首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary goal of restoration is to create self‐sustaining ecological communities that are resilient to periodic disturbance. Currently, little is known about how restored communities respond to disturbance events such as fire and how this response compares to remnant vegetation. Following the 2003 fires in south‐eastern Australia we examined the post‐fire response of revegetation plantings and compared this to remnant vegetation. Ten burnt and 10 unburnt (control) sites were assessed for each of three types of vegetation (direct seeding revegetation, revegetation using nursery seedlings (tubestock) and remnant woodland). Sixty sampling sites were surveyed 6 months after fire to quantify the initial survival of mid‐ and overstorey plant species in each type of vegetation. Three and 5 years after fire all sites were resurveyed to assess vegetation structure, species diversity and vigour, as well as indicators of soil function. Overall, revegetation showed high (>60%) post‐fire survival, but this varied among species depending on regeneration strategy (obligate seeder or resprouter). The native ground cover, mid‐ and overstorey in both types of plantings showed rapid recovery of vegetation structure and cover within 3 years of fire. This recovery was similar to the burnt remnant woodlands. Non‐native (exotic) ground cover initially increased after fire, but was no different in burnt and unburnt sites 5 years after fire. Fire had no effect on species richness, but burnt direct seeding sites had reduced species diversity (Simpson's Diversity Index) while diversity was higher in burnt remnant woodlands. Indices of soil function in all types of vegetation had recovered to levels found in unburnt sites 5 years after fire. These results indicate that even young revegetation (stands <10 years old) showed substantial recovery from disturbance by fire. This suggests that revegetation can provide an important basis for restoring woodland communities in the fire‐prone Australian environment.  相似文献   

2.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

3.
Abstract. We studied the interactions between woody perennial species and native and non-native annual species in a number of vegetation types within a nature reserve in the Western Australian wheatbelt. In particular, we examined the responses of annuals to perennial canopy removal, fire, soil disturbance and nutrient additions, and the effects of removal of annuals on perennial seedling regeneration. Experimental shrub removal significantly increased the abundance of annuals in a dense shrubland dominated by Allocasuarina campestris, but had no effect in a more open species-rich sandplain heath. Soil disturbance and nutrient addition in the heath area had no significant influence on annual abundance until three years after treatment. Fire had no clear effect on annual abundance in the heath within the reserve, but promoted a large increase in non-native species within an adjacent roadverge. A pattern of increased soil nutrient levels was accompanied by greatly increased non-native annual abundance beneath individual trees of Santalum spicatum. Exploratory laboratory bioassay experiments indicated that several woody perennials produced leachates that were capable of reducing the germination or growth of the introduced grass Avena fatua, indicating that allelopathy may be an important component of the interaction between the annual and perennial components. Within a woodland community, fire temporarily reduced the abundance of annual species and increased the establishment of perennial seedlings. Field experiments showed that annuals significantly reduced the survival of seedlings of the shrub Allocasuarina campestris. Our results indicate that intact native vegetation canopies effectively prevent invasion by non-native annuals, and that regeneration by native perennials is likely to be inhibited by the presence of an abundant annual cover.  相似文献   

4.
Fire is known to facilitate the invasion of many non-native plant species, but how invasion into burnt areas varies along environmental gradients is not well-understood. We used two pre-existing data sets to analyse patterns of invasion by non-native plant species into burnt areas along gradients of topography, soil and vegetation structure in Yosemite National Park, California, USA. A total of 46 non-native species (all herbaceous) were recorded in the two data sets. They occurred in all seven of the major plant formations in the park, but were least common in subalpine and upper montane conifer forests. There was no significant difference in species richness or cover of non-natives between burnt and unburnt areas for either data set, and environmental gradients had a stronger effect on patterns of non-native species distribution, abundance and species composition than burning. Cover and species richness of non-natives had significant positive correlations with slope (steepness) and herbaceous cover, while species richness had significant negative correlations with elevation, the number of years post-burn, and cover of woody vegetation. Non-native species comprised a relatively minor component of the vegetation in both burnt and unburnt areas in Yosemite (percentage species = 4%, mean cover < 6.0%), and those species that did occur in burnt areas tended not to persist over time. The results indicate that in many western montane ecosystems, fire alone will not necessarily result in increased rates of invasion into burnt areas. However, it would be premature to conclude that non-native species could not affect post-fire succession patterns in these systems. Short fire-return intervals and high fire severity coupled with increased propagule pressure from areas used heavily by humans could still lead to high rates of invasion, establishment and spread even in highly protected areas such as Yosemite.  相似文献   

5.
Abstract Fire is a significant feature of Australia's savannas. Its use is being encouraged for cattle rangeland management, but there is little knowledge of the ecological effects of prescribed fire regimes on native biodiversity. The responses of ant communities to five experimental fire regimes over 2 years are reported from the Victoria River District in the semi‐arid tropics of northern Australia. The experiment was stratified at two levels: soil type (red and black) and fire treatment (unburnt; burnt twice in successive years in early (May) or late (October) dry season and unburnt thereafter; and burnt twice, 3 years apart, in early or late dry season). Ants were sampled twice in April, corresponding with the end of the 1997 and 1998 wet seasons. Ant species richness was not responsive to fire treatment, but reduced with time since fire on black soil. Total ant abundance also reduced with time since fire on the black soil, with significant different abundances in burnt versus unburnt plots in the 1998 sample. Soil type and sampling time had the greatest influence on ant community composition in multivariate analysis than did fire regime, although there were moderate gradients of time since fire with the black soil plots. The abundance of 19 species were significantly different between fire regimes in anova , 13 on red soil and six on black soil. The abundance of eight species (four each on red and black soil) changed significantly with time since fire, with seven promoted by burning. Ant functional group profiles changed little with fire. Total ant abundance and richness had significant relationships with key pasture species and vegetative variables. The responses of ants largely recapitulated those of plants, birds and reptiles on the same plots. It is envisaged that ants will have an important role to play in the sustainable management of Australia's rangelands aiding the off‐reserve conservation of biodiversity.  相似文献   

6.
Abstract Fire intensity measures the heat output of a fire, and variation in fire intensity has been shown to have many effects on the demography of plant species, although the consequent effects on the floristic composition of communities have rarely been quantified. The effects of variation in fire intensity on the floristic composition of dry sclerophyll vegetation with different fire histories near Sydney was estimated. In particular, differences in species abundance of woodland and shrubland communities subjected to four fire‐intensity classes: unburnt, low intensity (<500 kW m?1), medium intensity (500–2500 kW m?1) and high intensity (>2500 kW m?1) were examined. The samples had a standardized previous fire frequency and season, thus minimizing the effects of other aspects of the fire regime. There was a clear effect of fire intensity on the relative abundances of the vascular plant species, with increasing intensity of the fire producing vegetation that was increasingly different from the unburnt vegetation. This pattern was repeated in both the woodland and shrubland vegetation types, suggesting that it was not an artefact of the experimental conditions. However, the effects of fire intensity on floristic composition were no greater than were the differences between these two similar vegetation types, with variation in fire intensity accounting for only approximately 10% of the floristic variation. Nevertheless, the effects of fire intensity on the abundance of individual species were consistent across taxonomic groups, with the monocotyledon and Fabaceae species being more abundant at higher than lower intensities, the Proteaceae and Rutaceae more abundant at intermediate intensities, and the Epacridaceae more abundant at lower rather than higher intensities. The number of fire‐tolerant species increased with increasing fire intensity, and those fire‐tolerant species present were most abundant in the areas burnt with medium intensity. The number of fire‐sensitive species did not respond to fire intensity, and those species present were most abundant in the areas burnt with low intensity. This suggests that either fire‐sensitive species respond poorly to higher fire intensities or fire‐tolerant species respond poorly to lower fire intensities, perhaps because of differences in seed germination, seedling survival or competition among adults.  相似文献   

7.
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales.  相似文献   

8.
Species-rich native grasslands in western Victoria, Australia, are often small, have a high perimeter to area ratio and are surrounded by non-native species. Few non-native species, however, have invaded them. A feature of species-rich grasslands is the presence of a bryophyte mat (composed of mosses and liverworts) that carpets the intertussock spaces. I assessed the role of these mats in plant invasions by sowing three non-native species (Briza maxima, Hypochoeris radicata, Plantago lanceolata) in replicated disturbed (mats removed) and undisturbed (mats intact) microsites at three grassland remnants (two recently burnt, one unburnt for 3 years) and followed seedling emergence, survival and growth for 5 months. Three native species were also sown for comparison. The rate of germination and total percent germination of non-native species were significantly enhanced at both burnt sites when the mat was disturbed. The large-seeded Briza maxima failed to germinate at both burnt sites in the absence of soil disturbance. The native species generally did not show a strong germination or growth response to soil disturbance in burnt areas. At the unburnt site, where monthly percent soil moisture was highest, final percent germination of the non-native and native species was greatest of any site in both microsites, and germination was not significantly affected by soil disturbance. Differences in the seed morphology of native and non-native species may play an important role in their ability to establish on bryophyte mats in moisture-limiting environments. Any activity that disrupts the mats in the frequently burnt, species-rich grassland remnants is likely to significantly enhance the germination and subsequent growth by non-natives. However, where burning is infrequent, germination of some non-native species may be expected, regardless of disturbance, although growth will likely be favoured in disturbed areas.  相似文献   

9.
Grassy woodlands have been extensively cleared for agricultural land uses; land managers need to know whether restoration of biodiversity on such sites requires further interventions beyond simply stopping agricultural land use. Cumberland Plain Woodland occurs on shale‐derived soils in western Sydney; former Cumberland Plain Woodland sites can range from grasslands cleared for agricultural use to regenerated woodlands. An experiment was established in Scheyville National Park to determine what effect repeated burning would have in this system. Four blocks were established (three in grassy areas, one in woodland) and plots in each block were either burnt in 2001 and 2005 or left unburnt. Native plant species richness was initially lower in the grassy blocks than in the woodland, and this ranking remained on unburnt plots over time. The first fire increased species richness of both natives and exotics on the grassy blocks, with the largest increases observed for native and exotic forbs, and lesser increases for grasses (native only), gramminoids and shrubs. Native species richness changed very little with burning in the woodland. Fire effects on species richness were still apparent 3 years later on the grassy blocks; the difference between the grassy blocks and the woodland was not significant on burnt plots at this stage. Changes in native species richness were far less after the second fire on the grassy blocks, with grasses and gramminoids showing increases; native species richness remained higher in the burnt treatment. The first fire reduced the initial differences in native species richness between the grassy blocks and the woodland, and the second fire maintained the benefit through time. Fire also increased exotic species richness; the proportion of total species as natives was not altered by the two fires. On unburnt grassy plots, native species richness and prior cumulative rainfall were positively related; a decline in native species richness on unburnt plots corresponded to increasingly drier conditions over the study.  相似文献   

10.
Summary Assessment of the conservation significance of a species at a particular site involves estimating the population size. Generally this is based on a single survey. However, where plant species vary greatly in abundance in response to disturbance regimes, there will be uncertainty associated with the use of single estimates of abundance. The interpretation of such estimates is dependent on an understanding of the ecology of the species and the disturbance regimes that impact on it. We examined the usefulness of abundance estimates in the endangered shrub Grevillea caleyi (a fire‐sensitive shrub with a persistent soil seed bank) from south‐eastern Australia, where fire is a major landscape disturbance. Comparisons of estimates of abundance before and after fire showed very large changes in the number of plants of G. caleyi above ground. Changes in abundance of over two orders of magnitude were observed. The longer the site was left unburnt, the greater the magnitude of change in abundance after the next fire. Above‐ground plants may be rare or absent at sites unburnt for over 15–20 years, but were abundant after fire, due to re‐establishment from the soil seed bank. Sites burnt by two fires in quick succession showed declines in population abundance, most likely due to the soil seed bank not being replenished between such short interval fires. Assessments of the conservation significance of remnant sites of G. caleyi and similar species based on a single sample of above‐ground plant abundance at one time are considered inappropriate. The amount of available habitat for G. caleyi, either as area of occupancy or preferably extent of available habitat, was a moderate predictor of the likely magnitude of abundance in the species after fire. However, the usefulness of these measures for species whose biology is comparable to Grevillea caleyi, will be limited due to factors relating to the degree of species‐specific habitat requirements, local site fire history and the impact of any one fire on resultant post‐fire germination levels. Any assessment of conservation significance will require the interpretation of available information in relation to the ecology of a species.  相似文献   

11.
Human‐induced changes to fire regimes result in smaller, more patchy fires in many peri‐urban areas, with a concomitant increase in potential edge effects. In sclerophyll vegetation, many structurally dominant serotinous plants rely on the immediate post‐fire environment for recruitment. However, there is little information about how fire attributes affect seed predation or recruitment for these species. We examined the influence of distance to unburnt vegetation on post‐dispersal seed predation for five serotinous species from sclerophyll vegetation in the Sydney region, south‐eastern Australia; Banksia serrata L.f., Banksia spinulosa Sm. var. spinulosa, Hakea gibbosa (Sm.) Cav., Hakea teretifolia (Salisb.) Britten (all Proteaceae) and Allocasuarina distyla (Vent.) L. Johnson (Casuarinaceae). We used cafeteria trials and differential exclusion of vertebrates and invertebrates to test whether rates of seed removal for these five species differed among (i) unburnt, (ii) burnt‐edge (approx. 10 m from unburnt vegetation) and (iii) burnt‐interior (approx. 100 m from unburnt vegetation) locations. When all animals had access to seeds, seeds were removed at lower rates from burnt‐interior areas than from other locations. Vertebrates (small mammals) showed this pattern markedly the first time the experiment was run, but in a repeat trial this effect disappeared. Rate of seed removal by invertebrates differed among plant species but we did not detect any such differences for removal by vertebrates. Overall rates of seed removal also differed significantly between the two fires studied. Our results indicate that small mammal seed predation can be substantial for large‐seeded serotinous shrubs, and that differences in the perimeter: area ratio, severity or size of a fire are likely to affect seed predation.  相似文献   

12.
Myrmecochory (seed dispersal by ants) is a common seed dispersal strategy of plants in fire‐prone sclerophyll vegetation of Australia, yet there is little understanding of how fire history may influence this seed dispersal mutualism. We investigated the initial fate of seeds of two myrmecochorous plant species, the small‐seeded Pultenaea daphnoides J.C. Wendl. and the large‐seeded Acacia pycnantha Benth., in replicated burnt (3.25 years since fire) and unburnt (53 years since fire) forest plots in the Mount Lofty Ranges, South Australia. Specifically we measured (i) seed removal rates; (ii) the frequency of three ant–seed interactions (seed removal, elaiosome robbery and seed ignoring); (iii) the relative contribution of different ant species to ant–seed interactions; and (iv) the abundance of common interacting ant species. Rates of seed removal from depots and the proportion of seeds removed were higher in recently burnt vegetation and the magnitude of these effects was greater for the smaller‐seeded P. daphnoides. The overall proportion of elaiosomes robbed was higher in unburnt vegetation; however, the decrease in elaiosome robbery in burnt vegetation was greater for P. daphnoides than for A. pycnantha. Ants ignored seeds more frequently in burnt vegetation and at similar rates for both seed species. In total, 20 ant species were observed interacting with seeds; however, three common ant species accounted for 66.3% of ant–seed interactions. Monomorium sydneyense almost exclusively robbed elaiosomes, Rhytidoponera metallica typically removed seeds and Anonychomyrma nr. nitidiceps showed a mix of the three behaviours towards seeds. Differences in the proportions of seeds removed, elaiosomes robbed and seeds ignored appeared to be largely driven by an increase in abundance of A. nr. nitidiceps and a decrease in abundance of M. sydneyense in burnt vegetation. Understanding how these fire‐driven changes in the initial fate of myrmecochorous seeds affect plant fitness requires further investigation.  相似文献   

13.
Abstract. The invasion by non-native plant species of an urban remnant of a species-rich Themeda triandra grassland in southeastern Australia was quantified and related to abiotic influences. Richness and cover of non-native species were highest at the edges of the remnant and declined to relatively uniform levels within the remnant. Native species richness and cover were lowest at the edge adjoining a roadside but then showed little relation to distance from edge. Roadside edge quadrats were floristically distinct from most other quadrats when ordinated by Detrended Correspondence Analysis. Soil phosphorus was significantly higher at the roadside edge but did not vary within the remnant itself. All other abiotic factors measured (NH4, NO3, S, pH and % organic carbon) showed little variation across the remnant. Non-native species richness and cover were strongly correlated with soil phosphorus levels. Native species were negatively correlated with soil phosphorus levels. Canonical Correspondence Analysis identified the perennial non-native grasses of high biomass as species most dependent on high soil nutrient levels. Such species may be resource-limited in undisturbed soils. Three classes of non-native plants have invaded this species-rich grassland: (1) generalist species (> 50 % frequency), mostly therophytes with non-specialized habitat or germination requirements; (2) resource-limited species comprising perennial species of high biomass that are dependent on nutrient increases and/or soil disturbances before they can invade the community and; (3) species of intermediate frequency (1–30 %), of low to high biomass potential, that appear to have non-specialized habitat requirements but are currently limited by seed dispersal, seedling establishment or the current site management. Native species richness and cover are most negatively affected by increases in non-native cover. Declines are largely evident once the non-native cover exceeds 40 %. Widespread, generalist non-native species are numerous in intact sites and will have to be considered a permanent part of the flora of remnant grasslands. Management must aim to minimize increases in cover of any non-native species or the disturbances that favour the establishment of competitive non-native grasses if the native grassland flora is to be conserved in small, fragmented remnants.  相似文献   

14.
Fire frequency is a key land management issue, particularly in tropical savannas where fire is widely used and fire recurrence times are often short. We used an extended Before‐After‐Control‐Impact design to examine the impacts of repeated wet‐season burning for weed control on bird assemblages in a tropical savanna in north Queensland, Australia. Experimentally replicated fire treatments (unburnt, singularly bunt, twice burnt), in two habitats (riparian and adjacent open woodland), were surveyed over 3 years (1 year before the second burn, 1 year post the second burn, 2 years post the second burn) to examine responses of birds to a rapid recurrence of fire. Following the second burn, species richness and overall bird abundance were lower in the twice‐burnt sites than either the unburnt or singularly burnt sites. Feeding group composition varied across year of survey, but within each year, feeding guilds grouped according to fire treatment. In particular, abundance of frugivores and insectivores was lower in twice‐burnt sites, probably because of the decline of a native shrub that produces fleshy fruits, Carissa ovata. Although broader climatic variability may ultimately determine overall bird assemblages, our results show that a short fire‐return interval will substantially influence bird responses at a local scale. Considering that fire is frequently used as a land management tool, our results emphasize the importance of determining appropriate fire‐free intervals.  相似文献   

15.
Unburnt patches within burnt landscapes are expected to provide an important resource for fauna, potentially acting as a refuge from direct effects of fire and allowing animals to persist in burnt landscapes. Nevertheless, there is little information about the way refugia are used by fauna and how populations may be affected by them. Planned burns are often patchy, with unburnt areas generally associated with gully systems providing a good opportunity to study faunal use of refugia. We used a before–after control‐impact design associated with a planned burn in south eastern Australia to investigate how two small mammal species, the bush rat Rattus fuscipes and agile antechinus Antechinus agilis, used unburnt gully systems within a larger burnt area. We tested three alternative hypotheses relating to post‐fire abundance: (i) active refugia – abundance would increase in unburnt patches because of a post‐fire shift of individuals from burnt to unburnt areas; (ii) passive refugia – abundance in unburnt patches would remain similar to pre‐fire levels; and (iii) limited or no refugia – abundance would reduce in unburnt patches related to the change induced by fire in the wider landscape. We found the two species responded differently to the presence of unburnt refugia in the landscape. Relative to controls, fire had little effect on bush rat abundance in gullies, supporting hypothesis 2. In contrast, agile antechinus abundance increased in gullies immediately post‐fire consistent with a shift of individuals from burnt parts of the landscape, supporting hypothesis 1. Differences in site fidelity, habitat use and intraspecific competition between these species are suggested as likely factors influencing responses to refugia. The way unburnt patches function as faunal refugia and the subsequent influence they have on post‐fire population dynamics, will to some extent depend on the life history attributes of individual species.  相似文献   

16.

Human-induced wildfires are increasing in frequency in tropical forests, and their deleterious consequences for biodiversity include decreases in seed rain, which may be affected directly by fire or indirectly by the creation of edges between forest and non-forest environments. Understanding seed rain is key to assess the potential for natural regeneration in plant communities. We assessed the impact of fire and fire-created edges on seed rain species richness, abundance, size, weight, and dispersal syndromes in Atlantic Forest remnants in Bahia, Brazil. We assessed seed rain at monthly intervals for an entire year along seven 300 m-long transects placed perpendicular to the edge. We installed seed traps at the edge and at 20, 40, 60, 80, 100, and 150 m into the burnt area and into the forest from forest edge. We recorded a total of 9050 seeds belonging to 250 morphospecies. We did not observe edge influence; however, we detected a lower abundance and proportion of animal-dispersed seeds in the burnt than in the unburnt areas. The seed abundance in the burnt areas was lower and seeds were smaller and lighter than those in the unburnt area. Seed rain in the burnt area was not greater near to the forest than far from it. The abundance and richness of seed rain was positively correlated with tree density. Our findings highlight the lack of seed rain in burnt areas and differences in community composition between the burnt and unburnt areas. Collectively, these results indicate negative consequences on natural regeneration, which can lead to permanent secondarization of the vegetation and challenges for early regeneration of burnt areas, which will initially have impoverished forests due to low seed richness.

  相似文献   

17.
Fire is an important part of many Australian ecosystems, and determining how it affects different vegetation communities and associated fauna is of particular interest to land managers. Here, we report on a study that used sites established during a 39‐year fire experiment in coastal heathland in southeastern Queensland to compare arthropod abundance and vegetation in 1.5–2.6 ha sites that were (i) long unburnt, (ii) burnt every 5 years and (iii) burnt every 3 years. We found that the abundance of ants was more than four times higher in the frequently burnt sites compared to long unburnt sits. Moreover, long unburnt sites had greater dominance of Xanthorrhoea johnsonii and Caustis recurvata, whereas burnt sites had greater cover of Lomandra filiformis, Leucopogon margarodes and Leucopogon leptospermoides. Our findings show that frequent fire can alter vegetation structure and composition, and this is matched by an increase in the relative dominance of ants in the arthropod community.  相似文献   

18.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

19.
Abstract The influence of factors associated with fire on seed germination of Australian native species is generally well documented, but examples involving the use of smoke as a fire analogue for ecological research remain limited. The role of season of treatment in the efficacy of smoke as a promotive germination agent was investigated over two growing seasons using natural soil stored seedbanks in Banksia woodland near Perth, Western Australia. Smoke was applied to unburnt sites in the autumn, winter and spring of 1994. Germinant emergence and seedling survival of 37 species representing 18 families was monitored in both unburnt sites and in adjacent, recently burnt sites until the second spring after treatment (October 1995). Recruitment from seed was found to be profoundly affected by the season in which dormancy breaking treatment had been applied. The promotive effect extended beyond the initial year of application. For the majority of the species investigated, application of smoke to unburnt sites in autumn promoted a significantly greater germination response than treatment in winter or spring. In only three cases (introduced annuals, the Fabaceae and Hibbenia amplexicaulis) did autumn smoke treatment not yield better germination than in summer-burnt counterparts. However, in almost half of the cases examined, proportions of seedlings surviving past their first summer after emergence in burnt areas were consistently greater than those in smoked or untreated sites. Most notably, no seedlings emerging during the spring of the first year of study survived into the following summer. Implications of the results with respect to future seed bank research and management of native vegetation are discussed.  相似文献   

20.
Fire has long been recognised as a natural force in structuring Northern Hemisphere salt marshes, yet little is known about the impact of fire on molluscs and native vegetation dynamics of Southern Hemisphere coastal salt marshes. Following a fire at Ash Island, Hunter River New South Wales, Australia in the summer 2012, we assessed patterns of recovery through time of gastropod populations and resident salt marsh vegetation including biomass for three keystone native plant species, Native Rush (Juncus kraussii Hochst.), a chenopod (Sarcocornia quinqueflora Bunge ex Ungen‐Sternberg A.J. Scott), Salt Couch (Sporobolus virginicus, L. Kunth) and the invasive Spiny Rush (Juncus acutus). In temperate east‐coast Australian salt marshes, Spiny Rush is displacing native salt marsh vegetation. After twelve months, the biomass of Native Rush recovered to similar pre‐burn levels. While fire affected the abundance, richness and composition of the gastropod assemblage differences were also largely driven by spatial variability. Gastropod assemblages associated with two of the higher elevation native species (Native Rush and Salt Couch) were impacted the most by fire. Greater abundance (between 1 and 5 orders of magnitude difference in abundance) and richness of gastropods were found in unburnt compared with burnt Native Rush and Salt Couch vegetation, while more gastropods were found in Spiny Rush in one site. Species prevalent in burnt vegetation included larger species of gastropods Ophicardelus ornatus (Ferussac, 1821) and Phallomedusa solida (Martens, 1878) with an unexpected spike in number of the smaller gastropod Tatea huonensis (Tenison‐Woods, 1876) in the spiny rush at one site only. In salt marsh habitats, many gastropods have planktonic larval dispersal stages which are dependent on the tidal height for transport and the structural complexity provided by vegetation at settlement. Since fire appears to negatively affect salt marsh gastropod populations within structurally complex Native Rush and Salt Couch, due consideration of the importance of these refuges for gastropods is recommended when fire or other disturbances occur in ecologically endangered salt marsh in the Southern Hemisphere. Managers need to consider spatial heterogeneity of molluscs and their recovery in the event of fire in Southern Hemisphere salt marshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号