首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of temperatures, durations of treatment, and derivations from spermatophores or spermaries on in vitro acrosome reaction of the spermatozoa in the Chinese mitten crab Eriocheir sinensis were investigated. The results showed that the different temperatures resulted in extremely significant differences (p < 0.01) in the time of beginning acrosome reaction, the time of the maximum percentage of acrosome reaction, and the maximum percentage of acrosome reaction of the spermatozoa from spermatophores; and the low temperature (−20, −80 °C and liquid nitrogen) induced acrosome reaction of more than 90% spermatozoa while 15 and 4 °C didn’t. Similar results occur in the spermatozoa, treated with −80 °C for 15 min, from spermaries but the time of beginning acrosome reaction and the time of the maximum percentage of acrosome reaction were obviously longer than those from spermatophores. In conclusion, low temperature can induce acrosome reaction, which is a novel and efficient operating method of inducing acrosome reaction; the spermatozoa might be affected physiologically to capacitate with chilling. The study may be beneficial to new understandings of mechanism of acrosome reaction and provide the foundational material for artificial fertilization and breeding of this crab and other commercial aquatic crustaceans.  相似文献   

2.
We investigated the morphology of spermatozoa, spermatophores and the anterior vas deferens (AVD) of the gecarcinucid freshwater crab Sundathelphusa philippina. The morphology of the acrosome (proportions, structure and arrangement of acrosomal layers) and the spermatophores complies with the known sperm and spermatophore morphology of the brachyuran family Gecarcinucidae. The sperm cells are packed within coenospermic spermatophores that are of a mucous type, lacking a complex spermatophore wall. Spermatophore formation takes place in the distal part of the AVD. The strongly proliferated inner epithelium of the vas deferens releases vesicles via apocrine secretion. These vesicles fuse with the incipient spermatophores that subsequently coalesce, thus forming the coenospermic aggregates that represent the mature spermatophores.  相似文献   

3.
The spermatozoa of Potamon fluviatile and P. ibericum are virtually indistinguishable and do not support separate subgeneric rank ( Potamon and Pontipotamon , respectively). Synapomorphic with the spermatozoa of the South African freshwater crab Potamonautes perlatus Sidneyi are the elongation of the two centrioles and disposition of the centrioles almost parallel to each other, unknown elsewhere in the Brachyura, and reduction of the thickened ring (homoplasic with grapsids and gecarcinids). Other, probably synapomorphic, similarities of Potamon and Potamonautes include the wide inner acrosome zone, absence of a definite acrosome ray zone (homoplasic in other families) and the cleistospermial spermatophores. Further similarities, of questionable polarity, are the simple, not multilaminar, nuclear membrane and the tendency of the nuclear arms to wrap around the nucleus. Differences of Potamon from Potamonautes , which possibly support their present generic separation and give weak support to their former separate familial placement in the Potamidae and Potamonautidae respectively, are perforation of the operculum and the weak, rather than strong, development of a periopercular rim. Absence in Potamon and Potamonautes of an accessory opercular ring and a xanthid ring separates them from xanthids. No close affinities with other heterotreme families are seen but their assignment to the Helerotremata is not in doubt. Their spermatozoa lack two of the distinctive features of thoracotreme spermatozoa (apical button on the operculum and concentric lamellation of the outer acrosome zone). No clear correlates of spermatozoon structure with a freshwater existence are recognizable but reduction of the thickened ring possibly relates to peculiarities of the acrosome reaction. However, the production of spermatophores with single spermatozoa (cleistospermia) is possibly a device to prevent polyspermy and wastage of the small number of lecithotrophic eggs produced in potamids.  相似文献   

4.
We investigated the ultrastructure of spermatozoa and spermatophores of 19 palaeotropical freshwater crab species [12 species of the Gecarcinucidae, 6 of the Potamidae (Potamiscinae), and 1 species of the Potamonautidae (Deckeniinae: Hydrothelphusini)]. The investigated Potamiscinae have densely packed coenospermic spermatophores with the exception of Thaiphusa sirikit and Johora singaporensis that exhibit cleistospermia. In contrast, in the Gecarcinucidae the spermatozoa are loosely embedded in a mucous matrix. The gecarcinucid and potamiscine sperm differ, furthermore, in acrosomal structure and size. The acrosome in the Gecarcinucidae is much smaller and spherical, while the larger acrosome in the Potamiscinae has the tendency to be depressed. In the Potamiscinae, an additional middle acrosomal zone evolved between the acrosome ray zone and the outer acrosomal zone. Within the Gecarcinucidae, a differentiation into two groups (Gecarcinucinae and Parathelphusinae) is not supported by the present spermatological data. The sperm morphology of Hydrothelphusa aff. madagascariensis (Potamonautidae: Deckeniinae) differs from Potamonautes sidneyi (Potamonautidae: Potamonautinae) in acrosomal size and shape, and in the absence of a periopercular rim. A closer relationship of Deckeniinae and Gecarcinucidae cannot be confirmed by spermatology. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
The spermatozoon and some spermatid stages of Siboglinum (Pogonophora) have been examined by light and electron microscopy. In the spermatozoon a helical acrosome, a helical nucleus and a “body” with axonema follow each other in normal sequence. Head and tail are joined by a very short neck region containing two modified centrioles. The posterior portion of the nucleus is surrounded by a mitochondrial sheath consisting of three tightly wound mitochondrial helices. In the main portion of the tail the 9+2 unit is sorrounded by a granular sheath of dense material. In the neck region a centriole adjunct develops into a dense substance containing about nine rods. At an early stage, when the centriolar apparatus and flagellum become associated with the nucleus, three large mitochondria with fairly regular cristae are seen at the base of the nucleus. A well developed Golgi apparatus is present in early stages. Rows of microtubules are observed encircling the spermatid nucleus. Compared with the primitive type of spermatozoon the pogonophore sperm shows elongated and specialized nucleus, acrosome and mitochondria. It is concluded that the ancestral form must have had a fairly primitive spermatozoon and that evolution has proceeded towards a modified sperm with complicated spiral structure in connection with the evolution of a modified biology of fertilization, viz. specialized spermatophores. It is not known how the spermatophore discharges the spermatozoa nor how the spermatozoa find their way to the eggs. Two kinds of sperms are produced in the gonads of Siboglinum. The atypical sperm is smaller than the typical one.  相似文献   

6.
蟹类精子超微结构的比较研究   总被引:11,自引:0,他引:11  
应用光镜和电镜,比较研究了三疣梭子蟹,中华绒螯蟹和长江华溪蟹的成熟精子。揭示3种蟹精子都是不能游动的无鞭毛精子,呈球形,前后略扁,精子前端出现一光滑的小圆面,圆面四周有内陷的沟环。沟环之后,精子表面凹凸不平,并伸出多数辐射臂。3种蟹精子均为高度特化的细胞,外被质膜,内含细胞核,顶体及退化的细胞质。  相似文献   

7.
This study describes spermatogenesis in a majid crab (Maja brachydactyla) using electron microscopy and reports the origin of the different organelles present in the spermatozoa. Spermatogenesis in M. brachydactyla follows the general pattern observed in other brachyuran species but with several peculiarities. Annulate lamellae have been reported in brachyuran spermatogenesis during the diplotene stage of first spermatocytes, the early and mid‐spermatids. Unlike previous observations, a Golgi complex has been found in mid‐spermatids and is involved in the development of the acrosome. The Golgi complex produces two types of vesicles: light vesicles and electron‐dense vesicles. The light vesicles merge into the cytoplasm, giving rise to the proacrosomal vesicle. The electron‐dense vesicles are implicated in the formation of an electron‐dense granule, which later merges with the proacrosomal vesicle. In the late spermatid, the endoplasmic reticulum and the Golgi complex degenerate and form the structures–organelles complex found in the spermatozoa. At the end of spermatogenesis, the materials in the proacrosomal vesicle aggregate in a two‐step process, forming the characteristic concentric three‐layered structure of the spermatozoon acrosome. The newly formed spermatozoa from testis show the typical brachyuran morphology. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The spermiogenesis consisting of five spermatid stages and the early spermatozoon has been investigated in Armorloricus elegans (Loricifera) with the use of transmission electron microscopy. The male reproductive system consists of three parts; testes, vasa deferentia and seminal vesicles. Caudally, the two seminal vesicles merge together in a ciliated duct and the excretory/gonadal—and digestive systems continue through the recto-urogenital canal, which opens via the lateral gonopores and the temporarily closed anal system. Spermiogenesis mainly occurs in the testes, whereas further maturation of the late spermatids and early spermatozoa occurs in the vasa deferentia and seminal vesicles. A maturation gradient (from spermatocytes to spermatozoa) is found from the posterior peripheral part of the testes to the anterior periphery and then centrally. During spermiogenesis the round nucleus becomes more osmiophilic and condensation of chromatin occurs. Later the nucleus elongates until it becomes rod-shaped in the early spermatozoa. In the second spermatid stage, a large vesicle is formed by saccules developed from the Golgi complex. This vesicle develops further and consists of three different osmiophilic parts with some crystal-like structures inside and is on the outside almost entirely surrounded by thick striated filaments. In the mid-piece the flagellum has a typical 9 × 2 + 2 axoneme and the two mitochondria are fused into a single sheet surrounding the flagellum. In the early spermatozoon stage an acrosomal-like cap structure with an acrosome filament appears proximal to the protruded rod-shaped nucleus. This cap is not formed by the Golgi complex and therefore might not be a true acrosome. Comparing the early spermatozoa of A. elegans with other cycloneuralians has shown some similarities with especially Kinorhyncha and Priapulida. These similarities are thought to be plesiomorphic.  相似文献   

9.
10.
The acrosome of Platycleis albopunctata (Orthoptera: Tettigoniidae) is relatively large and complex, consisting of an apical vesicle and two large wing-like extensions that give the spermatozoon the shape of an arrow. The wings have actin microfilaments and microtubules and are covered with a noticeable extracellular material. Actin filaments are present in the acrosome when it first appears in spermatid stages. The acrosome and the acrosomal attachment to the nucleus are more resistant than other structures to the reducing agents DTT and SDS. At the end of spermiogenesis, groups of spermatozoa juxtapose their sperm heads and become joined to form a spermatodesm encircled by an amorphous material. Treatment with the ionophore A23187 rapidly disrupted acrosomes of the free gametes, but acrosomes from spermatozoa contained in the spermatodesm were not disassembled. Packaging of sperm in a spermatodesm appears to protect the acrosome.  相似文献   

11.
Unlike the primitive type of spermatozoon found in most polychaetes, the spermatozoon of Autolytus has a bilateral symmetry with elongated nucleus, and the mitochondria surround the posterior part of the nucleus. A rather large disk-shaped acrosome is situated along one side of the anterior part of the nucleus. From the anterior margin of the distal centriole emerge long striated rootlets, which run along the nuclear envelope to the anterior part of the nucleus. The spermatozoon of Chitinopoma serrula has an elongated, slightly bent nucleus, a thimble-like acrosome apically on the anterior surface of the nucleus, and an elongated middle piece containing 4 rod-like mitochondria developed from spherical mitochondria surrounding the basal part of the tail flagellum. In the spermatozoon of Capitella capitata, both nucleus and middle piece are elongated compared to the primitive type. The large and conical acrosome is placed asymmetrically at the nucleus and consists of an acrosomal vesicle and subacrosomal substance. The greater part of the middle piece forms a collar around the initial part of the tail flagellum. The cytoplasm of the collar contains granular material. One or two small mitochondria lie around the 2 centrioles at the base of the nucleus.

These types of spermatozoa represent early steps in the evolution of modified spermatozoa combined with changed biology of reproduction. The modified spermatozoa are larger than the primitive ones.  相似文献   

12.
The male gonopores, male reproductive apparatus, spermatophore and spermatozoa of the Mediterranean hermit crab Paguristes eremita are described, using interference phase microscopy, scanning electron microscopy and transmission electron microscopy. A correlation is made between the gonopore morphology and the different kinds of setae accompanying them, and the reproductive biology of these crabs. Each testes merges into a tubular duct made up of four zones: (1) the collecting tubule with free spermatozoa; (2) the proximal zone, where the ampulla of the spermatophores starts to be formed; (3) the medial zone, where the ampulla is completed, the stalk lengthens and the pedestal is formed; (4) the distal zone, where the mature spermatophores are stored. The sizes of the different parts of the spermatophore and of the sperm are given and their exterior morphology and ultrastructure described and compared to congeners. The morphology of the gonopore, male reproductive system, spermatophore and spermatozoa of P. eremita are species-specific, clearly distinguishing the species from the other members of the family. The available spermatozoal and spermatophore data is used to place P. eremita within a sperm phylogeny of the hermit crab family Diogenidae.  相似文献   

13.
Summary Developing spermatids and mature spermatozoa from the isopod, Oniscus asellus and the amphipod, Orchestoidea sp. have been examined with the light microscope and the electron microscope and have been found to have similar morphologies. As spermiogenesis proceeds the nucleus migrates to one pole of the spermatid at which point an acrosome, contiguous rod, and cross-striated tail develop. The acrosomal vesicle elongates to a cone-shaped, mature acrosome lying at the apex of a cross-striated tail and nucleus which are situated at approximate forty-five degrees to each other. The cross-striated tail originates as an evagination of the spermatid plasma membrane near the acrosomal vesicle. The tail eventually grows to lengths of four to five hundred microns. The mature, tail-like appendage is cross-striated at major 750 to 800 Å, and minor 125 to 150 Å, periodicities. When observed in vitro, mature sperm of both species appear non-motile.Possible homologies of this unusual spermatozoon with other types of spermatozoa are made and it is concluded that: 1) isopod and amphipod spermatozoa should be classified as non-flagellate; 2) the cross-striated tail, previously thought to be a flagellum, is a non-motile structure associated in development and possible function with the acrosome; and 3) the rodlike structure contiguous with the acrosome is similar to perforatoria described in some vertebrate sperm.Supported by U.S.P.H.S. Grant No. NB-06285 and Training Grant No. 5-Tl-GM-202. — The author wishes to express his grateful appreciation for the technical assistance given by Miss Ann Barnett during the course of this investigation.  相似文献   

14.
15.
The spermatozoon of Tornatina sp. has been studied with phase-contrast light microscopy and transmission electron microscopy. The head of the spermatozoon consists of an elongate acrosome which caps the apex of an unusually complex, helical nucleus. This elaborate nuclear morphology has not been previously reported, but possibly is found in other opisthobranch gastropod spermatozoa. An axoneme is inserted deeply into the base of the nucleus whilst posterior from the nucleus, the axoneme is ensheathed successively by the mitochondrial derivative (midpiece) and 'glycogen' granules (glycogen piece). The midpiece exhibits fine structure similar to that observed in other euthyneuran spermatozoa (paracrystalline and matrix materials) and possesses a single helical compartment filled with what are probably glycogen granules. A dense ring structure occurs at the junction of the midpiece and glycogen piece. The spermatozoon of Tornatina and other gastropods (prosobranch and euthyneuran) are compared.  相似文献   

16.
In a previous paper, we described and discussed the possible functions of calcospherite-rich cells (R* cells) in the digestive gland of the shore crab, Carcinus maenas. We recently realised that electron micrographs in this publication presented neither typical R* cells nor their calcium phosphate granules. Indeed, our pictures showed spermatophores (filled with typical spermatozoa) that had contamined hepatopancreatic cell suspensions. As the present study indicates, this contamination is difficult to detect by optical microscopy because unstained R* cells closely resemble spermatophores. However, morphological differences between these cell types appear clearly when observed by electron microscopy. The present paper describes a comparative study of cell populations isolated from female digestive glands; it validates our previous results obtained with male hepatopancreas and suggests a low containation of those male cell fractions by spermatophores.  相似文献   

17.
The morphology of the spermatozoa of three species of echinothurid sea urchins, Asthenosoma ijimai, Araeosoma owstoni, Hapalosoma gemmiferum, was investigated by means of transmission and scanning electron microscopy. The spermatozoa of these three species of echinothurid sea urchins have similar fine structure, but they differ in several features from the more familiar regular sea urchins. 1) The external anatomy of the head region of the echinothurid spermatozoon is diagnostic in that it has a highly elongated head. 2) The spermatozoon of echinothurid sea urchins has a very long slender nucleus, protruding on its proximal end, so that the shape of the nucleus resembles a sperhead. 3) The acrosomal granule in the acrosomal vesicle of the echinothurid spermatozoon is not a mass of homogenous particulate material but an electron opaque rod condensed in the central part of the acrosomal vesicle. Scanning electron microscopic examination revealed that echinothurid spermatozoa form acrosomal processes similar to those of other regular sea urchins. 4) The basal body is situated just beneath the middle of the posterior protrusion of the nucleus. The distal centriole is located beside the basal body almost in contact with it. The axis of the distal centriole is almost but not quite parallel to that of the basal body. A satellite complex can be recognized around the posterior part of the proximal centriole.  相似文献   

18.
The ultrastructure of spermatozoa of Cucumaria japonica and a congeneric morphologically similar deep-sea species was studied. The spermatozoa of both C. japonica and C. conicospermium are similar to those of other holothurians: the acrosome is composed of an acrosomal granule and periacrosomal material; the centrioles lie at an acute angle to one another; and the proximal centriole is connected to the nuclear envelope by a flagellar rootlet. The spermatozoa of C. japonica differ from those of C. conicospermium in the shape of the head and the dimensions and position of the acrosome. In C. japonica, the acrosome is completely embedded in the nuclear fossa and measures 0.7 m. In C. conicospermium, only one-third of the acrosome is embedded in the nuclear fossa; this acrosome measures 1.3 m. A correlation between the structure of the sperm acrosome and that of the egg envelope is discussed.  相似文献   

19.
We studied the ultrastructure of spermatogenesis and spermatozoa in the northern quahaug, the clam Mercenaria mercenaria. Spermatogenetic cells gradually elongate. Mitochondria gradually fuse and increase in size and electron density. During spermatid differentiation, proacrosomal vesicles migrate towards the presumptive anterior pole of the nucleus and eventually form the acrosome. The spermatozoon of M. mercenaria is of a primitive type. It is composed of head, mid-piece, and tail. The acrosome shows a subacrosomal space with a short conical contour. The slightly curved nucleus of the spermatozoon contains fine-grained dense chromatin. The middle piece consists of a centriolar complex which is surrounded by four mitochondria. The flagellum has a standard “9 + 2” microtubular structure. The ultrastructure of spermatozoa and spermatogenesis of M. mercenaria shares a number of features with other species of the family Veneridae. M. mercenaria may be a suitable model species for further investigations into the mechanisms of spermatogenesis in the Bivalvia.  相似文献   

20.
Spermatogenesis and the morphology of mature sperm in the free-living chromadorid Paracyatholaimus pugettensis from the Sea of Japan were studied using transmission electron microscopy. In spermatocytes fibrous bodies (FBs) appear; in spermatids, the synthetic apparatus is located in the residual body, whereas the main cell body (MCB) houses the nucleus, mitochondria, and FBs. The nucleus of the spermatid consists of a loose fibrous chromatin that is not surrounded by a nuclear envelope; centrioles lie in the perinuclear cytoplasm. The plasma membrane of the spermatid MCB forms numerous filopodia. Immature spermatozoa from the proximal part of the testis are polygonal cells with a central nucleus. The latter is surrounded by mitochondria and FBs with poorly defined boundaries. The immature spermatozoa bear lamellipodia all along their surface. Mature spermatozoa are polarized cells with an anterior pseudopodium, which is filled with filaments that make up the cytoskeleton; the MCB houses a nucleus that is surrounded by mitochondria and osmiphilic bodies. In many ultrastructural characteristics, the spermatozoa of P. Pugettensis are similar to those of most nematode species studied so far (i.e., they are ameboid, have no acrosome, axoneme, or nuclear envelope). On the other hand, as in other chromadorids, no aberrant membrane organelles were observed during spermatogenesis of P. Pugettensis.Original Russian Text Copyright © 2004 by Biologiya Morya, Zograf, Yushin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号