首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of absorption and scattering of light by pure cultures of some New Zealand freshwater phytoplankters have been made with a spectrophotometer. An integrating sphere accessory was used to capture most of the light scattered by an algal cell suspension and thus give an indication of the true absorption coefficient, with only a small correction required for residual scattering. The purpose of this study was to investigate the factors affecting the relationships of chlorophyll-a concentration to absorption and scattering by a diverse selection of algae. Qualitative differences in absorption spectra of the different phytoplankton studied here can be related to differences in pigment composition. Quantitative differences in the specific absorption coefficients (absorption coefficient divided by Chl-a concentration) at the Chl-a red peak (676 nm in vivo) are explained in terms of different extents of packaging of pigment in cells or cell aggregates in the different cultures. Qualitative differences in scattering spectra are explained in terms of optical size of the particulates comprising the pure cultures. The green and diatom cultures displayed a complex-shaped but non-trending scattering spectrum with minima (troughs) in scattering associated with maxima (peaks) in absorption. The blue-green cultures behaved as optically small particles and displayed a pattern of decreasing scattering with increasing wavelength. Quantitative differences in specific scattering coefficients (scattering coefficient divided by Chl-a concentration) were related mainly to differences in the effective ratio of surface areas to Chl-a content of scattering centres in the different cultures. Overall, however, the specific absorption and scattering coefficients at any given wavelength were less variable between cultures than expected suggesting that the common assumption that absorption and scattering by the algal component of a lake water depends only on the Chl-a concentration may be a justifiable first approximation in field studies.  相似文献   

2.
Light absorption was quantified in the following systems: isolated chloroplasts and leaves of spinach (Spinacea oleracea L.), a mutant of geranium (Pelargonium zonale L.) widely differing in pigment content, and coleus (Coleus blumei Benth.) at different stages of leaf ontogenesis. For these species and pea (Pisum sativum L.), scattering-compensated absorption spectra of chloroplast suspensions are presented. Comparison of leaf and chloroplast spectra showed considerable changes in the extent of the ‘package’ effect and the lengthening of the effective optical path in a leaf. The difference between leaf and isolated chloroplast absorption could be quantitatively described by adapting Duysens’s treatment of flattening. It was found that the accumulation of chlorophyll in leaves is accompanied by a monotonous enhancement of the package effect. The results are discussed with special reference to the role of light scattering in leaf optics, light utilization in photosynthesis and wavelength-dependent light gradients in a leaf.  相似文献   

3.

The work shows the ability of cultured Basidiomycetes of different taxonomic groups—Lentinus edodes, Pleurotus ostreatus, Ganoderma lucidum, and Grifola frondosa—to recover gold, silver, selenium, and silicon, to elemental state with nanoparticles formation. It examines the effect of these metal and metalloid compounds on the parameters of growth and accumulation of biomass; the optimal cultivation conditions and concentrations of the studied ion-containing compounds for recovery of nanoparticles have been identified. Using the techniques of transmission electron microscopy, dynamic light scattering, X-ray fluorescence and X-ray phase analysis, the degrees of oxidation of the bioreduced elements, the ζ-potential of colloidal solutions uniformity, size, shape, and location of the nanoparticles in the culture fluid, as well as on the surface and the inside of filamentous hyphae have been determined. The study has found the part played by homogeneous chromatographically pure fungal phenol-oxidizing enzymes (laccases, tyrosinases, and Mn-peroxidases) in the recovery mechanism with formation of electrostatically stabilized colloidal solutions. A hypothetical mechanism of gold(III) reduction from HAuCl4 to gold(0) by phenol oxidases with gold nanoparticles formation of different shapes and sizes has been introduced.

  相似文献   

4.
Light scattering, backscattering, and absorption coefficients of particles were observed at 62 locations in Lake Taihu (China) in November 2008. A method using a priori knowledge and the measured data was proposed to partition particulate scattering and absorption into contributions of phytoplankton and non-algal particles. The results showed that phytoplankton weakly contributed to the particulate scattering and backscattering with the mean b ph/b p values usually below 10% and b bph/b bt values of 0.3–3.9% in the whole visible light spectrum, and an approximate relationship of b bt ≈ b bp ≈ b bnap was regarded as reasonable in Lake Taihu. In contrast with scattering and backscattering, phytoplankton made more contributions to the particulate absorption with the mean a ph/a p values varying in a wide range of about 20–70%. Both the scattering and absorption spectra of non-algal particles can be modeled well by corresponding methods. A power function model was used to simulate the scattering spectra, which presented high predictive accuracies with MAPE values usually below 5% and RMSE values below 1.5 m−1, while the spectral absorption model also performed well with mean S nap being 0.0052 nm−1 (standard deviation, SD = 0.0010 nm−1). As to the phytoplankton absorption, a quadratic function model used was considered to have a good performance with corresponding parameters being supported at each wavelength in the spectral range of 400–700 nm. Additionally, two basic bio-optical parameters were determined, that is, b nap*(550) = 0.604 m2 g−1 and a ph*(675) = 0.0288 m2 mg−1. Overall, these results obtained in the present study supply us with new knowledge about optical properties of suspended particulates in an inland and highly turbid lake (Lake Taihu), which are beneficial to the development of analytical models of water color remote sensing.  相似文献   

5.
Yorinao Inoue  Kazuo Shibata 《Planta》1973,114(4):341-358
Summary A new combination technique of using both dual-wavelength and opalglas methods for scanning translucent biological samples was applied to leaves of terrestrial plants in order to observe their absorption changes by irradiation and the action spectra for the absorption changes. The measurements of true absorption, free from various effects of scattering, by this technique showed an increase of absorption by weak blue light and a decrease of absorption by strong blue light for almost all of the leaves of 20 plant species examined. These weak- and strong-light responses in absorption were reversible. The fractional increase and decrease of absorbance at 678 nm by weak and strong light were highest, +20% and -31%, for leaves of Begonia semperflorens Link et Otto, and +12% and -13% for leaves of foxtail, Setaria viridis (L.) Beauv., the species examined in further experiments. The response to strong light proceeded to completion earlier than did that to weak light. The strong-light response could be observed separately from the weak-light response by using a leaf pre-irradiated with weak blue light. The responses were measured as a function of light intensity by scanning a single leaf irradiated locally at different intensities, and the action spectra for these responses were measured by scanning a leaf irradiated locally at different wavelengths but at identical intensities. The action spectra for these opposite responses were similar, and showed a band at 450 nm with shoulders but no band in the red region. Microscopic observations of chloroplasts in leaves during irradiation indicated that these changes in absorption are mostly due to rearrangements of chloroplasts in cells caused by irradiation.  相似文献   

6.
Photosynthesis is inhibited by heat stress. This inhibition is rapidly reversible when heat stress is moderate but irreversible at higher temperature. Absorbance changes can be used to detect a variety of biophysical parameters in intact leaves. We found that moderate heat stress caused a large reduction of the apparent absorbance of green light in light-adapted, intact Arabidopsis thaliana leaves. Three mechanisms that can affect green light absorbance of leaves, namely, zeaxanthin accumulation (absorbance peak at 505 nm), the electrochromic shift (ECS) of carotenoid absorption spectra (peak at 518 nm), and light scattering (peak at 535 nm) were investigated. The change of green light absorbance caused by heat treatment was not caused by changes of zeaxanthin content nor by the ECS. The formation of non-photochemical quenching (NPQ), chloroplast movements, and chloroplast swelling and shrinkage can all affect light scattering inside leaves. The formation of NPQ under high temperature was not well correlated with the heat-induced absorbance change, and light microscopy revealed no appreciable changes of chloroplast location because of heat treatment. Transmission electron microscopy results showed swollen chloroplasts and increased number of plastoglobules in heat-treated leaves, indicating that the structural changes of chloroplasts and thylakoids are significant results of moderate heat stress and may explain the reduced apparent absorbance of green light under moderately high temperature.  相似文献   

7.
何文  余玲  姚月锋 《广西植物》2022,42(6):914-926
为了探讨适合于喀斯特植物叶片叶绿素含量估算的光谱指数,在总结以往基于光谱指数的植物生化参数估算研究基础上发现,常用光谱指数通常采用差值、比值、归一化以及倒数差值方式来构建。因此,我们通过上述4种光谱指数构建方式对所采集的4种典型喀斯特植物——黄荆(Vitex negundo)、盐麸木(Rhus chinensis)、朴树(Celtis sinensis)和红背山麻杆(Alchornea trewioides)叶片原始光谱反射率及其一阶导数值与同步测定的叶片叶绿素含量进行遍历分析,以期获得最优光谱指数并将其应用于喀斯特植物叶片叶绿素含量定量估算研究。结果表明:(1)常用光谱指数中,改良红边归一化指数(modified red-edge normalized difference vegetation index, mND705)对喀斯特植物叶片叶绿素含量估算效果较好(决定系数为0.45,均方根误差为0.26 mg·g-1)。(2)虽然荧光比值(fluorescence ratio index, FRI1)和叶绿素吸收面积光谱指数(chlorophyll absorp...  相似文献   

8.
Liposomes have frequently been used as models of biomembranes or vehicles for drug delivery. However, the systematic characterization of lipid vesicles by right angle light scattering and turbidity has not been carried out despite the usefulness of such studies for size estimation. In this study, liposomes of various sizes were prepared by sonication and extrusion. The mean cumulant radii of the vesicles were determined by dynamic light scattering. The lamellarities were estimated based on fluorescence quenching of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)dipalmitoyl-L-alpha-phosph ati dylethanolamine by sodium dithionite. Right angle light scattering intensity and optical density at 436 nm per unit lipid concentration were measured as a function of vesicle radius. With a vesicle radius < or =100 nm, the optical parameters could be well explained by the Rayleigh-Gans-Debye theory in which the liposomes were modeled as homogeneous spheres with mean refractive indices determined by the volume fractions of lipids in vesicles.  相似文献   

9.
Light absorption by phytoplankton is both species specific and affected by photoacclimational status. To estimate oxygenic photosynthesis from pulse‐amplitude‐modulated (PAM) fluorescence, the amount of quanta absorbed by PSII needs to be quantified. We present here three different biooptical approaches to estimate the fraction of light absorbed by PSII: (1) the factor 0.5, which implies that absorbed light is equally distributed among PSI and PSII; (2) the fraction of chl a in PSII, determined as the ratio between the scaled red‐peak fluorescence excitation and the red absorption peak; and (3) the measure of light absorbed by PSII, determined from the scaling of the fluorescence excitation spectra to the absorption spectra by the “no‐overshoot” procedure. Three marine phytoplankton species were used as test organisms: Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum cf. patelliferum (J. C. Green, D. J. Hibberd et Pienaar) A. Larsen (Haptophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae). Photosynthesis versus irradiance (P vs. E) parameters calculated using the three approaches were compared with P versus E parameters obtained from simultaneously measured rates of oxygen production. Generally, approach 1 underestimated, while approach 2 overestimated the gross O2‐production rate calculated from PAM fluorescence. Approach 3, in principle the best approach to estimate quanta absorbed by PSII, was also superior according to observations. Hence, we recommend approach 3 for estimation of gross O2‐production rates based on PAM fluorescence measurements.  相似文献   

10.
For investigation of the influence of reactive oxygen species on biological systems, the peculiarities of light scattering and fluorescence spectra of aqueous solutions in the presence of photoactive additions of acetone (from 5 × 10−4 to 30%) and anionic probe ANS (5 μg/L to 10 mg/L) have been considered. In water and diluted aqueous acetone and ANS solutions, long-term spontaneous variations in parameters of light scattering and fluorescence spectra have been detected. It has been found that the spectral parameters and the character of ANS influence changed drastically at acetone concentrations of ∼ 0.1%, (0.2–0.3)%, and ∼0.8%. The results can be explained by rearrangement of solvent structure in the surroundings of admixture molecules, photochemical processes with the participation of acetone and reactive oxygen species, as well secondary reactions with their involvement in gas-vapor and acetone bubbles.  相似文献   

11.
We present a simple approach for the calculation of in vivo fluorescence excitation spectra from measured absorbance spectra of the isolated pigments involved. Taking into account shading of the pigments by each other, energy transfer from carotene to chlorophyll a, and light scattering by the leaf tissue, we arrive at a model function with 6 free parameters. Fitting them to the measured fluorescence excitation spectrum yields good correspondence between theory and experiment, and parameter estimates which agree with independent measurements. The results are discussed with respect to the origin and the interpretation of in vivo excitation spectra in general.  相似文献   

12.
Studies of the impact of inorganic phosphorus (Pi), an important nutrient, on the growth and physiological parameters of single-celled algae are important for investigations of the dynamics of phytoplankton abundance and productivity in natural ecosystems as well as in industrial systems for the cultivation of microalgae. Difficulties in carrying out such studies are associated with the complex kinetics of Pi uptake by cells and the ability of microalgae to store phosphorus in their cells. This situation necessitates efficient methods for express monitoring of microalgal cultures, such as the methods based on the registration of optical properties of cells, in particular absorption and scattering of light and fluorescence of chlorophyll contained in the cells. Here, the results of monitoring the cultures of the chlorophyte Chlorella vulgaris IPPAS C-1 starving for phosphorus are described. It was found that both optical (light absorption in the bands of the key pigments—chlorophylls and carotenoids) and luminescent (variable fluorescence of chlorophyll) parameters closely reflect the culture condition. Registration of optical properties required correction for the contribution of light scattering to the overall extinction of light by microalgal cell suspensions. At the same time, the light scattering signal is an accurate measure of the total number of suspended particles in the suspension. However, it is difficult to monitor cultures containing a significant amount of light-scattering particles lacking photosynthetic pigments (such as heterotrophic bacteria). For such cultures, the use of variable fluorescence- based parameter Fv/Fm reflecting the maximum photochemical efficiency of the photosystem II is advisable.  相似文献   

13.
INTRODUCTION: Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy–autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS: Brca1−/−; p53−/− mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS: Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS: This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.  相似文献   

14.
For infrared absorption measurements, the following five isotopic polyglycines have been prepared: ordinary polyglycine (—NHCH2CO—)n, N-deuterated polyglycine (—NDCH2CO—)n, C-deuterated polyglycine (—NHCD2CO—)n, completely deuterated polyglycine (—NDCD2CO—)n, and N15-substituted polyglycine (—15NHCH2CO—)n. Infrared spectra have been observed both in the I and II forms of each of these five isotopic polyglycines in the spectral region of 4000–300 cm.?1. On the basis of the comparison of these spectra with each other, a nearly complete set of assignments of the observed bands of polyglycines has been given.  相似文献   

15.
Planner  A.  Hara  M.  Stachowiak  Z.  Miyake  J. 《Photosynthetica》2000,38(2):251-258
The photosynthetic bacteria (Rhodospirillum rubrum, Synechococcus and Anabaena variabilis) as well as their fragments embedded in isotropic and anisotropic polymer film were investigated. The orientation of photosynthetic pigments inside these organisms was compared, on the basis of the polarised absorption and fluorescence spectra, with the macroscopic orientation of investigated objects seen under microscope. The anisotropy of fluorescence was much higher than anisotropy of absorption. It showed strong influence of the photoselection by polarised radiation on the various bacterial chromophores exhibiting different orientations in the cells and various yields of fluorescence. The dimensions of cells were investigated on the basis of their photographs and by the scattering of the monochromatic radiation.  相似文献   

16.
The optical scattering coefficient of a dilute, well-solubilized eumelanin solution has been accurately measured as a function of incident wavelength, and found to contribute <6% of the total optical attenuation between 210 and 325 nm. At longer wavelengths (325-800 nm), the scattering was less than the minimum sensitivity of our instrument. This indicates that ultraviolet and visible optical density spectra can be interpreted as true absorption with a high degree of confidence. The scattering coefficient versus wavelength was found to be consistent with Rayleigh theory for a particle radius of 38 +/- 1 nm. Our results shed important light on the role of melanins as photoprotectants.  相似文献   

17.
We report on the comprehension of novel europium activated hybrid organic Eu(dmh)3phen (Eu: europium, dmh: 2,6‐dimethyl‐3,5‐heptanedione, phen: 1,10 phenanthroline) organo‐metallic complexes, synthesized at different pH values by the solution technique. Photo physical properties of these complexes in various basic and acidic solvents were probed by UV–vis optical absorption and photoluminescence (PL) spectra. Minute differences in optical absorption peaks with variable optical densities were encountered with the variation in solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid) media, revealing bathochromic shift in the absorption peaks. The PL spectra of the complex in various acidic and basic organic solvents revealed the position of the emission peak at 613 nm irrespective of the changes in solvents whereas the excitation spectrum almost matched with that of the UV–vis absorption data. The optical density was found to be maximum for the complex with pH 7.0 whereas it gradually decreased when pH was lowered to 6.0 or raised to 8.0 at an interval of 0.5, demonstrating its pH sensitive nature. Several spectroscopic parameters related to probability of transition such as absorbance A(λ), Napierian absorption coefficient α(λ), molecular absorption cross‐section σ(λ), radiative lifetime (τ0) and oscillator strength (f) were calculated from UV–vis spectra. The relative intensity ratio (R‐ratio), calculated from the emission spectra was found to be almost the same in all the organic solvents. The optical energy gap, calculated for the designed complexes were found to be well in accordance with the ideal acceptance value of energy gap of the emissive materials used for fabrication of red organic light‐emitting diode (OLED). The relation between Stoke's shift and solvent polarity function was established by Lippert–Mataga plot. This remarkable independence of the electronic absorption spectra of Eu complexes on the nature of the solvent with unique emission wavelength furnishes its potential to serve as a red light emitter for solution processed OLEDs, display panels and solid‐state lighting.  相似文献   

18.
Resonance light scattering (RLS), a phenomenon of abrupt enhancement of Rayleigh light scattering in close proximity to an absorption band, is easily detectable in solutions of strongly absorbing chromophores, which form large aggregates with strong π-electronic coupling among the chromophores. RLS spectra need to be corrected for the sensitivity of the spectrofluorimeter as well as for the effects of internal light filter. A method for correcting the measured RLS is described. It was shown by the method that addition of KCl induces formation of extended supramolecular aggregates (probably of H-type) of the anionic dye merocyanine 540 in water. The RLS spectra of a photosensitizer m-tetra(hydroxyphenyl)chlorin (Foscan®) indicate formation of J-aggregates of this dye in aqueous medium.  相似文献   

19.
Micromonas pusilla (Butcher) Manton et Parke, a marine prasinophyte, was used to investigate how cell growth and division affect optical properties of phytoplankton over the light:dark cycle. Measurements were made of cell size and concentration, attenuation and absorption coefficients, flow cytometric forward and side light scattering and chl fluorescence, and chl and carbon content. The refractive index was derived from observations and Mie scattering theory. Diel variations occurred, with cells increasing in size, light scattering, and carbon content during daytime photosynthesis and decreasing during nighttime division. Cells averaged 1.6 μm in diameter and exhibited phased division, with 1.3 divisions per day. Scattering changes resulted primarily from changes in cell size and not refractive index; absorption changes were consistent with a negligible package effect. Measurements over the diel cycle suggest that in M. pusilla carbon‐specific attenuation varies with cell size, and this relationship appears to extend to other phytoplankton species. Because M. pusilla is one of the smallest eukaryotic phytoplankton and belongs to a common marine genus, these results will be useful for interpreting in situ light scattering variation. The relationship between forward light scattering (FLS) and volume over the diel cycle for M. pusilla was similar to that determined for a variety of phytoplankton species over a large size range. We propose a method to estimate cellular carbon content directly from FLS, which will improve our estimates of the contribution of different phytoplankton groups to productivity and total carbon content in the oceans.  相似文献   

20.
Circular dichroism and absorption and light scattering have been used to study the effect of ethyl alcohol on an aqueous solution of Amphotericin B (“Fungizone”), which is an antifungal heptene. In aqueous solution, light-scattering studies show that Amphotericin B exists in an aggregated form. The estimated mass of these aggregates is about 2 × 106 daltons, representing about 2000 molecules. Since the aggregated form is high molecular weight and scattering, the CD involves probably the differential scattering of right and left polarized light. In aqueous solution, Amphotericin B exhibits a strong dissymetric couplet in CD at the wavelength of the absorption maximum (328 nm). This latter maximum presents a blue shift when compared with the normal absorption in polar organic solvents. In hydroalcoholic solutions, for alcohol concentrations below 35%, the molecular weight of the aggregates is unchanged, while the absorption and CD spectra are modified. For alcohol concentrations greater than 35%, the aggregates mass decreases quickly and becomes undetectable at 50% ethyl alcohol concentration. For these solutions, the CD and absorption spectra are practically constant and characteristic of unaggregated Amphotericin B form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号