首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Formalin fixation has enjoyed widespread use in the preparation of antibacterial and other vaccines, but rather less use in antitumor vaccines. Previous studies from our laboratories have demonstrated the efficacy of antimelanoma vaccines in mice, produced from formalinized antigens shed by cultured melanoma cells. In this study, we provide evidence that the immunodominant component of that vaccine is the well-characterized B700 melanoma antigen.  相似文献   

2.
Twelve peptides derived from melanocyte differentiation proteins and cancer-testis Ags were combined and administered in a single mixture to patients with resected stage IIB, III, or IV melanoma. Five of the 12 peptides included in this mixture had not previously been evaluated for their immunogenicity in vivo following vaccination. We report in this study that at least three of these five peptides (MAGE-A1(96-104), MAGE-A10(254-262), and gp100(614-622)) are immunogenic when administered with GM-CSF in Montanide ISA-51 adjuvant. T cells secreting IFN-gamma in response to peptide-pulsed target cells were detected in peripheral blood and in the sentinel immunized node, the node draining a vaccine site, after three weekly injections. The magnitude of response typically reached a maximum after two vaccines, and though sometimes diminished thereafter, those responses typically were still detectable 6 wks after the last vaccines. Most importantly, tumor cell lines expressing the appropriate HLA-A restriction element and MAGE-A1, MAGE-A10, or gp100 proteins were lysed by corresponding CTL. This report supports the continued use of the MAGE-A1(96-104), MAGE-A10(254-262), and gp100(614-622) epitopes in peptide-based melanoma vaccines and thus expands the list of immunogenic peptide Ags available for human use. Cancer-testis Ags are expressed in multiple types of cancer; thus the MAGE-A1(96-104) and MAGE-A10(254-262) peptides may be considered for inclusion in vaccines against cancers of other histologic types, in addition to melanoma.  相似文献   

3.
We are exploring cell-based vaccines as a treatment for the 50% of patients with large primary uveal melanomas who develop lethal metastatic disease. MHC II uveal melanoma vaccines are MHC class I+ uveal melanoma cells transduced with CD80 genes and MHC II genes syngeneic to the recipient. Previous studies demonstrated that the vaccines activate tumor-specific CD4+ T cells from patients with metastatic uveal melanoma. We have hypothesized that vaccine potency is due to the absence of the MHC II-associated invariant chain (Ii). In the absence of Ii, newly synthesized MHC II molecules traffic intracellularly via a non-traditional pathway where they encounter and bind novel tumor peptides. Using confocal microscopy, we now confirm this hypothesis and demonstrate that MHC II molecules are present in both the endosomal and secretory pathways in vaccine cells. We also demonstrate that uveal melanoma MHC II vaccines activate uveal melanoma-specific, cytolytic CD8+ T cells that do not lyse normal fibroblasts or other tumor cells. Surprisingly, the CD8+ T cells are cytolytic for HLA-A syngeneic and MHC I-mismatched uveal melanomas. Collectively, these studies demonstrate that MHC II uveal melanoma vaccines are potent activators of tumor-specific CD4+ and CD8+ T cells and suggest that the non-conventional intracellular trafficking pattern of MHC II may contribute to their enhanced immunogenicity. Since MHC I compatibility is unnecessary for the activation of cytolytic CD8+ T cells, the vaccines could be used in uveal melanoma patients without regard to MHC I genotype.  相似文献   

4.
The immunogenicity and tumor-protective activity of different vaccines were examined and compared with murine B16 melanoma. All vaccines were prepared from material shed into culture medium by B16 melanoma cells. Vaccine I was generated by concentrating the shed material. Vaccine II was partially purified by precipitating the shed material with 50% ammonium sulfate followed by sephadex G-200 column chromatography. Vaccine III was concentrated shed material that was treated with 0.5% NP-40 and then ultracentrifuged to remove transplantation antigens. Mice were immunized to equal protein concentrations of vaccines weekly for 5 weeks or to control buffer. Antibody, cellular, and tumor-protective immunity to melanoma was measured in all mice 2 weeks following the last immunization. All three vaccine preparations were immunogenic. Vaccine preparation I appeared to be the most immunogenic and the one that most consistently augmented tumor-protective immunity. Augmentation in tumor-protective immunity correlated better with increase in cellular than in humoral immunity to melanoma.  相似文献   

5.
Melanoma is the most serious type of skin cancer which develops from the occurrence of genetic mutations in the melanocytes. Based on the features of melanoma tumors such as location, genetic profile and stage, there are several therapeutic strategies including surgery, chemotherapy, and radiotherapy. However, because of the appearance resistance mechanisms, the efficiency of these treatments strategies may be reduced. It has been demonstrated that therapeutic monoclonal antibodies can improve the efficiency of melanoma therapies. Recently, several mAbs, such as nivolumab, pembrolizumab, and ipilimumab, were approved for the immunotherapy of melanoma. The antibodies inhibit immune checkpoint receptors such as CTL4 and pd-1. Another therapeutic strategy for the treatment of melanoma is cancer vaccines, which improve clinical outcomes in patients. The combination therapy using antibodies and gene vaccine give us a new perspective in the treatment of melanoma patients. Herein, we present the recent progressions in the melanoma immunotherapy, especially dendritic cells mRNA vaccines by reviewing recent literature.  相似文献   

6.
RNA-based genetic immunization represents an alternative novel strategy for antigen-specific cancer vaccines. In the present paper we investigate the use of synthetic messenger RNA in an experimental melanoma model. We show that gene gun-based immunization using synthetic RNA mediates gene expression in the epidermis and effectively induces antigen-specific cellular and humoral immunity in mice in vivo. Importantly, bombardment of the skin with RNA coding for the melanocytic self-antigen TRP2 linked to the immunogenic protein EGFP was associated with protection against experimentally induced B16 melanoma lung metastases and vitiligo-like fur depigmentation. Our results provide a scientific basis for clinical trials using synthetic mRNA encoding melanocytic antigens linked to immunogenic helper proteins for vaccination of patients with melanoma. Julia Steitz and Cedrik M. Britten contributed equally to this work.  相似文献   

7.
Previous studies have shown that recognition of melanoma by cytotoxic T lymphocytes may be restricted by HLA-A1, A2 and other HLA antigens. The present study examined the cytotoxic specificity and major histocompatibility complex restriction of cloned cytotoxic T lymphocytes (CTL) isolated from a patient with the HLA phenotype A3,31 who had been immunized with a vaccine prepared from HLA-A1,3 melanoma cells. Cytotoxic assays against HLA-typed allogeneic melanoma cells indicated that cloned CTL from the patient were able to kill allogeneic melanoma cells expressing HLA-A1 but not other HLA-A1-positive cells. Studies on a representative clone indicated that proliferation and cytokine (tumour necrosis factor ) production in response to melanoma cells was also associated with HLA-A1 on melanoma cells. Response to the melanoma cells was associated with interleukin-4 (IL-4) rather than IL-2 production. The antigen recognized in the context of HLA-A1 on allogeneic melanoma cells was detected in cytotoxic assays on cells from 9 of 12 HLA-A1+ melanoma cell lines and did not appear to be the product of the MAGE-1 or-3 genes. These findings suggest that T cells can recognize melanoma antigens in the context of alloantigens and that allogeneic vaccines containing immunodominant alloantigens may generate CTL that are ineffective against autologous melanoma. The study does not, however, exclude the possibility that CTL with specificity to the latter may be activated by allogeneic vaccines, and further studies are needed to answer this question.  相似文献   

8.
Safety-tested modified vaccinia virus Ankara (MVA) has been established as a potent vector system for the development of candidate recombinant vaccines. The versatility of the vector system was recently demonstrated by the rapid production of experimental MVA vaccines for immunization against severe acute respiratory syndrome associated coronavirus. Promising results were also obtained in the delivery of Epstein-Barr virus or human cytomegalovirus antigens and from the clinical testing of MVA vectors for vaccination against immunodeficiency virus, papilloma virus, Plasmodium falciparum or melanoma. Moreover, MVA is considered to be a prime candidate vaccine for safer protection against orthopoxvirus infections. Thus, vector development to challenge dilemmas in vaccinology or immunization against poxvirus bio-threat seems possible, yet the right choice should be made for a most beneficial use.  相似文献   

9.
An HLA-A2 polyepitope vaccine for melanoma immunotherapy.   总被引:3,自引:0,他引:3  
Epitope-based vaccination strategies designed to induce tumor-specific CD8 CTL are being widely considered for cancer immunotherapy. Here we describe a recombinant poxvirus vaccine that codes for ten HLA-A2-restricted epitopes derived from five melanoma Ags conjoined in an artificial polyepitope or polytope construct. Target cells infected with the melanoma polytope vaccinia were recognized by three different epitope-specific CTL lines derived from HLA-A2 melanoma patients, and CTL responses to seven of the epitopes were generated in at least one of six HLA-A2-transgenic mice immunized with the construct. CTL lines derived from vaccinated transgenic mice were also able to kill melanoma cells in vitro. Multiple epitopes within the polytope construct were therefore shown to be individually immunogenic, illustrating the feasibility of the polytope approach for melanoma immunotherapy. Tumor escape from CTL surveillance, through down regulation of individual tumor Ags and MHC alleles, might be overcome by polytope vaccines, which simultaneously target multiple cancer Ags.  相似文献   

10.
Lee EY  Park KS  Yoon YJ  Lee J  Moon HG  Jang SC  Choi KH  Kim YK  Gho YS 《PloS one》2012,7(3):e33330
Cancer vaccines with optimal tumor-associated antigens show promise for anti-tumor immunotherapy. Recently, nano-sized vesicles, such as exosomes derived from tumors, were suggested as potential antigen candidates, although the total yield of exosomes is not sufficient for clinical applications. In the present study, we developed a new vaccine strategy based on nano-sized vesicles derived from primary autologous tumors. Through homogenization and sonication of tumor tissues, we achieved high yields of vesicle-bound antigens. These nanovesicles were enriched with antigenic membrane targets but lacked nuclear autoantigens. Furthermore, these nanovesicles together with adjuvant activated dendritic cells in vitro, and induced effective anti-tumor immune responses in both primary and metastatic melanoma mouse models. Therefore, autologous tumor-derived nanovesicles may represent a novel source of antigens with high-level immunogenicity for use in acellular vaccines without compromising safety. Our strategy is cost-effective and can be applied to patient-specific cancer therapeutic vaccination.  相似文献   

11.
The use of whole cell tumor vaccines and various means of loading antigen onto dendritic cells have been under investigation for over a decade. Induction of apoptosis and the exposure of immune-stimulating proteins are thought to be beneficial for the use in immunotherapy protocols, but conclusive evidence in the clinical setting has been lacking. Incubation of melanoma cell lines with interferon-gamma (IFN-γ) increased phosphatidylserine and calreticulin exposure, but not in the IFN-γ-resistant cell line Lu-1205. Short-term autologous melanoma cell lines used for loading dendritic cells for immunotherapy showed differential response to the pro-apoptotic effects of IFN-γ. These IFN-γ-treated tumor cells (TCs) were irradiated and used for loading antigen for dendritic cell therapy. A log-rank comparison of survival for patients whose TCs were found to be either sensitive (upregulated phosphatidylserine and calreticulin) or insensitive to IFN-γ revealed a strongly significant correlation to progression-free (p = 0.003) and overall survival (p = 0.002) favorably in those patients whose cell lines were resistant to the proapoptotic effect of IFN-γ. These results suggest that the use of IFN-γ in anti-melanoma dendritic cell-based immunotherapy may only be beneficial when the cells do not undergo apoptosis in response to IFN-γ and support the contention that the use of some apoptotic cells in vaccines may be detrimental.  相似文献   

12.
IL-2 has been approved for treatment of patients with cancer. Moreover, it has been used as a component of vaccines against cancer. In this regard, we have recently demonstrated that dendritic cell-based peptide vaccination in mice required IL-2 to mount an effective immune response against established melanoma metastases. In this study, we confirm this observation by use of tumor-targeted IL-2. However, the development of a protective systemic memory was substantially impaired by this measure, i.e., mice, which successfully rejected s.c. tumors of B16 melanoma after vaccination with dendritic cells pulsed with tyrosinase-related protein 2-derived peptides plus a boost with targeted IL-2, failed to reject a rechallenge with experimental pulmonary metastases. Detailed analysis revealed a change in the distribution of the tumor-reactive T cell population: although targeted IL-2 expanded the local effector population, tyrosinase-related protein 2-reactive T cells were almost completely depleted from lymphatic tissues.  相似文献   

13.
We have reported that treatment of melanoma patients with a vaccine consisting of autologous tumor cells modified with the hapten, dinitrophenyl (DNP) and preceded by low-dose cyclophosphamide induces delayed-type hypersensitivity (DTH) to autologous, unmodified tumor cells and that this response is a significant predictor of survival. We analyzed the vaccines prepared for 284 patients who were treated following resection of regional or distant metastases to find out whether the dose and composition determined the immunological response. A positive DTH response (> or =5 mm induration) to unmodified autologous tumor cells was induced in 57% of the patients (median: 5 mm; range: 0-22 mm). Regression analysis showed no significant association between the magnitude of DTH and the number of live (trypan blue exclusion) melanoma cells per dose over a dosage range of 0.5-25.0 x 10(6). Surprisingly, there was a small but significant positive relationship between the mean number of dead cells in the vaccines of a given patient and that patient's maximum DTH to unmodified melanoma cells. Only 37% of patients whose vaccines contained >50% live cells developed DTH, as compared with 69% and 65% of patients whose vaccines contained 26% to 50% or < or =25% live cells, respectively. Thus, it appears that dead tumor cells contribute to the immunogenicity of the DNP vaccine, but other factors such as the administration schedule may be more important determinants of immunological and clinical outcome.  相似文献   

14.
BACKGROUND: We have previously shown that xenogenic DNA vaccines encoding rat neu and melanosomal differentiation Ag induce tumor immunity. Others have developed vaccines targeting tumor neovasculature. Tumor endothelial marker 8 (TEM8) is expressed in the neovasculature of human tumors, and in the mouse melanoma B16, but its expression is limited in normal adult tissues. We describe a DNA vaccine combining xenogeneic tumor Ag and TEM8. METHODS: In-situ hybridization was used to detect TEM8 RNA in mouse tumors. Mice transgenic for the rat neu proto-oncogene were immunized with DNA vaccines encoding TEM8 and the extracellular domain of rat neu and challenged with the 233-VSGA1 breast cancer cell line. In parallel experiments, C57BL/6 mice were immunized with TEM8 and human tyrosinase-related protein 1 (hTYRP1/hgp75) and challenged with B16F10 melanoma. RESULTS: TEM8 was expressed in the stroma of transplantable mouse breast and melanoma tumors. In both model systems, TEM8 DNA had no activity as a single agent but significantly enhanced the anit-tumor immunity of neu and hTYRP1/hgp75 DNA vaccines when given in concert. The observed synergy was dependent upon CD8+ T cells, as depletion of this cell population just prior to tumor challenge obviated the effect of the TEM8 vaccine in both tumor models. DISCUSSION: A local immune responses to TEM8 may increase inflammation or tumor necrosis within the tumor, resulting in improved Ag presentation of HER2/neu and hTYRP1/hgp75. Alternatively, TEM8 expression in host APC may act more as an adjuvant than an immunologic target.  相似文献   

15.
Activation of innate immune cells through TLR triggers immunomodulating events that enhance cell-mediated immunity, raising the possibility that ligands to these receptors might act as adjuvants in conjunction with T cell activating vaccines. In this report, topical imiquimod, a synthetic TLR7 agonist, significantly enhanced the protective antitumor effects of a live, recombinant listeria vaccine against murine melanoma. This tumor protective effect was not dependent on direct application to the tumor and was associated with an increase in tumor-associated and splenic dendritic cells. Additionally, the combination of imiquimod treatment with prior vaccination led to development of localized vitiligo. These findings indicate that activation of the innate immune system with TLR ligands stimulates dendritic cell activity resulting in a bypass of peripheral tolerance and enhanced antitumor activity. The results of these studies have broad implications for future designs of immunotherapeutic vaccines against tumors and the treatment of metastatic melanoma.  相似文献   

16.
Peptide mimics of a conformational epitope that is recognized by a mAb with antitumor activity are promising candidates for formulations of anticancer vaccines. These mimotope vaccines are able to induce a polyclonal Ab response focused to the determinant of the mAb. Such attempts at cancer immunotherapy are of special interest for malignant melanoma that is highly resistant to chemotherapy and radiotherapy. In this study, we describe for the first time the design and immunogenicity of a vaccine containing a mimotope of the human high m.w. melanoma-associated Ag (HMW-MAA) and the biological potential of the induced Abs. Mimotopes were selected from a pVIII-9mer phage display peptide library with the anti-HMW-MAA mAb 225.28S. The mimotope vaccine was then generated by coupling the most suitable candidate mimotope to tetanus toxoid as an immunogenic carrier. Immunization of rabbits with this vaccine induced a specific humoral immune response directed toward the epitope recognized by the mAb 225.28S on the native HMW-MAA. The induced Abs inhibited the in vitro growth of the melanoma cell line 518A2 up to 62%. In addition, the Abs mediated 26% lysis of 518A2 cells in Ab-dependent cellular cytotoxicity. Our results indicate a possible application of this mimotope vaccine as a novel immunotherapeutic agent for the treatment of malignant melanoma.  相似文献   

17.
In this study, a human melanoma vaccine induced antibody responses in mice that varied significantly from animal to animal. BALB/c mice were immunized to a xenogenic human polyvalent melanoma vaccine that has been used in phase II clinical trials in over 600 patients. Mice were bled biweekly for up to 6 weeks to measure antibody responses. IgG antibody responses to the melanoma vaccine components were detectable within 2 weeks but were much stronger at 4 and 6 weeks. When the pooled sera were further analyzed by Western blot, a complex pattern of antigens was detected. When individual sera from identically immunized mice were assayed by Western blot, a consistent, reproducible pattern of antigen recognition was not seen. Rather, we found significantly different antibody responses among the mice. Both the intensity of antibody responses and the pattern of antigens recognized varied from animal to animal. Although there appeared to be immunodominant antigens that produced antibody responses in most mice, no single antigen induced antibody responses in all mice. These results demonstrate that polyvalent vaccines induce heterogeneous antibody responses in mice treated identically. Analysis of the response of selected melanoma patients immunized to the same vaccine revealed similar antibody responses to the antigens in the melanoma vaccine. Heterogeneity may hamper interpretation of vaccine immunogenicity and relevant tumor antigens in humans.  相似文献   

18.
Anticancer vaccines have been extensively studied in animal models and in clinical trials. While vaccination can lead to tumor protection in numerous murine models, objective tumor regressions after anticancer vaccination in clinical trials have been rare. B16 is a poorly immunogenic murine melanoma that has been extensively used in anticancer vaccination experiments. Because B16 has been widely used, different vaccination strategies can be compared. We reviewed the results obtained when B16 was treated with five common vaccine types: recombinant viral vaccines, DNA vaccines, dendritic cell vaccines, whole-tumor vaccines, and peptide vaccines. We also reviewed the results obtained when B16 was treated with vaccines combined with adoptive transfer of tumor antigen-specific T cells. We found several characteristics of vaccination regimens that were associated with antitumor efficacy. Many vaccines that incorporated xenogeneic antigens exhibited more potent anticancer activity than vaccines that were identical except that they incorporated the syngeneic version of the same antigen. Interleukin-2 enhanced the antitumor efficacy of several vaccines. Finally, several effective regimens generated large numbers of tumor antigen-specific CD8(+) T cells. Identification of vaccine characteristics that are associated with antitumor efficacy may aid in the development of more effective anticancer vaccination strategies.  相似文献   

19.
Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients. Sorting and expansion of tetramer(+) CD8(+) T cells allowed the isolation of tetramer(bright) and tetramer(dull) populations that specifically recognized the peptide Ag with high and low avidity, respectively. Remarkably, only high avidity CAMEL-specific CTL were able to recognize Ag-expressing tumor cells. A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes. This analysis revealed that tumor-associated CD8(+) T cell epitopes are simultaneously and efficiently generated from both primary and nonprimary ORF products of LAGE-1 and NY-ESO-1 genes and, importantly, that this occurs in the majority of melanoma tumors. These findings underscore the in vivo immunological relevance of CTL epitopes derived from nonprimary ORF products and support their use as candidate vaccines for inducing tumor specific cell-mediated immunity against cancer.  相似文献   

20.
Subcutaneous injection of GM-CSF-expressing cancer cells into experimental animals results in protective cancer immunity. To delineate the mode of action of such vaccines, we used trinitrophenyl, the antigenic moiety of the contact allergen trinitrochlorobenzene, as surrogate Ag. Trinitrophenyl-derivatized bone marrow-derived dendritic cells were found to elicit a contact hypersensitivity response in syngeneic, but not in allogeneic recipients, compatible with their expected mode of direct Ag presentation. When expressing GM-CSF, haptenized M3 melanoma cells were also able to induce a contact hypersensitivity response but, in contrast to bone marrow-derived dendritic cells, not only in syngeneic but also in allogeneic recipients. This argues for a critical role of host APC. To identify their nature, we introduced the beta-galactosidase (betagal) gene into M3-GM cells. Their administration activated betagal-specific, L(d)-restricted CTL in syngeneic BALB/c mice. Evaluation of lymph nodes draining M3-GM-betagal injection sites revealed the presence of cells presenting the respective L(d)-binding betagal peptide epitope. Based on their capacity to activate betagal-specific CTL, they were identified as being CD11c(+) dendritic cells. These experiments provide a rational basis for the use of GM-CSF-based melanoma cell vaccines in an allogeneic setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号