comparison to an isotope versus nocturnal CO2 gain calibration established previously for C3 and CAM species grown under well-watered conditions. It is widely taken for granted that the shift to CAM in M. crystallinum is partially under developmental control and that CAM is inevitably expressed in mature plants. Plants, cultivated under non-saline conditions and high relative humidity (RH) for up to 63 days, maintained diel CO2 gas-exchange patterns and 13C values typical of C3 plants. However, a weak CAM gas-exchange pattern and an increase in 13C value were observed in non-salt-treated plants grown at reduced RH. These observations are consistent with environmental control rather than developmental control of the induction of CAM in mature M. crystallinum under non-saline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号