共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jeffrey K. Conner Scott Rush Suzanne Kercher Peter Jennetten 《Evolution; international journal of organic evolution》1996,50(3):1137-1146
It has often been suggested that selection on floral traits in hermaphroditic plants should occur primarily through differences in male fitness. However, measurements of selection on floral traits through differences in lifetime male fitness have been lacking. We measured selection on a variety of wild radish floral traits using lifetime male fitness measures derived from genetic paternity analysis. These male fitness estimates were then combined with estimates of lifetime female fitness of the same plants to produce measurements of selection based on lifetime total fitness. Contrary to the prediction above, there was no strong evidence for selection on floral morphology through male fitness differences in any of the three years of the study, but there was strong selection for increased flower size through female fitness differences in one year. The main determinant of both male and female fitness in all years was flower number; this lead to moderately positive correlations between male and female fitness in all three years. 相似文献
3.
Wolf U. Blanckenhorn Max Reuter Paul I. Ward Andrew D. Barbour 《Evolution; international journal of organic evolution》1999,53(1):286-291
We show with a simulation that nonrepresentative sampling of two discrete fitness classes leads to biased estimates of selection. Systematic underestimation occurs if the selected class is overrepresented in the sample and overestimation if the unselected class is overrepresented. The bias is greater the stronger the selection intensity, the smaller the true fraction of individuals favored by selected, and the lower the sample size. We present a simple method that allows a posteriori statistical correction in cases of biased sampling given a separate estimate of the actual class representation, describe its practical implementation, and show that it works. 相似文献
4.
Jeffrey K. Conner Scott Rush Peter Jennetten 《Evolution; international journal of organic evolution》1996,50(3):1127-1136
Although the role of natural selection in the evolution of floral traits has been of great interest to biologists since Darwin, studies of selection on floral traits through differences in lifetime fitness have been rare. We measured selection acting on flower number, flower size, stigma exsertion, and ovule number per flower using field data on lifetime female fitness (seed production) in wild radish, Raphanus raphanistrum. The patterns of selection were reasonably consistent across three field seasons, with strong directional selection for increased flower production in all three years, weaker selection for increased ovule number per flower in two years, and selection for increased flower size in one year. The causes of the selection were investigated using path analysis combined with multiplicative fitness components. Increased flower production increased fruit production directly, and increased numbers of ovules per flower increased the number of seeds per fruit in all three years; pollinator visitation did not influence either of these fitness components. Increased flower size was associated with increases in both the number of fruit and the number of seeds per fruit in one year, with the latter relationship being stronger. Total lifetime seed production was affected more strongly by differences in fruit production than by differences in either the number of seeds per fruit or the proportion of fertilized seeds that were viable, but all three fitness components were positively correlated with total seed production. 相似文献
5.
Stephen C. Stearns Tadeusz J. Kawecki 《Evolution; international journal of organic evolution》1994,48(5):1438-1450
Canalization is an abstract term that describes unknown developmental mechanisms that reduce phenotypic variation. A trait can be canalized against environmental perturbations (e.g., changes in temperature or nutrient quality), or genetic perturbations (e.g., mutations or recombination); this paper is about genetic canalization. Stabilizing selection should improve the canalization of traits, and the degree of canalization should be positively correlated with the traits' impact on fitness. Experiments testing this idea should measure the canalization of a series of traits whose impact on fitness is known or can be inferred, exclude differences among traits in the number of loci and alleles segregating as an explanation for the pattern of variability found, and distinguish between canalization against genetic and environmental variation. These conditions were met by three experiments within which the variation of fitness components among Drosophila melanogaster lines was measured and among which the genetic contribution to the variation among lines was clearly different. The canalization of the traits increased with their impact on fitness and did not depend on the degree of genetic differences among lines. That the flies used had been transformed by a P-element insert suggests that canalization was also effective against novel genetic variation. The results reported here cannot be explained by the classical hypothesis of reduction in the number of loci segregating for traits with greater impact on fitness and confirm that traits with greater impact on fitness are more strongly canalized. This pattern of canalization reveals an underappreciated role for development in microevolution. There is differential genetic canalization of fitness components in D. melanogaster. 相似文献
6.
Victoria Ávila Andrés Pérez‐Figueroa Armando Caballero William G. Hill Aurora García‐Dorado Carlos López‐Fanjul 《Evolution; international journal of organic evolution》2014,68(7):1974-1987
For a quantitative trait under stabilizing selection, the effect of epistasis on its genetic architecture and on the changes of genetic variance caused by bottlenecking were investigated using theory and simulation. Assuming empirical estimates of the rate and effects of mutations and the intensity of selection, we assessed the impact of two‐locus epistasis (synergistic/antagonistic) among linked or unlinked loci on the distribution of effects and frequencies of segregating loci in populations at the mutation‐selection‐drift balance. Strong pervasive epistasis did not modify substantially the genetic properties of the trait and, therefore, the most likely explanation for the low amount of variation usually accounted by the loci detected in genome‐wide association analyses is that many causal loci will pass undetected. We investigated the impact of epistasis on the changes in genetic variance components when large populations were subjected to successive bottlenecks of different sizes, considering the action of genetic drift, operating singly (D), or jointly with mutation (MD) and selection (MSD). An initial increase of the different components of the genetic variance, as well as a dramatic acceleration of the between‐line divergence, were always associated with synergistic epistasis but were strongly constrained by selection. 相似文献
7.
Michael B. Morrissey 《Evolution; international journal of organic evolution》2014,68(6):1748-1761
When traits cause variation in fitness, the distribution of phenotype, weighted by fitness, necessarily changes. The degree to which traits cause fitness variation is therefore of central importance to evolutionary biology. Multivariate selection gradients are the main quantity used to describe components of trait‐fitness covariation, but they quantify the direct effects of traits on (relative) fitness, which are not necessarily the total effects of traits on fitness. Despite considerable use in evolutionary ecology, path analytic characterizations of the total effects of traits on fitness have not been formally incorporated into quantitative genetic theory. By formally defining “extended” selection gradients, which are the total effects of traits on fitness, as opposed to the existing definition of selection gradients, a more intuitive scheme for characterizing selection is obtained. Extended selection gradients are distinct quantities, differing from the standard definition of selection gradients not only in the statistical means by which they may be assessed and the assumptions required for their estimation from observational data, but also in their fundamental biological meaning. Like direct selection gradients, extended selection gradients can be combined with genetic inference of multivariate phenotypic variation to provide quantitative prediction of microevolutionary trajectories. 相似文献
8.
9.
John K. Kelly 《Evolution; international journal of organic evolution》1999,53(2):350-357
The structured linear model (SLM) is generalized to treat selection on multiple, correlated characters. Four different causes of phenotypic correlations are distinguished by the SLM: environmental covariance, identity disequilibrium, pleiotropy, and linkage disequilibrium. Each is characterized by distinct variables because they have different implications for character evolution. Correlations due to identity disequilibrium and linkage disequilibrium depend on both the mating system and the selection regime. As a consequence, they will evolve rapidly under selection. Correlations due to pleiotropy or environmental factors will evolve more slowly and are characterized by parameters that can be estimated from comparisons among relatives. These parameters include several novel “inbreeding covariance components” that emerge from the interaction of inbreeding and genetic dominance. Although data are limited, current estimates suggest that the expression of these components may substantially alter the pattern of multitrait evolution in self-fertilizing populations. 相似文献
10.
Susan A. Dudley 《Evolution; international journal of organic evolution》1996,50(1):103-110
Understanding adaptive evolution to differing environments requires studies of genetic variances, of natural selection, and of the genetic differentiation between populations. Plant physiological traits such as leaf size and water-use efficiency (the ratio of carbon gained per water lost) have been suggested by physiological plant ecologists to be important in local adaptation to environments differing in water availability. In this study, I raised families of Cakile edentula var lacustris derived from a wet-site population and a dry-site population in a common greenhouse environment to determine the degree of genetic differentiation between the two populations and the genetic architecture of the traits. The dry-site population had significantly smaller leaf size and significantly greater water-use efficiency than the wet-site population. I used a retrospective selection analysis to compare long-term selection inferred from these results to measures of phenotypic selection from a field experiment. Both direct measures in the field and the retrospective selection gradients were consistent with the hypothesis that greater water-use efficiency and smaller leaves were adaptive in drier environments. Though the correlation between population means for water-use efficiency and leaf size was negative, the genetic correlation within populations between water-use efficiency and leaf size was positive and thus would be expected to constrain the evolutionary response to selection. 相似文献
11.
Susan J. Mazer Vronique A. Delesalle Paul R. Neal 《Evolution; international journal of organic evolution》1999,53(3):717-731
Two widespread assumptions underlie theoretical models of the evolution of sex allocation in hermaphroditic species: (1) resource allocations to male and female function are heritable; and (2) there is an intrinsic, genetically based negative correlation between male and female reproductive function. These assumptions have not been adequately tested in wild species, although a few studies have detected either genetic variation in pollen and ovule production per flower or evidence of trade-offs between male and female investment at the whole plant level. It may also be argued, however, that in highly autogamous, perfect-flowered plant taxa that exhibit genetic variation in gamete production, strong stabilizing selection for an efficient pollen:ovule ratio should result in a positive correlation among genotypes with respect to mean ovule and mean pollen production per flower. Here we report the results of a three-generation artificial selection experiment conducted on a greenhouse population of the autogamous annual plant Spergularia marina. Starting with a base population of 1200 individuals, we conducted intense mass selection for two generations, creating four selected lines (high and low ovule production per flower; high and low anther production per flower) and a control line. By examining the direct and correlated responses of several floral traits to selection on gamete production per flower, we evaluated the expectations that primary sexual investment would exhibit heritable variation and that resource-sharing, variation in resource-garnering ability, or developmental constraints mold the genetic correlations expressed among floral organs. The observed direct and correlated responses to selection on male and female gamete production revealed significant heritabilities of both ovule and anther production per flower and a significant negative genetic correlation between them. When plants were selected for increased ovules per flower over two generations, ovule production increased and anther production declined relative to the control line. Among plants selected for decreased anthers per flower, we observed a decline in anther production and an increase in ovule production relative to the control line. In contrast, the lines selected for low ovules per flower and for high anthers per flower exhibited no evidence for significant genetic correlations between male and female primary investment. Correlated responses to selection also indicate a genetically based negative correlation between the production of normal versus developmentally abnormal anthers (staminoid organs); a positive correlation between the production of ovules versus staminoid organs; and a positive correlation between the production of anthers and petals. The negative relationship between male versus female primary investment supports classical sex allocation theory, although the asymmetrical correlated responses to selection indicate that this relationship is not always expressed. 相似文献
12.
Beate Nürnberger Nick Barton Catriona MacCallum Jason Gilchrist Michael Appleby 《Evolution; international journal of organic evolution》1995,49(6):1224-1238
Observations on the means, variances, and covariances of quantitative traits across hybrid zones can give information similar to that from Mendelian markers. In addition, they can identify particular traits through which the cline is maintained. We describe a survey of six traits across the hybrid zone between Bombina bombina and Bombina variegata (Amphibia: Discoglossidae) near Pe??enica in Croatia. We obtained laboratory measuments of the belly pattern, skin thickness, mating call, skeletal form, egg size, and the developmental time of tadpoles. Although offspring from hybrid populations showed no evidence of reduced viability, a third of the F1 families failed completely, irrespective of the direction of the cross. All traits differed significantly between the taxa. Clines in belly pattern, skin thickness, mating call, and skeletal form were closely concordant with clines in four diagnostic enzyme loci. However, the cline in developmental time was displaced towards bombina, and the cline in egg size was displaced towards variegata. This discordance could be because the traits are not inherited additively or because they are subject to different selection pressures. We favor the latter explanation in the case of developmental time. We show that moderate selection acting directly on a trait suffices to shift its position; rather stronger selection is needed to change its width appreciably. Within hybrid populations, there are significant associations among quantitative traits, and between traits and enzymes. Phenotypic variances also increase in hybrid populations. These observations can be explained by linkage disequilibria among the underlying loci. However, the average magnitude of the covariance between traits is about half that expected from the linkage disequilibria between enzyme loci. The discrepancy is not readily explained by nonadditive gene action. This puzzle is now unresolved and calls for further investigation. 相似文献
13.
Akira Sasaki Stephen Ellner 《Evolution; international journal of organic evolution》1997,51(3):682-696
The quantitative genetic variance-covariance that can be maintained in a random environment is studied, assuming overlapping generations and Gaussian stabilizing selection with a fluctuating optimum. The phenotype of an individual is assumed to be determined by additive contributions from each locus on paternal and maternal gametes (i.e., no epistasis and no dominance). Recurrent mutation is ignored, but linkage between loci is arbitrary. The genotype distribution in the evolutionarily stable population is generically discrete: only a finite number of polymorphic alleles with distinctly different effects are maintained, even though we allow a continuum of alleles with arbitrary phenotypic contributions to invade. Fluctuating selection maintains nonzero genetic variance in the evolutionarily stable population if the environmental heterogeneity is larger than a certain threshold. Explicit asymptotic expressions for the standing variance-covariance components are derived for the population near the threshold, or for large generational overlap, as a function of environmental variability and genetic parameters (i.e., number of loci, recombination rate, etc.), using the fact that the genotype distribution is discrete. Above the threshold, the population maintains considerable genetic variance in the form of positive linkage disequilibrium and positive gamete covariance (Hardy-Weinberg disequilibrium) as well as allelic variance. The relative proportion of these disequilibrium variances in the total genetic variance increases with the environmental variability. 相似文献
14.
Richard J. Reynolds Michele R. Dudash Charles B. Fenster 《Evolution; international journal of organic evolution》2010,64(2):358-369
Pollination syndromes suggest that convergent evolution of floral traits and trait combinations reflects similar selection pressures. Accordingly, a pattern of selection on floral traits is expected to be consistent with increasing the attraction and pollen transfer of the important pollinator. We measured individual variation in six floral traits and yearly and lifetime total plant seed and fruit production of 758 plants across nine years of study in natural populations of Ruby-Throated Hummingbird-pollinated Silene virginica. The type, strength, and direction of selection gradients were observed by year, and for two cohorts selection was estimated through lifetime maternal fitness. Positive directional selection was detected on floral display height in all years of study and stigma exsertion in all years but one. Significant quadratic and correlational selection gradients were rare. However, a canonical analysis of the gamma matrix indicated nonlinear selection was common; if significant curvature was detected it was convex with one exception. Our analyses demonstrated selection favored trait combinations and the integration of floral features of attraction and pollen transfer efficiency that were consistent with the hummingbird pollination syndrome. 相似文献
15.
16.
Richard F. Preziosi William E. Snyder Christopher P. Grill Allen J. Moore 《Evolution; international journal of organic evolution》1999,53(4):1312-1318
Phenotypic manipulation (or phenotypic engineering) that alters trait distributions provides a way to increase the statistical power of detecting relationships between traits and fitness. Manipulations relying on plastic responses, however, assume a specific relationship between the perturbation and the alteration of the traits when multiple traits are involved. We measured several traits, including condition measured as fluctuating asymmetry, in the ladybird beetle Harmonia axyridis under six different diets to examine how altered environments affected multiple traits and their distributions. Although diet affected fluctuating asymmetry, we found no consistent relationship between degree of asymmetry and other phenotypic measures. As expected, individual traits were altered by our treatments. Contrary to expectation, relationships among traits were not constant among diets. Our results suggest that assumptions about the relationship between condition and trait values, especially fluctuating asymmetry, cannot be made. Further, studies that use manipulated phenotypes to statistically determine the form of selection must first demonstrate that the pattern of the phenotypic correlation matrix is not itself altered by the manipulation. If the phenotypic correlation matrix is not constant, then experimental estimates of selection coefficients may not reflect selection that occurs in the wild. 相似文献
17.
Leonard Nunney 《Evolution; international journal of organic evolution》1996,50(3):1193-1204
A selection experiment using Drosophila melanogaster revealed a strong trade-off between adult weight and larval development time (LDT), supporting the view that antagonistic pleiotropy for these two fitness traits determines mean adult size. Two experimental lines of flies were selected for a shorter LDT (measured from egg laying to pupation). After 15 generations LDT was reduced by an average of 7.9%. The response appeared to be controlled primarily by autosomal loci. A correlated response to the selection was a reduction in adult dry weight: individuals from the selected populations were on average 15.1% lighter than the controls. The lighter females of the selected lines showed a 35% drop in fecundity, but no change in longevity. Thus, there is no direct relationship between LDT and adult longevity. The genetic correlation between weight and LDT, as measured from their joint response to selection, was 0.86. Although there was weak evidence for dominance in LDT, there was none for weight, making it unlikely that selection acting on this antagonistic pleiotropy could lead to a stable polymorphism. In all lines, sex differences in weight violated expectations based on intrasex genetic correlations: Females, being larger than males, ought to require a longer LDT, whereas there was a slight trend in the opposite direction. Because the sexual dimorphism in size was not significantly altered by selection, it appears that the controlling loci are either invariant or have very limited pleiotropic effect on developmental time. It is suggested that they probably control some intrinsic, energy-intensive developmental process in males. 相似文献
18.
Michael J. Wade Stephen M. Shuster Lori Stevens 《Evolution; international journal of organic evolution》1996,50(2):723-733
We report our studies of the effect of inbreeding on the response to selection for increased pupal weight in the flour beetle, Tribolium castaneum. We also report the effects of inbreeding and selection for pupal weight on the heritable variation in fitness and fitness components. We created replicate and independent inbred lines with F-values of 0.00, 0.375, and 0.672, by 0, 2, and 5 generations, respectively, of brother-sister mating of adult beetles from an outbred stock population. Subsequently, we imposed artificial within-family selection for increased pupal weight in each of 15 inbred lines for eight generations; each line had its own paired, unselected control. We compared the response to selection across the three levels of inbreeding with theoretical expectation, and investigated the effects of inbreeding and selection on fitness variation among families within all 30 selected and control lines. Among-line variation in pupal weight increased with increased inbreeding prior to selection but diminished with directional selection. Inbreeding reduced the realized heritability of pupal weight concordant with quantitative predictions of additive theory. Mean fitness, measured in several ways, declined with inbreeding and declined further with selection. In contrast, the genetic variation for fitness in the inbred and selected lines lines equalled or exceeded that of the outbred controls. Our results suggest that inbreeding and selection may affect traits in different ways depending on the relative amounts of additive and nonadditive genetic variation. 相似文献
19.
Hugh B. Britten 《Evolution; international journal of organic evolution》1996,50(6):2158-2164
Meta-analyses of published correlation coefficients between multilocus heterozygosity (MLH) and two fitness surrogates, growth rate and fluctuating asymmetry, suggested that the strength of these correlations are generally weak. A variety of plants and animals was included in the meta-analyses. A statistically homogeneous group of MLH–growth rate correlation coefficients that included both plants and animals yielded a common correlation of rz = 0.133. A common correlation of rz = –0.170 was estimated for correlations between MLH and fluctuating asymmetry in three species of salmonid fishes. These results suggest that selection, including overdominance, has at most a weak effect at allozyme loci and cast some doubt on the widely held notion that heterozygosity and individual fitness are strongly correlated. 相似文献
20.
Stephen F. Chenoweth Mark. W. Blows 《Evolution; international journal of organic evolution》2008,62(6):1437-1449
The Q ST – F ST comparison has become an increasingly common method for inferring adaptive quantitative trait divergence among populations. For cases in which there is divergence in multiple traits, most studies have applied the method by performing multiple univariate Q ST – F ST comparisons. However, because traits are often genetically correlated, such univariate analyses are likely to paint a simplified picture of adaptive divergence. Here we show how the multivariate analogue of Q ST , FSTq , which accounts for genetic correlations among traits, can be used to supply a more detailed picture of multitrait divergence. We apply the method to naturally occurring genetic variation for a suite of sexually selected display traits in Drosophila serrata . The analyses suggest the operation of divergent multivariate selection that has influenced multiple independent axes of genetic variance in a sex-specific manner. Finally, we show how a comparison of the components of FSTq , the average within and among population genetic variance–covariance matrices, GW and GB , can be used as an additional test of the null expectation of neutral divergence, and allows for an investigation of whether natural populations have diverged along major or minor axes of genetic variance. 相似文献