首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although of primary importance to explain plant community structure, general relationships between plant traits, resource depletion and competitive outcomes remain to be quantified across species. Here, we used a comparative approach to test whether instantaneous measurements of plant traits can capture both the amount of resources depleted under plant cover over time (competitive effect) and the way competitors perceived this resource depletion (competitive response). We performed a large competition experiment in which phytometers from a single grass species were transplanted within 18 different monocultures grown in a common-garden experiment, with a time-integrative quantification of light and water depletion over the phytometers’ growing season. Resource-capturing traits were measured on both phytometers (competitive response traits) and monocultures (competitive effect traits). The total amounts of depleted light and water availabilities over the season strongly differed among monocultures; they were best estimated by instantaneous measurements of height and rooting depth, respectively, performed when either light or water became limiting. Specific leaf area and leaf water potential, two competitive response traits measured at the leaf level, were good predictors of changes in phytometer performance under competition, and reflected the amount of light and water, respectively, perceived by plants throughout their lifespan. Our results demonstrated the relevance of instantaneous measures of plant traits as indicators of resource depletion over time, validating the trait-based approach for competition ecology. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
The effect of spatial heterogeneity on species coexistence relies on the degree of niche heterogeneity in the habitat and the ability of species to exploit the available niche opportunities. We studied species coexistence in a perennial grassland, and tested whether small-scale disturbances create environmental heterogeneity that affects coexistence and whether the functional diversity of species in the species pool affects the ability of community composition to reflect heterogeneity through species sorting. We manipulated the spatio-temporal heterogeneity of disturbance and the functional diversity of species added as seed and measured their impact on the spatial turnover of species composition. Disturbance increased environmental heterogeneity and spatial turnover, and the effect of heterogeneity on turnover was greatest in the presence of a functionally diverse species pool, showing the importance of trait variation among species for exploiting environmental heterogeneity, and suggesting that coexistence occurred due to species sorting among heterogeneous niches.  相似文献   

4.
5.
6.
Understanding the mechanisms of species distribution within ecosystems is a fundamental question of ecological research. The current worldwide changes and loss of habitats associated with a decline in species richness render this topic a key element for developing mitigation strategies. Ecological niche theory is a widely accepted concept to describe species distribution along environmental gradients where each taxon occupies its own distinct set of environmental parameters, that is, its niche. Niche occupation has been described in empirical studies for different closely related taxa, like ant, ungulate, or skink species, just to name a few. However, how species assemblages of whole ecosystems across multiple taxa are structured and organized has not been investigated thoroughly, although considering all taxa of a community would be essential when analyzing realized niches. Here, we investigated the organization of niche occupation and species distribution for the whole ground‐associated invertebrate community of small tropical insular ecosystems. By correlating environmental conditions with species occurrences using partial canonical correspondence analysis (pCCA), we demonstrated that the ground‐associated invertebrate community does not spread evenly across the overall niche space, but instead is compartmentalized in four distinct clusters: crustacean and gastropod taxa occurred in one cluster, attributable to the beach habitat, whereas hexapods and spider taxa occurred in three distinct inland clusters, attributable to distinct inland habitats, that is, grassland, open forest, and dense forest. Within the clusters, co‐occurrence pattern analysis suggested only a few negative interactions between the different taxa. By studying ground‐associated insular invertebrate communities, we have shown that species distribution and niche occupation can be, similar to food webs, organized in a compartmentalized way. The compartmentalization of the niche space might thereby be a mechanism to increase ecosystem resilience, as disturbances cascade more slowly throughout the ecosystem.  相似文献   

7.
Abstract. This paper describes the species composition of remnant grasslands in the aspen parkland region of Alberta and its relation to soil characteristics and small‐scale disturbance. Our findings are consistent with the centrifugal model of communities with Festuca hallii dominating undisturbed ‘core’ habitat and the composition of more ‘peripheral’ habitats varying in soil properties and in the magnitude of disturbance. Invasive non‐native species are not present in the core habitat and are present only in the disturbed sites, most abundantly in those with the highest soil nitrogen. The centrifugal model, as it applies to these remnant grasslands, differs from its previous application to wetlands and forests in that the core communities are not on the most fertile sites, but on the least disturbed. These findings have implications for the management of prairie remnants to exclude invasive exotic species.  相似文献   

8.
Exotic plant invasions represent a threat to natural and managed ecosystems. Understanding of the mechanisms that determine why a given species may invade a given ecosystem, or why some biomes and regions seem more prone to invasions, is limited. One potential reason for this lack of progress may lie in how few studies have addressed invasion mechanisms from the point of view of the invaded community. On the other hand, the renewed debate about the relationship between ecological diversity and ecosystem stability offers the opportunity to revisit existing theory and empirical evidence, and to attempt to investigate which characteristics of plant communities, including their diversity, contribute to their invasibility. Empirical studies have shown both positive and negative relationships between species diversity of resident plant communities and their invasibility by external species. Rather than attempting to build a larger collection of case studies, research now needs to address the mechanisms underlying these relationships. Previous knowledge about the mechanisms favouring invasion needs to be coupled with community theory to form the basis of these new investigations. Modern community theory offers hypotheses and techniques to analyse the invasibility of communities depending on their diversity and other factors, such as species’ life histories and environmental variability. The body of knowledge accumulated in invasion ecology suggests that the role of disturbances, in interaction with fertility, and the importance of interactions with other trophic levels, are specific factors for consideration. In addition, it is essential for future studies to explicitly tease apart the effects of species richness per se from the effects of other components of ecological diversity, such as functional diversity (the number of functional groups) and trophic diversity (the number of interactions among trophic levels).  相似文献   

9.
Sensitivity analysis, the study of how ecological variables of interest respond to changes in external conditions, is a theoretically well‐developed and widely applied approach in population ecology. Though the application of sensitivity analysis to predicting the response of species‐rich communities to disturbances also has a long history, derivation of a mathematical framework for understanding the factors leading to robust coexistence has only been a recent undertaking. Here we suggest that this development opens up a new perspective, providing advances ranging from the applied to the theoretical. First, it yields a framework to be applied in specific cases for assessing the extinction risk of community modules in the face of environmental change. Second, it can be used to determine trait combinations allowing for coexistence that is robust to environmental variation, and limits to diversity in the presence of environmental variation, for specific community types. Third, it offers general insights into the nature of communities that are robust to environmental variation. We apply recent community‐level extensions of mathematical sensitivity analysis to example models for illustration. We discuss the advantages and limitations of the method, and some of the empirical questions the theoretical framework could help answer.  相似文献   

10.
1.  Parasitic plants affect the growth, reproduction and metabolism of their hosts and may also influence the outcome of competitive interactions between host species and, consequently, the structure of entire host communities.
2.  We investigate the effect of the root hemiparasitic plant Rhinanthus minor on plant community dynamics using a spatial theoretical model. The model is parameterized with data from pairwise interaction experiments under two nutrient levels between the hemiparasite and three grass species ( Cynosurus cristatus , Festuca rubra and Phleum bertolonii ) and three forb species ( Leucanthemum vulgare , Plantago lanceolata and Ranunculus acris ).
3.  Relative interaction coefficients were intransitive, with the dynamics of the system conforming to a rock–paper–scissors game. Stable deterministic dynamics emerge from parameters obtained under low-nutrient conditions. Under high-nutrient conditions, the dynamics are unstable, but are stabilized in spatially explicit models. The outcomes are sensitive to initial spatial pattern and frequency.
4.   Synthesis . This study supports the idea that hemiparasite populations may form 'shifting clouds' in natural populations and explains seemingly unpredictable shifts in host community structure following introduction of hemiparasites. Management of plant communities using hemiparasites needs to take these complex dynamics into account.  相似文献   

11.
Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy‐dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy‐dominant species can also limit the performance of edge‐dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.  相似文献   

12.
13.
14.
了解外来植物入侵对本土植物群落种群动态的影响对于植物入侵的防控极为重要。该文以加拿大一枝黄花(Solidago canadensis)入侵不同阶段的植物群落为研究对象, 对本土植物物种多样性以及常见优势种群的生态位变化进行了定量分析。结果表明: 加拿大一枝黄花氮素积累能力高于其他本土优势种群。随着加拿大一枝黄花入侵的深入, 本土植物群落的物种多样性呈现显著下降趋势; 氮素积累能力高的本土优势种群生态位宽度呈现明显的上升趋势, 而氮素积累能力低的本土优势种群生态位宽度则呈现明显下降的趋势; 本土优势种群的生态位重叠平均值呈现逐步下降的趋势。加拿大一枝黄花的入侵, 显著提高了土壤硝态氮含量, 而土壤铵态氮、有效磷、全磷和全氮含量显著降低。对氮素的积累能力决定了加拿大一枝黄花入侵后, 本土植物种群的动态变化格局。  相似文献   

15.
Fractal geometry: a tool for describing spatial patterns of plant communities   总被引:19,自引:0,他引:19  
Vegetation is a fractal because it exhibits variation over a continuum of scales. The spatial structure of sandrim, bryophyte, pocosin, suburban lawn, forest tree, and forest understory communities was analyzed with a combination of ordination and geostatistical methods. The results either suggest appropriate quadrat sizes and spacings for vegetation research, or they reveal that a sampling design compatible with classical statistics is impossible. The fractal dimensions obtained from these analyses are generally close to 2, implying weak spatial dependence. The fractal dimension is not a constant function of scale, implying that patterns of spatial variation at one scale cannot be extrapolated to other scales.  相似文献   

16.
青藏高原气候变暖幅度显著高于全球其他区域,深刻影响着该地区植物群落的结构和稳定性。选择西藏念青唐古拉山的三种典型植物群落(高寒草原、高寒草甸和流石滩)作为研究对象,采用开顶式增温箱(OTC)模拟增温,研究了短期增温对植物群落结构和稳定性的影响。结果表明:(1)增温改变了群落的优势物种,影响其结构组成,而对物种多样性无显著影响;(2)增温显著降低了高寒草甸的地上生物量(P < 0.05),增加地下生物量(P < 0.01),从而导致了群落地下地上生物量分配策略的改变;(3)增温降低群落中部分物种的生态位宽度,进而影响群落稳定性,其中高寒草甸变化最大,达到-66.8%。研究结果可为青藏高原高寒草地生态系统应对和适应未来气候变化提供一定科学依据。  相似文献   

17.
It is proposed to distinguish between three models of organization in synanthropic plant communities formed under the influence of man: R-modle, communities of segetal weeds in fields of annual crops and at initial stages of restoration successions; R --> CRS-model, serial communities of the later stages of restoration successions; CRS --> S-model, serial communities of allogenic successions under the influence of grazing and other external factors. The higher units of the ecological and faunistic classification (classes and orders) well represent the succession status and the soil and climate conditions under which synanthropic communities are formed. At the same time, the continual character of synanthropic vegetation makes recognition of plant associations inexpedient in some cases. It is preferable to use the deductive classification method of K. Kope?ky and S. Hejny.  相似文献   

18.
We examine how species richness and species‐specific plant density (number of species and number of individuals per species, respectively) vary within community size frequency distributions and across latitude. Communities from Asia, Africa, Europe, and North, Central and South America were studied (60°4′N–41°4′S latitude) using the Gentry data base. Log–log linear stem size (diameter) frequency distributions were constructed for each community and the species richness and species‐specific plant density within each size class were determined for each frequency distribution. Species richness in the smallest stem size class correlated with the Y‐intercepts (β‐values) of the regression curves describing each log–log linear size distributions. Two extreme community types were identified (designated as type A and type B). Type A communities had steep size distributions (i.e. large β‐values), log–log linear species‐richness size distributions, low species‐specific plant density distributions, and a small size class (2–4 cm) containing the majority of all species but rarely conspecifics of the dominant tree species. Type B communities had shallow size distributions (i.e. small β‐values), more or less uniform (and low) size class species‐ richness and species‐specific density distributions and size‐dominant species resident in the smallest size class. Type A communities were absent in the higher latitudes but increased in number towards the equator, i.e. in the smallest size class, species richness increased (and species‐specific density decreased) towards the tropics. Based on our survey of type A and type B communities (and their intermediates), species richness evinces size‐dependent and latitudinal trends, i.e. species richness increased with decreasing body size and most species increasingly reside in the smallest plant size class towards the tropics. Across all latitudes, a trade‐off exists between the number of species and the number of individuals per species residing in the smaller size classes.  相似文献   

19.
The abundant centre hypothesis (ACH) assumes that population abundance, population size, density and per‐capita reproductive output should peak at the centre of a species' geographic range and decline towards the periphery. Increased isolation among and decreased reproductive output within edge populations should reduce within‐population genetic diversity and increase genetic differentiation among edge relative to central populations. The ACH also predicts asymmetrical gene flow, with net movement of migrants from the centre to edges. We evaluated these ecological assumptions and population‐genetic predictions in the endemic flowering plant Leavenworthia stylosa. Although populations were more spatially isolated near range edges, the geographic centre was surrounded by and not coincident with areas of peak population abundance, and plant density increased towards range edges. Per‐capita seed number was not associated with distance to the range centre, but seed number/m2 increased near range edges. In support of ACH predictions, allelic diversity at 12 microsatellite loci declined with distance from the range centre, and pairwise FST values were higher between edge populations than between central populations. Coalescent analyses confirmed that gene flow was most infrequent between edge populations, but there was not an asymmetric pattern of gene flow predicted by the ACH. This study shows that among‐population demographic variability largely did not support the ACH, while patterns of genetic diversity, differentiation and gene flow were generally consistent with its predictions. Such mixed support has frequently been observed in tests of the ACH and raises concerns regarding the generality of this hypothesis for species range limits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号