共查询到11条相似文献,搜索用时 0 毫秒
1.
Abstract The brackish water charophyte Lamprothamnium succinctum regulates its turgor pressure against changes in the external osmotic pressure. Upon hypotonic treatment, the rate of cytoplasmic streaming in the internodal cells fell to almost zero, and then recovered to the original value within 20 min. The decrease could be inhibited by lowering the external Ca2+ concentration in the hypotonic medium. Also, cytoplasmic streaming in tonoplast-free cells of L. succintum was sensitive to Ca2+ like freshwater charophyte. Thus, the concentration of free Ca2+ in the cytoplasm seems to increase transiently upon hypotonic treatment. 相似文献
2.
Involvement of calcium ion in turgor regulation upon hypotonic treatment in Lamprothamnium succinctum 总被引:1,自引:1,他引:0
Abstract When internodal cells of Lamprothamnium succinetum were exposed to a hypotonic medium containing more than 1 mol m?3 Ca2+, the elevated turgor pressure decreased and reached a steady state within 30–60 min. The hypotonic treatment caused the membrane potential to depolarize, with a time lag of ca. 1 min. The membrane conductance increased transiently with the same time lag and reached a peak value within 2–3 min. When the external Ca2+ concentration was lowered to 0.01 mol m?3, both turgor regulation and change in the membrane conductance were strongly inhibited, although the membrane depolarization was not affected. When the Ca2+ level was returned to the normal level, the cells recovered their ability for turgor regulation and the membrane conductance attained a peak value after ca. 15–30 s. This response time is definitely shorter than that needed for the conductance change in cells exposed to a hypotonic medium having a normal level of Ca2+ from the beginning. We thus conclude that at least two sequential processes are involved in turgor regulation: a Ca2+ -independent process, followed by a Ca2+-dependent process. 相似文献
3.
Increase in cytoplasmic calcium content in internodal cells of Lamprothamnium upon hypotonic treatment 总被引:1,自引:1,他引:1
Abstract Internodal cells of Lamprothamnium succinctum, a brackish water Characeae, regulate turgor pressure in response to changes in external osmotic pressure (turgor regulation). When internodal cells were transferred to a hypotonic medium containing 3.9 mol m?3 Ca2+, the cell osmotic pressure decreased and the original turgor pressure was recovered. During turgor regulation Ca content of the cytoplasm increased significantly. Lowering the external Ca2+ concentration from 3.9 to 0.01 mol m?3 inhibited this increase in cytoplasmic calcium content. In a hypotonic medium containing 0.01 mol m?3 Ca2+, turgor regulation was inhibited as previously reported (Okazaki & Tazawa, 1986a). Thus transient increase in cytoplasmic Ca, probably in the ionized form, induced by hypotonic treatment may play an important role in turgor regulation. 相似文献
4.
Yoshiji Okazaki 《Journal of plant research》1996,109(1):107-112
Internodal cells of a brackish water charophyte,Lamprothamnium succinctum (A. Br. in Ash.) R.D.W. regulate the turgor pressure in response to changes in both the cellular and the external osmotic
pressures. During turgor regulation upon hypotonic treatment, net effluxes of K+ and Cl− from the vacuole, membrane depolarization, a transient increase in the electrical membrane conductance and a transient increase
in concentration of cytoplasmic Ca2+ are induced. Activation of the plasmalemma Ca2+ channels and the Ca2+-controlled passive effluxes of K+ and Cl− through the plasmalemma ion channels are postulated. 相似文献
5.
Current-voltage (I/V) analysis and pharmacological dissection were applied to membranes of Lamprothamnium at the time of hypotonic stress. At least three types of process were found to be involved in the response to this stress.
- 1 The first 10min of exposure to hypotonic medium resulted in a depolarization of about 50mV accompanied by a decrease or no change in conductance. This depolarization occurred with either K+ or Ca2+ (and consequently C? channels inactivated.
- 2 The CI? channels opened mainly in the first 15min of the hypotonic stress, increasing the membrane conductance by about an order of magnitude.
- 3 The K+ conductance rose as the Cl? conductance started to diminish and reached a maximum after about 40 min.
6.
Rachelle Frenette‐Cotton Andrée‐Anne Marcoux Alexandre P. Garneau Micheline Noel Paul Isenring 《Journal of cellular physiology》2018,233(1):396-408
The K+‐Cl? cotransporters (KCCs) belong to the cation‐Cl? cotransporter family and consist of four isoforms and many splice variants. Their main role is to promote electroneutral efflux of K+ and Cl? ions across the surface of many cell types and, thereby, to regulate intracellular ion concentration, cell volume, and epithelial salt movement. These transport systems are induced by an increase in cell volume and are less active at lower intracellular [Cl?] (Cli), but the mechanisms at play are still ill‐defined. In this work, we have exploited the Xenopus laevis expression system to study the role of lysine‐deficient protein kinases (WNKs), protein phosphatases 1 (PP1s), and SPS1‐related proline/alanine‐rich kinase (SPAK) in KCC4 regulation during cell swelling. We have found that WNK4 and PP1 regulate KCC4 activity as part of a common signaling module, but that they do not exert their effects through SPAK or carrier dephosphorylation. We have also found that the phosphatases at play include PP1α and PP1γ1, but that WNK4 acts directly on the PP1s instead of the opposite. Unexpectedly, however, both cell swelling and a T926A substitution in the C‐terminus of full‐length KCC4 led to higher levels of heterologous K+‐Cl? cotransport and overall carrier phosphorylation. These results imply that the response to cell swelling must also involve allosteric‐sensitive kinase‐dependent phosphoacceptor sites in KCC4. They are thus partially inconsistent with previous models of KCC regulation. 相似文献
7.
The effects of Ca2+ and cell turgor on Na+ influx were examined in two charophytes, lamprothamnium papulo-SUM (salt-tolerant) and Chara corallina (salt-sensitive), to try to identify causes of salinity toxicity. Mortality was associated with Na+ influx, with the two species showing similar sensitivities to high Na+ influx. In Lamprothamnium, toxic influxes of Na+ occurred at much higher external Na+ concentrations than in Chara. The differences in Na+ influx at the same Na+ concentration were not due to different responses to external Ca2+. Lamprothamnium adjusts its turgor in response to increasing NaCl whereas Chara cannot. In solutions of KC1 up to at least 200 mol m-3, however, Chara regulated turgor, and when KC1 was subsequently replaced with NaCl, Na+ influx was low and similar to that in Lamprothamnium at the same Na* concentration. Chara cells which were not turgor-adjusted in KCI had Na+ influxes 2-5-fold higher than the turgid cells. Thus, it appears that turgor is a major determinant of Na+ influx, and therefore of cell survival. We found no evidence that the mechanism of Na+ influx in Chara is different from that in Lamprothamnium. Higher susceptibility of Chara to NaCl seems to result from inability to regulate turgor, in turn leading to toxic Na+ influx. 相似文献
8.
Internodal cells of a brackish water charophyte, Lamprothamnium succinctum, regulate turgor pressure in response to changes in external osmotic pressure by modifying vacuolar concentrations of KCl. An increase in cytosolic concentration of free Ca(2+) ([Ca(2+)](c)) is necessary for the progress of turgor regulation induced by hypotonic treatment. Initial changes in membrane potential and [Ca(2+)](c) upon hypotonic treatment were measured to examine the temporal relationship between the two parameters. Fura-dextran (potassium salt, M(r) 10,000, anionic) that had been injected into the cytosol was used to measure [Ca(2+)](c). Membrane potential and membrane conductance under a current-clamp condition were also measured. Decrease in external osmotic pressure by 0.16 Osm induced a simultaneous increase in [Ca(2+)](c) with both depolarization of the membrane and increase in the membrane conductance. Decrease in external osmotic pressure by 0.05 Osm induced a simultaneous increase in [Ca(2+)](c) with membrane depolarization but the increase in membrane conductance started later than the other two processes. There was a close temporal relationship between the increase in [Ca(2+)](c) and membrane depolarization on the initial response of turgor regulation induced by hypotonic treatment. 相似文献
9.
ClC-5, an endosomal Cl−/H+ antiporter that is mutated in Dent disease, is essential for endosomal acidification and re-uptake of small molecular weight proteins in the renal proximal tubule. Eukaryotic chloride channels (CLCs) contain two cytoplasmic CBS domains, motifs present in different proteins, the function of which is still poorly understood. Structural studies have shown that ClC-5 can bind to ATP at the interface between the CBS domains, but so far the potential functional consequences of nucleotide binding to ClC-5 have not been investigated. Here, we show that the direct application of ATP, ADP and AMP in inside-out patch experiments potentiates the current mediated by ClC-5 with similar affinities. The nucleotides increase the probability of ClC-5 to be in an active, transporting state. The residues Tyr 617 and Asp 727, but not Ser 618, are crucial for the potentiation. These results provide a mechanistic and structural framework for the interpretation of nucleotide regulation of a CLC transporter. 相似文献
10.
Several members of the CLC family are secondary active anion/proton exchangers, and not passive chloride channels. Among the exchangers, the endosomal ClC-5 protein that is mutated in Dent''s disease shows an extreme outward rectification that precludes a precise determination of its transport stoichiometry from measurements of the reversal potential. We developed a novel imaging method to determine the absolute proton flux in Xenopus oocytes from the extracellular proton gradient. We determined a transport stoichiometry of 2 Cl−/1 H+. Nitrate uncoupled proton transport but mutating the highly conserved serine 168 to proline, as found in the plant NO3−/H+ antiporter atClCa, led to coupled NO3−/H+ exchange. Among several amino acids tested at position 168, S168P was unique in mediating highly coupled NO3−/H+ exchange. We further found that ClC-5 is strongly stimulated by intracellular protons in an allosteric manner with an apparent pK of ∼7.2. A 2:1 stoichiometry appears to be a general property of CLC anion/proton exchangers. Serine 168 has an important function in determining anionic specificity of the exchange mechanism. 相似文献