首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The 15N paramagnetic shifts of iron-bound C15N? were studied for myoglobin, hemoglobin, cytochrome c and other modified hemoproteins. Two characteristic 15N resonances at 977 and 1045 ppm (with respect to 15NO3? as an internal standard) were found for human adult hemoglobin cyanide, while only single resonances were observed for other cyano hemoproteins. These two resonances are assigned to iron-bound C15N of α and β subunits of hemoglobin. The substantial difference in the C15N isotropic shifts in various hemoproteins is discussed in relation to iron-proximal histidine binding and heme-apoprotein interactions.  相似文献   

2.
15N-labeled cyanide binding to methemoglobins in intact erythrocytes has been studied by 15N NMR. The addition of C15N? to human and dog hemoglobins in erythrocyte afforded hyperfine-shifted two 15N signals due to the C15N bound to ferric iron of the different heme-units. Single and three distinct signals were observed for rat and rabbit hemoglobins in erythrocyte. These C15N resonance positions are sensitive both to the structural difference in the hemoglobin subunits and to the variety of the animal sources. The C15N spectral difference between solution and intact hemoglobin cyanide is also discussed in relation to a possible change in the intra- and extracellular pH values.  相似文献   

3.
The leaves and nodules from the shrub and tree legumes, particularly, Aeschynomene spp., Sesbania spp., Mimosa spp. and Leucaena spp., and Casuarina spp. and the leaves from neighbouring non-fixing plants were analyzed for their natural abundances of 15N ( 15N).The 15N in the leaves of non-fixing plants was +5.9% on average, whereas those from shrub legumes and Casuarina spp. were lower and close to the values of atmospheric N2, suggesting the large contribution of N2 fixation as the N source in these plants. The 15N values of the leaves from tree legumes except for Leucaena spp. were between the shrub legumes and non-fixing plants, which suggests that the fractional contribution of fixed N2 in tree legumes may be smaller than that in the shrub legumes. Casuarina spp. was highly dependent on N2 fixation. The 15N values of the nodules from most of the shrub legumes investigated were higher than those of the leaves.  相似文献   

4.
The major findings of many years of research into plant N cycling are summarised in this review, firstly as revealed by 15N-enriched methods and secondly, in relation to natural 15N abundance (δ15N) in plants and their metabolites. This work has mainly been done in an agricultural context. As many groups especially attempt to relate δ15N to N cycling, atmospheric N deposition and the interactions of N with carbon budgets, we deem it useful to synthesize these major findings. Primary assimilation and distribution of N within plants were investigated from the 15N enrichment in individual plant organs and in individual amino acids after feeding them 15N-labelled compounds. In both roots and leaves, NH4 + and NO3 ? were assimilated into amino acids, largely by a combination of glutamine synthetase (GS) and glutamate synthase (GOGAT). In the leaves, the transfer of glutamine (amide) N to glutamic acid was accelerated in the light, and amino N in some amino acids was deaminated to ammonia in the dark, followed by its incorporation into glutamine. The N in the growing parts such as growing leaves, filling grains and growing root parts were from two sources: re-allocation (phloem supply) of reserved N (amino acids), and currently-absorbed N. The metabolites from the mature parts may perform the roles of substrates for plant growth and signals for gene expression. δ15N values, measured for plants/soils and plant metabolites (inorganic N, amino acids, polyamines) were related with the acquisition, metabolism and distribution of N in plants. Small 15N/14N fractionation in the acquisition of N2 and NO3 ? and large 15N/14N fractionation in NH4 + uptake were found. The δ15N values of whole shoots or grains from field-grown crops were largely reflected major sources of N. In some legumes, 15N was enriched in their nodules and an extremely 15N-enriched compound was homospermidine. Nitrate reduction to ammonia (NR) and ammonia assimilation to glutamine (GS) showed large 15N/14N fractionations. Specific attention was paid to the δ15N values in xylem and phloem exudates compared to those of plant organs.  相似文献   

5.
Stable C and N isotopes have long been used to examine properties of various C and N cycling processes in soils. Unfortunately, relatively large sample sizes are needed for accurate gas phase isotope ratio mass spectrometric analysis. This limitation has prevented researchers from addressing C and N cycling issues on microbially meaningful scales. Here we explored the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) to detect 13C and 15N assimilation by individual bacterial cells and to quantify N isotope ratios in bacterial samples and individual fungal hyphae. This was accomplished by measuring the relative abundances of mass 26 (12C14N) and mass 27 (13C14N and 12C15N) ions sputtered with a Ga+ probe from cells adhered to an Si contact slide. TOF-SIMS was successfully used to locate and quantify the relative 15N contents of individual hyphae that grew onto Si contact slides in intimate contact with a model organomineral porous matrix composed of kaolin, straw fragments, and freshly deposited manure that was supplemented with 15NO3. We observed that the 15N content of fungal hyphae grown on the slides was significantly lower in regions where the hyphae were influenced by N-rich manure than in regions influenced by N-deficient straw. This effect occurred over distances of tens to hundreds of microns. Our data illustrate that TOF-SIMS has the potential to locate N-assimilating microorganisms in soil and to quantify the 15N content of cells that have assimilated 15N-labeled mineral N and shows promise as a tool with which to explore the factors controlling microsite heterogeneities in soil.  相似文献   

6.
Meager information is available on the specific effects of root volume (V) and N concentration in the water (CN) on uptake rates of water and N by apple trees, as related to fruit yield and tree growth. To investigate this relationship, Golden Delicious/Hashabi trees were grown for 5 years in containers of 200, 50 and 101. Trees in the 200–1 containers were irrigated with a nutrient solution containing 10.7±1.3, 7.1±1.5 or 2.5±1.0 mM NO3. Trees in the remaining two container-volume treatments were uniformly supplied with a solution of 7.1±1.5 mM NO3. Elevated CN had no effect on the rate of water uptake, but increased the rate of N absorption by the trees from 2.4 to 4.8 g N tree−1 day−1 during July. The stimulated N uptake rate stemmed from enhanced fluxes of N uptake by the roots. CN had a negligible effect on root weight and root permeability to NO3 and water. The elevated N uptake rate did not result in greater fruit yield and growth, or greater N content in tree organs, indicating considerable release of N from living and decaying roots to the growth medium. Reducing the container volume decreased yield, total dry matter production and N and water uptake rates, but increased root permeability to NO3 and water, and total soluble solids in fruits. The all-season average CN in the irrigation solution above which N concentration in the transpiration stream was lower than the inflowing CN was 4.2 mM NO3.  相似文献   

7.
8.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

9.
The fate of15N labeled nitrogen applied to mature citrus trees   总被引:1,自引:0,他引:1  
Summary The efficiency and balance of nitrogen from one year's application was studied in a long-term fertigation experiment. Enriched nitrogen fertilizer, K15NO3, was applied to a 22-year-old Shamouti orange tree with a history of high N applications (N3) and to an N-starved tree (N1). The distribution of N in the different parts of the trees and in the soil was determined after the experimental trees were excavated. Similar total recovery of the labeled fertilizer N was found in the trees and soil in both treatments (N1−61.7% N3−56%). However, the distribution between tree and soil was different. The amount of recovered residual fertilizer in the soil was much larger in the N3 treatment than in N1. The highest percentage of fertilizer N was found in the new organs,i.e. fruits, twigs and leaves. The roots and branches took up only 6–14% from the labeled fertilizer. Only 20.9% of the leaf N and 23.4% of the fruit N in the N3 tree originated in the labeled fertilizer, indicating translocation of N from older parts of the tree to new growth. Evidence was found of storage of N in the wooded branches, while the roots contained a surprisingly small part of labeled fertilizer. Contribution 1599E.  相似文献   

10.
Summary Five crops of oats were grown over a 14-month period on a Chester silt loam soil fertilized with N15-labelled (NH4)2SO4. All plant material from the first four crops was returned to the soil. Following a fifth crop, oat tops and roots were harvested, and the soil was subjected to repeated extractions by autoclaving in 0.01M CaCl2. The distribution of N15 and of indigenous soil N among chemical fractions of the extracts, and in the acid-soluble and acid-soluble and acid-insoluble portions of the soil residues following 0.01M CaCl2 extraction, was remarkably similar. Since appreciable equilibrations between added N15 and the more resistant forms of soil organic N is unlikely, it is postulated that fertilizer N became incorporated in newly-formed complexes, similar to those already present in the soil. This view is in harmony with the finding that percentage removals of total and N15-labelled N remained almost the same, even with recovery of approximately 55 per cent of the amounts originally present. N mineralization capacity of the soil was reduced appreciably as a result of extraction.  相似文献   

11.
Export of amino acids to the phloem in relation to N supply in wheat   总被引:5,自引:0,他引:5  
The effect of different N supply on amino acid export to the phloem was studied in young plants of wheat (Triticum aestivum L. cv. Klein Chamaco), using the exudation in EDTA technique. Plants were grown in a growth cabinet in pots with sand, and supplied with nutrient solutions of different NO3? concentrations. When plants were grown for 15 days with nutrient solutions containing 1.0, 3.0, 5.0, 10.0, 15.0 or 20.0 mM KNO3, the exudation rate of sugars from the phloem was unaffected by N supply, but sugars accumulated in the leaf tissue when the N supply was limiting for growth. On the other hand, the rate of exudation of amino acids was proportional to the NO3? concentration in the nutrient solution. When the supply of N to plants grown for 15 days with 15.0 mM NO3? was interrupted, the exudation of sugars was again unaffected, but there was a fast decrease in the amount of amino acids exudated, and of the concentration of amino acids and nitrogen in the tissues. Also, when 10-day-old plants grown without N were supplied with 15.0 mM NO3?, there was a sharp increase in the exudation of amino acids, without changes in the amount of sugar exudated. The rate of exudation of amino acids to the phloem was independent of the concentration of free amino acids in the leaves in all three types of experiment. Asp was the most abundant amino acid in the leaf tissue, while Glu was the one most abundant in the phloem exudate. Asp and Ala were exported to the phloem at a rate lower than expected from their leaf tissue concentrations, indicating some discrimination. On the contrary, Glu showed a preferential export at low N supply. It is concluded that the rate of amino acid export from the leaf to the phloem is dependent on the N available to the plant. This N is used for synthesis of leaf protein when the supply is low, exported to the phloem when supply is adequate, and accumulated in the storage pool when supply is above plant demand.  相似文献   

12.

Aims

In Brazil N fertilization of sugarcane (Saccharum spp.) is low compared to most other countries. 15N-aided studies and the occurrence of many N2-fixing bacteria associated with cane plants suggest significant contributions from biological N2 fixation (BNF). The objective of this study was to evaluate BNF contributions to nine cane varieties under field conditions using N balance and 15N natural abundance techniques.

Methods

The field experiment was planted near Rio de Janeiro in 1989, replanted in 1999 and harvested 13 times until 2004. Soil total N was evaluated at planting and again in 2004. Samples of cane leaves and weeds for the evaluation of 15N natural abundance were taken in 2000, 2003 and 2004.

Results

N accumulation of the commercial cane varieties and a variety of Saccharum spontaneum were persistently high and N balances (60 to 107?kg?N ha?1?yr?1) significantly (p?<?0.05) positive. The δ15N of leaf samples were lower than any of the weed reference plants and data obtained from a greenhouse study indicated that this was not due to the cane plants tapping into soil of lower 15N abundance at greater depth.

Conclusion

The results indicate that the Brazilian varieties of sugarcane were able to obtain at least 40?kg?N ha?1?yr?1 from BNF.  相似文献   

13.
The differential discrimination of nitrogen isotopes (15N/14N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass. To investigate this phenomenon, we examined the 15N/14N of amino acids (δ15NAA) in spring leaves and flowers from eight deciduous and two annual plants. These plants were classified on the basis of their time of bloom, plants that bloomed when their leaves were absent (Type I) versus plants that bloomed while leaves were already present (Type II). Based on the δ15NAA values from leaves, both plant types occupied comparable and ecologically realistic mean TPs (=1.0 ± 0.1, mean ± 1σ). However, the estimated TPs of flowers varied significantly (Type I: 2.2 ± 0.2; Type II: 1.0 ± 0.1). We hypothesize that these results can be interpreted by the following sequence of events: (1) Type I floral biomass is synthesized in absence of active photosynthesis; (2) the catabolic deamination of amino acids in particular, leaves behind 15N in the residual pool of amino acids; and (3) the incorporation of these 15N‐enriched amino acids within the biomass of Type I flowers results in the numerical elevation of the TPs. In contrast, the actively photosynthesizing Type II leaves energetically sustain the synthesis of Type II flower biomass, precluding any reliance on catabolic deamination of amino acids. Amino acids within Type II flowers are therefore isotopically comparable to the Type II leaves. These findings demonstrate the idiosyncratic nature of the δ15NAA values within autotrophic organs and have implications for interpreting trophic hierarchies using primary producers and their consumers.  相似文献   

14.
We compared δ13C and δ15N values of muscle with fin from juvenile Chinese sturgeon (Acipenser sinensis), to evaluate the feasibility of using nonlethal (fin) as an alternative to lethal (muscle) sampling. Size and lipid effect on the relationship between fin and muscle were also investigated. Dorsal muscle (DM) and fin clip (FC) were collected from A. sinensis with different body length (120–373 mm) in the Yangtze Estuary for isotope analysis. The result showed that (1) muscle isotope values could estimated by the values of fin, from either use the regression model (δ13CDM = 0.939 × FC ? 2.577; δ15NDM = 0.737 × FC + 4.638) or constants factors (δ13CDM = δ13CFC ? 1.27; δ15NDM = δ15NFC + 0.59); (2) no size‐based relationships with δ13C and δ15N from either fin or muscle; (3) lipid extraction significantly improving the fin and muscle regression model fit for both δ13C and δ15N values. Therefore, this study support the use of nonlethal fin tissues for isotope analysis of juvenile A. sinensis, and will allow trophic studies to avoid the effect of lipid accumulation from muscle.  相似文献   

15.
Summary Uniformly14C labelled glucose, cellulose and wheat straw and specifically14C labelled lignin component in corn stalks were aerobically incubated for 12 weeks in a chernozem soil alongwith15N labelled ammonium sulphate. Glucose was most readily decomposed, followed in order by cellulose, wheat straw and corn stalk lignins labelled at methoxyl-, side chain 2-and ring-C. More than 50% of14C applied as glucose, cellulose and wheat straw evolved as CO2 during the first week. Lignin however, decomposed relatively slowly. A higher proportion of14C was transformed into microbial biomass whereas lignins contributed a little to this fraction.After 12 weeks of incubation nearly 60% of the lignin14C was found in humic compounds of which more than 70% was resistant to hydrolysis with 6N HCl. Maximum incorporation of15N in humic compounds was observed in cellulose amended soil. However, in this case more than 80% of the15N was in hydrolysable forms.Immobilization-remineralization of applied15N was most rapid in glucose treated soil and a complete immobilization followed by remineralization was observed after 3 days. The process was much slow in soil treated with cellulose, wheat straw or corn stalks. More than 70% of the newly immobilized N was in hydrolysable forms mainly reepresenting the microbial component.Serial hydrolysis of soil at different incubation intervals showed a greater proportion of 6N HCl hydrolysable14C and15N in fractions representing microbial material.14C from lignin carbons was relatively more uniformly distributed in different fractions as compared to glucose, cellulose and wheat straw where a major portion of14C was in easily hydrolysable fractions.  相似文献   

16.
Here we report on a controlled environment experiment in which we applied 13C- and 15N-enrichment approaches to quantify methane oxidation rates and source partition N2O production in a silt loam soil following application of NH4NO3, enabling us to look for potential interactions between methane oxidation and nitrifier-N2O production. 15N-N2O, 14+15N-N2O and CO2 fluxes and mineral N concentrations were measured over a 23-day period after application of NH4NO3 (5 at.% excess 15N) at rates of 0, 5, 10, 20, 30 and 40 g N m?2 to a silt loam soil. Change in 12/13C-CH4 concentrations (as indicative of 13C-CH4 oxidation rates) and production of 13C-CO2 were monitored over the first 72 h after addition of 1.7 ??l 13C-CH4 l?1 (10 at.% excess 13C) to these N treatments. Oxidation of applied 13C-CH4 was slower in the 5, 10, 20 and 30 g N m?2 (5 at.% excess 15N) treatments (0.24?C0.32 ??g 13C-CH4 l?1 day?1) than in the control (0.40 ??g 13C-CH4 l?1 day?1), suggesting that these N loadings inhibited oxidation. N2O production was raised after N addition, and in the 10, 20 and 30 g N m?2 treatments nitrification was the predominant source of N2O accounting for 61, 83 and 57% of the total 15N-N2O produced, respectively. Our results point towards the possibility of methylotrophs switching function to oxidise ammonia in the presence of N, which may result in greater atmospheric loading of both CH4 and N2O.  相似文献   

17.
Although nutrient stress is known to alter partitioning between shoots and roots, the physiological basis for the phenomenon is unresolved. Experiments were conducted to examine assimilation of 15NO3 by N-stressed plants and to determine whether apparent changes in assimilation in the root contributed to alterations in whole-plant partitioning of reduced-N. Tobacco plants (Nicotiana tabacum L. cv. NC 2326) were exposed to a low concentration of NO3? in solution (80 μM) for 9 days to effect a N-stress response. Exposure of plants to 1000 μM15NO3? for 12 h on selected days revealed that roots of N-stressed plants developed an increased capacity to absorb NO3?, and accumulation of reduced-15N in the root increased to an even greater extent. When plants were exposed to 80 or 1000 μM15NO3? in steady-state, 15NO3? uptake over a 12 h period was noticeably restricted at the lower concentration, but a larger proportion of the absorbed 15N still accumulated as reduced-15N in the root. The alteration in reduced-15N partitioning was maintained in N-stressed plants during the subsequent 3-day “chase” period when formation of insoluble reduced-15N in the root was quantitatively related to the disappearance of 15NO3? and soluble reduced-15N. The results indicate that increased assimilation of absorbed NO3?, in the root may contribute significantly to the altered reduced-N partitioning which occurs in N-stressed plants.  相似文献   

18.
To characterize the mechanisms of amino acid accumulation under sulphur (S)‐deficiency and its physiological significance in Brassica napus, stable isotopes 15N and 34S were employed. The plants were exposed for 9 days to S‐deficient conditions (0.05 mM vs 1.5 mM sulphate). After 9 days of S‐deficiency, leaf‐osmotic potential and total chlorophyll content significantly decreased. S uptake decreased by 94%, whereas N uptake and biomass were not significantly changed. Using 15N and 34S labelling, de novo synthesis of amino acids and proteins derived from newly absorbed NO3? and SO42? and the content of N and S in the previously synthesized amino acids and proteins were quantified. At the whole plant level, S‐deficiency increased the pool of amino acids but resulted in strong decrease of incorporation of newly absorbed NO3? and SO42? into amino acids by 22.2 and 76.6%, respectively, compared to the controls. Total amount of N and S incorporated into proteins also decreased by 28.8 and 62.1%, respectively. The levels of 14N‐ and 32S‐proteins (previously synthesized proteins) strongly decreased, mainly in mature leaves. The data thus indicate that amino acid accumulation under short‐term S‐deficiency results from the degradation of previously synthesized proteins rather than from de novo synthesis.  相似文献   

19.
20.
A field experiment was conducted at the Coconut Research Institute in Sri Lanka to examine the biological nitrogen fixation potential of three Gliricidia sepium provenances (OFI 14/84, 17/84, 12/86) and a local landrace (designated LL), using the 15N isotope dilution method. There was marked variation in dry matter, total N, nodulation and 15N enrichment among the Gliricidia genotypes (=0.001), and the dry matter yield of Cassia siamea (syn. Senna siamea), the non-N2 fixing reference plant was higher than for G. sepium. In all cases, highest biomass and total N were aboveground, with roots on average accounting for < 20 % of total dry matter or the total N in plants. Atom % 15N excess was highest in C. siamea, and lowest in OFI 14/84. Although atom % 15N excess was lower in Gliricidia leaves than in the other organs (all of which had similar 15N enrichments), values of % N derived from atmospheric N2 fixation (% Ndfa) calculated for any individual organ or for the whole plant were similar. This was because the relative distribution of 15N in the different parts of the fixing plant followed the same trend as in the reference plant. There were significant differences (p=0.01) in N2 fixation between the Gliricidia genotypes. The values ranged from 17.8 g N tree-1 (equivalent to 86 kg N ha-1 at 5000 trees ha-1) in OFI 12/86 to 61.7g N tree-1 (equivalent to 309 kg N ha-1) in OFI 14/84. Although most of this variability was due to differences in both % Ndfa and total N in plant, amount of N fixed was more correlated with total N in plant (r=0.935) than with % Ndfa (r=0.707). On average, % Ndfa in all three G. sepium provenances and LL was about 55 % or 34.6 g N tree-1 (equivalent to some 166 kg N ha-1) in the 9 months within which N2 fixation was measured. This represents a substantial contribution of N into the soil-plant system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号