首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the coming century, forecast climate changes caused by increasing greenhouse gases may produce dramatic shifts in tree species distributions and the rates at which individual tree species sequester carbon or release carbon back to the atmosphere. The species composition and carbon storage capacity of northern Wisconsin (USA) forests are expected to change significantly as a result. Projected temperature changes are relatively large (up to a 5.8°C increase in mean annual temperature) and these forests encompass a broad ecotone that may be particularly sensitive to climate change. Our objective was to estimate the combined effects of climate change, common disturbances, and species migrations on regional forests using spatially interactive simulations. Multiple scenarios were simulated for 200 years to estimate aboveground live biomass and tree species composition. We used a spatially interactive forest landscape model (LANDIS‐II) that includes individual tree species, biomass accumulation and decomposition, windthrow, harvesting, and seed dispersal. We used data from two global circulation models, the Hadley Climate Centre (version 2) and the Canadian Climate Center (version 1) to generate transient growth and decomposition parameters for 23 species. The two climate change scenarios were compared with a control scenario of continuing current climate conditions. The results demonstrate how important spatially interactive processes will affect the aboveground live biomass and species composition of northern Wisconsin forests. Forest composition, including species richness, is strongly affected by harvesting, windthrow, and climate change, although five northern species (Abies balsamea, Betula papyrifera, Picea glauca, Pinus banksiana, P. resinosa) are lost in both climate scenarios regardless of disturbance scenario. Changes in aboveground live biomass over time are nonlinear and vary among ecoregions. Aboveground live biomass will be significantly reduced because of species dispersal and migration limitations. The expected shift towards southern oaks and hickory is delayed because of seed dispersal limitations.  相似文献   

2.
To clarify consistency in the size of carbon pool of a lowland tropical rainforest, we calculated changes in above-ground biomass in the Pasoh Forest Reserve, Peninsular Malaysia. We estimated the total above-ground biomass of a mature stand using tree census data obtained in a 6-ha plot every 2years from 1994 to 1998. The total above-ground biomass decreased consistently from 1994 (431Mgha–1) to 1998 (403Mgha–1) (1Mg=103 kg). These are much lower than that in 1973 for a 0.2ha portion of the same area, suggesting that the the total above-ground biomass reduction might have been consistent in recent decades. This trend contrasted with a major trend for neotropical forests. During 1994–1998, the forest gained 23.0 and 0.88Mgha–1 of the total above-ground biomass by tree growth and recruitment, respectively, and lost 51.9Mgha–1 by mortality. Overall, the biomass decreased by 28.4Mgha–1 (i.e. 7.10Mgha–1·year–1), which is almost equivalent to losing a 76-cm-diameter living tree per hectare per year. Analysis of positive and negative components of biomass change revealed that deaths of large trees dominated the total above-ground biomass decrease. The forest biomass also varied spatially, with the total above-ground biomass density ranging 212–655Mgha–1 on a 0.2-ha basis (n= 30 subplots, 1998) and 365–440Mgha–1 on a 1ha basis. A large decrease of the total above-ground biomass density (>50Mg per ha per 2years) in several 0.2-ha subplots contributed to the overall decrease in the 6-ha total above-ground biomass. In the present study, we discuss the association between forest dynamics and biomass fluctuation, and the implication for carbon cycling in mature forests with emphasis on forest monitoring and assessments of soil and decomposition systems.  相似文献   

3.
A holm oak forest was exposed to an experimental drought during 5 years to elucidate the growth responses of the dominant species Quercus ilex, Arbutus unedo and Phillyrea latifolia. Soil water availability was partially reduced, about 15% as predicted for this area for the next decades by GCM and ecophysiological models, by plastic strips intercepting rainfall and by ditch exclusion of water runoff. The stem diameter increment was highly correlated with annual rainfall in all species, and drought treatment strongly reduced the diameter increment of Q. ilex (41%) and specially of A. unedo (63%), the species showing higher growth rates. Stem mortality rates were highly correlated with previous stem density, but drought treatment increased mortality rates in all species. Q. ilex showed the highest mortality rates (9% and 18% in control and drought plots, respectively), and P. latifolia experienced the lowest mortality rates (1% and 3% in control and drought plots, respectively). Drought strongly reduced the increment of live aboveground biomass during these 5 years (83%). A. unedo and Q. ilex experienced a high reduction in biomass increment by drought, whereas P. latifolia biomass increment was insensitive to drought. The different sensitivity to drought of the dominant species of the holm oak forest may be very important determining their future development and distribution in a drier environment as expected in Mediterranean areas for the next decades. These drier conditions could thus have strong effects on structure (species composition) and functioning (carbon uptake and biomass accumulation) of these Mediterranean forests.  相似文献   

4.
Abstract. Spatial patterning in the disturbance regime of a forest affects the vegetation dynamics. Therefore, the distribution of canopy gaps was examined in detail for a subalpine Abies-Picea forest in the northeastern United States. Gaps were not randomly distributed. The fraction of forest area in gaps and the abundance of gaps varied significantly with topographic position, elevation, and slope percent. On average, 15 % of the forest was influenced by gaps, but the gap fraction was greater near ridges (23 %) and near streams (27 %) than on the backslope (13 %). Also, gaps were larger and more abundant near streams and ridges. Gap fraction varied with elevation as well: more of the forest was disturbed at lower and higher elevations than at mid-elevations. Significantly more of the forest on steep slopes (≥ 30 %) was under gaps. As a result of this patterning, some parts of the Abies-Picea forest were predictably more disturbed than others. A remaining question is whether this patterning is sufficient to influence the regeneration environment and thus forest composition.  相似文献   

5.
The community of Charophytes in the Imboassica coastal lagoon in Brazil (22° 24 S and 42° 42 W) sometimes occupies almost the entire benthic region, and presents a large variation in C:N:P ratio. The effect of drawdown on the regeneration and buildup of biomass and on the nutrient concentration of these macroalgae was studied at three different sampling sites. Drawdown results in a high level of mortality in the macroalgae stands and after the water level later rises, the process of oospore germination begins. The drawdowns occurred in November 96 and January 97, and after March 97 we took samples in order to determine biomass values and the concentration of carbon, nitrogen and phosphorus. The results indicate that the fast growth of Charophytes may absorb a great amount of the nutrients entering the lagoon. The biomass reached maximum values of between 400 and 600 g DW m–2, and the C:N:P ratio varied from 51:7:1 to 1603:87:1, indicating that this macroalgae may grow in a wide range of nutrient concentration. The presence of this community in the Imboassica lagoon may act as one of the limiting factors controlling phytoplanktonic primary production, decreasing nutrient availability in the water column (`bottom-up' control) and keeping the water clear after drawdowns. Probably through the habitat structure produced by the great biomass reached, they provide substrate and shelter for the structuring of a community with grazing zooplankton, which acts as a `top-down' controlling mechanism on the phytoplankton.  相似文献   

6.
The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems ha–1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B × X–0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton ha–1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.  相似文献   

7.
8.
The effects of irrigation on fine root biomass, root production and litterfall were measured at the community level, in a semideciduous lowland forest in Panama. Biomass of roots less than 2 mm in dia. in the first 10 cm of the soil (measured with soil cores), was higher in irrigated (1.80 Mg ha-1) than in non-irrigated plots (1.24 Mg ha-1). During the dry season, productivity of roots (measured with ingrowth cylinders filled with root-free soil), was higher in irrigated (1.6 g m-2 day-1) than in control plots (0.3 g m-2 day-1). In control plots, root productivity was highly seasonal. Maximum root growth into the root-free soil, occurred during the transitions from dry to wet, and from wet to dry season, possibly as a response to water and/or nutrient pulses. Litterfall was not significantly different between irrigated (3.8 g m-2 day-1) and control plots (3.7 g m-2 day-1). The results of this study show that root-productivity is limited by the water supply during the dry season, and that water by itself, is not a limiting factor for community-level litter production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
10.
The levels of endogenous gibberellin A1 (GA1), GA3, GA4, GA9 and a cellulase-hydrolysable GA9-conjugate in needles and shoot stems of Sitka spruce [Picea sitchensis (Bong.) Carr.] grafts with different coning or flowering histories were estimated by combined gas chromatography-mass spectrometry selected ion monitoring using deuterated GA3, GA4 and GA9 as internal standards. The samples were taken at the approximate time of the start of flower-bud differentiation, i.e. when the shoots had elongated approx. 95% of the final length. The needles of the good-flowering clones contained 11–12 ng per g fresh weight (FW) and 15–28 ng· (g FW) –1 of GA9-conjugate and GA9, respectively. The shoot stems of the same material contained no detectable amounts of GA9-conjugate and 11–15 ng-(g FW)–1 of GA9. The amounts of GA9-conjugate and GA9 were apparently lower in the poor-flowering clones, the needles containing 4–9 ng-(g FW)–1 and 7–17 ng·(g FW)–1, respectively. Also in this material the shoot stems contained no detectable amounts of GA9-conjugate. The amounts of GA4 were very small in both materials, ranging from 1–1.6 ng-(g FW)–1. The good-flowering clones contained no detectable amounts of the more polar gibberellins, GA1 and GA3. The poor-flowering clones, on the other hand, contained high levels of GA15 17–19ng·(gFW)–1 in the needles and 10–13 ng·(g FW) –1 in the shoot stems, and also smaller amounts of GA3, 2–3 ng·(g FW)–1 in the needles and approx. 1 ng·(g FW)–1 in the shoot stems. The results demonstrate differences in GA-metabolism between the poor- and the good-flowering clones. The higher amounts of GA9-conjugate and GA9 might indicate a higher capacity for synthesizing GA4 in the good-flowering material. This synthesis does not, however, result in a build-up of the GA4-pool, maybe because of a high rate of turnover. Gibberellin A4 was apparently neither hydroxylated to GA1 nor converted to GA3 in the goodflowering material, as was the case in the poor-flowering material. This might indicate that gibberellin metabolism in the poor-flowering material is directed towards GA1 and GA3, GAs preferentially used in vegetative growth.Abbreviations FW fresh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

11.
12.
13.
Curt  Thomas  Lucot  Eric  Bouchaud  Monique 《Plant and Soil》2001,233(1):109-125
Douglas-fir is the main reforestation species in the French Massif Central area (14 000 ha), but little is known about its rooting strategy in different soil conditions. This information has important implications for the choice of better soils for settling Douglas-fir, and consequently limiting risks of failure, pests or diseases. As a result, the influence of edaphic conditions on rooting patterns of dominant Douglas-fir was studied over a large range of ecological conditions in a mid-elevation area of the French Massif Central (Beaujolais Mounts). Root systems were studied extensively using the trench profile wall technique and the sector method in 74 pure and evenly aged Douglas-fir stands. The stands were chosen as being representative of soil conditions among 165 stands in an auto-ecological study. The rooting patterns were related to seven typical soil profiles, and to root profile groups. Results stressed that edaphic constraints due to substratum and soil structures have a strong influence on root system morphology. Important variations in root biomass and vertical distribution were highlighted among soils. Small fine root biomass is maximal for soils with no major edaphic constraints. The vertical distribution of fine root biomass is positively correlated for some soil types with organic C, total N, and most cations. For some types it was negatively correlated with the amount of exchangeable aluminum and coarse fragments, and with constraining rock facies. Harsher soils however, showed no correlation between soil chemical variables and fine-root biomass. A practical implication is that Douglas-fir seems to be a pliable and adaptive species: variation in habit and root system biomass are considerable within a study area which was presumed uniform.  相似文献   

14.
Biomass partitioning is an important variable in terrestrial ecosystem carbon modeling. However, geographical and interannual variability in f(BNPP), defined as the fraction of belowground net primary productivity (BNPP) to total NPP, and its relationship with climatic variables, have not been explored. Here we addressed these issues by synthesizing 94 site-year field biomass data at 12 grassland sites around the world from a global NPP database and from the literature. Results showed that f(BNPP) varied from 0.40 to 0.86 across 12 sites. In general, savanna and humid savanna ecosystems had smaller f(BNPP) but larger interannual variability in f(BNPP), and cold desert steppes had larger f(BNPP) but smaller interannual variability. While mean f(BNPP) at a site decreased significantly with increasing mean annual temperature and precipitation across sites, no consistent temporal response of f(BNPP) with annual temperature and precipitation was found within sites. Based on these results, both geographical variability in f(BNPP) and the divergent responses of f(BNPP) with climatic variables at geographical and temporal scales should be considered in global C modeling.  相似文献   

15.
Microbial biomass C and N, and anaerobically mineralizable-N, were measured in the litter and mineral soil (0–10 cm and 10–20 cm depth) of Pinus radiata plantations in two trials on a nitrogen-deficient coastal sand. The trials comprised (a) stands of different age (1 to 33 years), with five of the seven stands studied being second rotation, and (b) a harvest-management trial, with stands established after different harvesting treatments of the first-rotation trees and understorey development controlled by manual weeding and chemical sprays. The harvest-management stands were sampled in the fifth year after the second-rotation establishment.In the stands of different age, the levels of microbial biomass C and N, and also mineralizable-N, in the litter and mineral soil showed no relationship with tree age and were similar to those in the oldest (33 years) stands of P. radiata. In the harvesting trial, five years after establishment of the second rotation, levels of microbial N and mineralizable-N in the litter and mineral soil were generally lowest where whole trees and the original forest floor had been removed; they were higher in associated plots in which the original forest floor had been removed but fertilizer N was regularly applied. No marked differences were then found between the other harvest treatments, viz. whole-tree harvest, stem-only harvest with slash remaining on site, and stem-only harvest plus extra added slash materials. In each trial, levels of microbial C and N and mineralizable-N were closely related to total C, and especially total N, in 0–10 cm depth mineral soil, but not generally in litter. Respiratory measurements strongly suggest that the microbial populations in mineral soil had a high metabolic activity.On an area basis in the harvest-management trial, total tree N and microbial N in the litter and mineral soil were lowest in stands where the original forest floor had been removed. In this particular treatment, microbial N in the litter plus mineral soil (0–20 cm depth) after five years of second-rotation growth comprised 7.3% of the total ecosystem N; values in the other treatments ranged between 5.6 and 6.0%.Our results emphasise the importance of slash and litter, and probably volunteer shrubs and herbaceous under-storey species, in conserving pools of potentially available N during the early stages of tree development.  相似文献   

16.
17.
Lawson  Dan  Inouye  Richard S.  Huntly  Nancy  Carson  Walter P. 《Plant Ecology》1999,145(2):267-279
We surveyed vegetation along forest margins in a 65-year chronosequence of old-fields at the Cedar Creek Natural History Area in east-central Minnesota, USA, to identify successional patterns of woody plants and to determine if these were correlated with soil nitrogen. We predicted that shrub and tree abundance, size, and distance of occurrence from the forest edge would be correlated with field age or soil nitrogen. Instead we did not find successional trends in the abundance or composition of woody species. Even in the oldest field the abundance of trees and shrubs was low and concentrated in areas close to the forest. Though trees were larger and present further from the forest edges in older fields, average tree height was less than 126 cm in all fields.Since we did not find successional trends we looked at various local factors (local seed sources, deer browsing, and forest edge aspect) and their relation to recruitment, mortality, or growth to explain variation among fields in abundance of trees or shrubs. The three most common tree species (Quercus rubra, Q. macrocarpa,and Populus tremuloides) all had a higher relative abundance of seedlings, and two (Q. rubra and Q. macrocarpa) had a higher relative abundance of large trees adjacent to forests with a high abundance of conspecific adults. Most trees taller than 20 cm were browsed by deer and were shorter in 1995 than they were in 1993. Mortality was higher for trees less than 30 cm indicating that mortality was size-dependent. Forest edge aspect did not significantly influence the abundance or demography of any species. Our results suggest that the patterns of seedling recruitment were largely determined by the proximity of seed sources and that these patterns may persist so that tree communities in old-fields resemble adjacent forests. Deer may be a significant factor in the suppression of tree populations in old-fields through repeated browsing which reduces tree growth and elevates tree mortality by prolonging the period of time trees remain susceptible to size-dependent mortality.  相似文献   

18.
19.
* A lack of data on responses of mature tree growth and water use to ambient ozone (O(3)) concentrations has been a major limitation in efforts to understand and model responses of forests to current and future changes in climate. * Here, hourly to seasonal patterns of stem growth and sap flow velocity were examined in mature trees from a mixed deciduous forest in eastern Tennessee (USA) to evaluate the effects of variations in ambient O(3) exposure and climate on patterns of stem growth and water use. * Ambient O(3) caused a periodic slowdown in seasonal growth patterns that was attributable in part to amplification of diurnal patterns of water loss in tree stems. This response was mediated by statistically significant increases in O(3)-induced daily sap flow and led to seasonal losses in stem growth of 30-50% for most species in a high-O(3) year. * Decreased growth and increased water use of mature forest trees under episodically high ambient O(3) concentrations suggest that O(3) will amplify the adverse effects of increasing temperatures on forest growth and forest hydrology.  相似文献   

20.
Over a period of three years (1990–1992) microbial biomass-C (Cmic), CO2 evolution, the Cmic:Corg ratio and the metabolic quotient for CO2 (qCO2) were determined in a Norway spruce stand (Höglwald) with experimentally acid-irrigated and limed plots since 1984. A clear relationship between soil pH and the level of microbial biomass-(Cmic) was noted, Cmic increasing with increasing soil pH in Oh or Ah horizons. More microbial biomass-C per unit C{org} (Cmic:Corg ratio) was detected in limed plots with elevated pH of Oh or Ah horizons as compared to unlimed plots with almost 3 times more Cmic per unit Corg in the limed Oh horizon. Differences here are significant at least at the p=0.05 level. The positive effects of liming (higher pH) on the Cmic:Corg ratio was more pronounced in the upper horizon (Oh)). The total CO2 evolution rate of unlimed plots was only half of that noted for limed plots which corresponded to the low microbial biomass levels of unlimed plots. The specific respiratory activity, qCO2, was similar and not significantly different between the unlimed control plot and the limed plot.Acid irrigation of plots with already low pH did not significantly affect the level of microbial biomass, the Cmic:Corg ratio or qCO2. An elevated qCO2 could be seen, however, for the limed + acid irrigated plot. The biomass seemed extremely stressed, showing with 3.8 g CO2-C mg-1 Cmic h-1 (Oh) the highest qCO2 value of all treatments. This was interpreted as a reflection of the continuous adaptation processes to the H+ ions by the microflora. The negative effect of acid irrigation of limed plots was also manifested in a decreased Cmic:Corg ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号