首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The microcystin content of a variety of Microcystis spp., from both laboratory strains and natural blooms, was analysed by HPLC. The microcystin content of laboratory strains ranged from 1.6 to 4.3μgmg?1 dry weight. Yearly and seasonal variation was detected in an analysis of bloom material collected from Bautzen Reservoir over a 3-year period. The microcystin concentration in bloom material ranged from undetectable to 1.16 μg ml?1 dry weight. 2. Toxicity of laboratory and natural Microcystis to Daphnia pulicaria was determined using an established LC50 technique. Partially purified water extracts from different Microcystis samples exhibited a wide range of toxicity. The highest activity was found in natural Microcystis samples, with an LC50 of 36 μgm?1 dry weight of Microcystis, whereas one strain did not appear toxic at 1600 μg ml?1. 3. No correlation was found between the concentrations of microcystins of different laboratory and natural Microcystis strains and the toxicity of extracts to Daphnia pulicaria from the same strains. Therefore, we discriminated between hepatotoxic microcystins and the compound(s) that is toxic to Daphnia, here termed DTC (Daphnia-toxic compound), which is independent of microcystins.  相似文献   

2.
Toxicity of Microcystis blooms to warm-blooded animals generated by microcystins has bew reported world wide. The ecological relevance of microcystin production for cyanobacteria remains unknown. The microcystin concentration in Microcystis blooms occurring in the Bautzen reservoir Was investigated. The microcystin content of samples were determined by HPLC and ranged from undetectabel to 14.7 μg mg−1. Various chemical and physical parameters were monitored at the same time as Microcystis sampling, however, there was no correlation between these parameters and microcystin dynamics. The spatial distribution of microcystin in the Microcystis population was investigated once and showed no difference between samples taken at five stations. The microcystin concentration in ihc cell free water from the reservoir was below the detection threshold (< 1 μg L−1). Size dependent Fractions of the Microcystis population analyzed for microcystin concentration correlated with colony sim. In the small fraction (>30 <66 μm) microcystin was not detected. In the medium fraction (> 6 h < 100μm) lower microcystin concentrations were detected than in large fraction (>100μm) in which the highest microcystin concentrations were found.  相似文献   

3.
Microcystins (MCs) have a toxic effect on crustacean zooplankton in the laboratory, but there is little or no unequivocal evidence in the literature of their lethal effects on crustacean zooplankton in the field. We used the natural microcystins extracted from Microcystis spp. to test if they could cause any negative effects on crustacean zooplankton. We conducted three experiments in enclosures with water from Lake Taihu, China, and microcystins derived by extraction from Microcystis spp. collected from the lake when the species was in bloom conditions. Initial concentrations of extracellular microcystins (EMCs = MC-RR + MC-LR + MC-YR) ranged from 9.7 to 44.9 μg/L in treatments with microcystin addition. Microcystin concentrations sharply decreased on second day in all the three experiments. EMCs at the end of the experiments varied from only 2.7 to 14.2 % of the levels at the start of the experiments. The dominant species of crustacean zooplankton in the lake were Bosmina longirotris, Ceriodaphnia cornuta, Mesocyclops spp., Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus. ANOVA analysis showed that the density and biomass of cladoceran and copepod did not significantly differ between treatments with microcystin addition and controls. Our results indicate that microcystins derived from lysing Microcystis do not cause any negative effects on crustacean zooplankton.  相似文献   

4.
Toxin production of cyanobacteria is increased by exposure to zooplankton   总被引:20,自引:0,他引:20  
1. Cyanobacterial toxin production in response to direct and indirect zooplankton feeding activity was examined using four strains of Microcystis aeruginosa, of which three were previously reported to be toxic to zooplankton and one non‐toxic. Direct (Microcystis cultured with zooplankton) and indirect effects (Microcystis cultured with filtered zooplankton culture media, ZCMF) were tested for the zooplankton species, Moina macrocopa, Daphnia magna or D. pulex. 2. With direct exposure to zooplankton, increased mass‐specific microcystin productions occurred in all Microcystis strains, with mean microcystin concentrations up to five times greater (61.5–177.3 μg g?1 dry cell) than the controls. 3. With indirect exposure, mass‐specific microcystin production increased over controls in three strains of M. aeruginosa. Mean maximum concentrations of microcystin during the experiment were 92.6–125.7 μg g?1 dry cell. 4. These results suggest that several strains of Microcystis aeruginosa increased toxin production in response to direct and indirect exposure to herbivorous zooplankton of several species, and support the hypothesis that this response is an induced defence mediated by the release of info‐chemicals from zooplankton.  相似文献   

5.
The benthic recruitment of Microcystis was simulated in vitro in order to characterize the colonies of Microcystis recruited and to study the impact of intracellular and extracellular microcystins (MCs), and the influence of colony size on the recruitment process. We observed recruitment dynamics consisting of a lag phase followed by a peak and then a return to low recruitment rates, mainly controlled by passive resuspension throughout the experiment, and by physiological processes during the recruitment peak. Ninety‐seven percent of the Microcystis colonies recruited were <160 μm in maximum length, and their cells contained much greater amounts of MCs (0.26 ± 0.14 pg eq microcystin leucine‐arginine variant [MC‐LR] · cell?1) than those in benthic colonies (0.021 ± 0.004 pg eq MC‐LR · cell?1). The MC content of recruited Microcystis varied significantly over time and was not related to changes in the proportion of potentially toxic genotypes, determined using real‐time PCR. On the other hand, the changes in MC content in the potentially toxic Microcystis recruited were closely and negatively correlated with recruitment dynamics; the lowest MC contents corresponded to high recruitment rates, and the highest MC contents corresponded to low recruitment rates. Thus, depending on temperature and light conditions, these variations are thought to result from the selection of various subpopulations from among the smallest and the most toxic of the initial benthic population. Adding purified MC‐LR to experimental treatments led to a decreased recruitment of Microcystis and more specifically of mcyB genotypes.  相似文献   

6.
The contamination of lettuce (Lactuca sativa L.) by water‐borne crude extracts of the cyanobacterium microcystin‐producing Microcystis aeruginosa (Kützing) Kützing was investigated. The aim of the study was to determine whether bioaccumulation of microcystins occurs in lettuce foliar tissue when sprayed with solutions containing microcystins at concentrations observed in aquatic systems (0.62 to 12.5 μg · L?1). Microcystins were found in lettuce foliar tissues (8.31 to 177.8 μg per Kg of fresh weight) at all concentrations of crude extracts. Spraying with water containing microcystins and cyanobacteria may contaminate lettuce at levels higher than the daily intake of microcystins recommended by the World Health Organization (WHO), underscoring the need to monitor such food exposure pathways by public authorities.  相似文献   

7.
Distribution of Hepatotoxic Cyanobacterial Blooms in Belgium and Luxembourg   总被引:1,自引:0,他引:1  
A survey of the distribution of cyanobacterial blooms in the southern part of Belgium, in Luxembourg as well as in bordering northeastern France was carried out for 4 years (1997, 1999–2001). In the 64 cyanobacterial bloom samples collected, Microcystis as well as Planktothrix were the most frequently encountered dominant bloom formers, followed by Anabaena, Woronichinia, and Aphanizomenon. The relative frequency of (co-)dominant genera was highly correlated to the geology of the catchments. Microcystins were found in 53% of the analysed blooms and their presence was mainly assigned to Microcystis dominance. The highest microcystin concentration of 2231 μg g−1 seston DW was recorded in a sample dominated by Woronichinia naegeliana. Among the 6 investigated microcystin variants, MC-LR was the most frequently detected whereas MC-LY was never revealed.  相似文献   

8.

Background  

Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1) and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis.  相似文献   

9.
The impacts of climate change on Microcystis blooms in San Francisco Estuary are uncertain because factors associated with the abundance and distribution of Microcystis blooms since their inception in 1999 are poorly understood. Discrete and continuous data collected between 2004 and 2008 were used to assess what factors controlled bloom initiation and persistence, if there was an impact of the bloom on mesozooplankton abundance and toxicity or dissolved organic carbon concentration, and how these might vary with climate change. Microcystis abundance was greater in dry years than wet years and both total microcystins concentration and the microcystins content of mesozooplankton tissue increased with abundance. The bloom began in the upstream portions of the estuary and spread farther west during dry years. Bloom initiation required water temperature above 19°C and surface irradiance in the visible range above 100 W m?2. The bloom persisted during a wide range of water quality conditions but was closely correlated with low turbidity. The intensity of Microcystis blooms will likely increase with climate change due to increased water temperature and low streamflow during droughts. Elevated water temperature earlier in the spring could also extend the duration of Microcystis blooms by up to 3 months.  相似文献   

10.
Cellular nutrient concentrations and nutrient uptake rates of Cladophora glomerata (L.) Kuetzing were determined during summer and fall in 1989–1990 at a site on the upper Clark Fork of the Columbia River, Montana. Both physiological tests indicated that Cladophora growth is likely to be limited by nitrogen during late summer-early fall. Maximum uptake rates of ammonia-N and nitrate-N were 5935–6991 and 507–984 μg · g DW?1· h?1, respectively, during July–October when dissolved inorganic nitrogen (DIN) concentrations in the river were less than 10 μg · L?1. During November-December, when DIN was 72–376 μg · L?1, maximum ammonia-N uptake was 1137–1633 μg · g DW?1· h?1 and maximum nitrate-N uptake was 0–196 μg · g DW?1· h?1. Cellular nitrogen during summer–early fall was 0.78–1.80% of Cladophora dry weight, frequently at or below 1.1%, a level suggested as a critical minimum N concentration for maximum growth. In contrast, cellular P was 0.18–0.36% of dry weight, 3–6 times the suggested critical P concentration of 0.06%. Molar ratios of cellular N:P (< 16:1) and DIN: SRP (< 4:1) during late summer-early fall also indicated potential N limitation. Cellular N and P from Cladophora collected from a second site influenced by a municipal wastewater discharge in 1990 displayed similar seasonal trends. At both sites, seasonal fluctuations in DIN were closely tracked by changes in cellular N, Cellular P, however, increased through the growing season despite declining levels of SRP in the river.  相似文献   

11.
Ambient sea-water nitrate and tissue nitrogen (ethanol soluble nitrate and amino acids, as well as total nitrogen) of Macrocystis integrifolia Bory were monitored over a 2-yr period in Bamfield, Vancouver Island, British Columbia. Sea-water nitrate varied from a high of 12 μmol · 1?1 (individual values as high as 23 μmol · 1?1 were recorded) in late winter to below detection limits for most of the summer. Tissue nitrate and total nitrogen paralleled the ambient nitrate levels and showed summer minima and winter maxima (from 0 to 70 μmol · g fresh wt?1 for nitrate and from 0.8 to 2.9% of dry wt for total N). The nitrate uptake capacity was inversely proportional to tissue nitrate concentration and, furthermore, was much higher for subapical surface blades (60–70 nmol · cm?2 · h?1) than for older, deeper blades (5–10 nmol · cm?2 · h?1). Nitrate uptake by subapical blade disks in summer is apparently higher in dark (1.0–1.7 μmol · g fresh wt?1 · h?1) than in light (0.6–1.3 μmol · g fresh wt?1 · h?1) and the data obtained in 36–108 h experiments indicate nitrate pool sizes of 30–90 μmol · g fresh wt?1. These pools are 23 to nearly full in winter. Ammonium does not inhibit nitrate uptake. It is taken up and apparently utilized much faster than nitrate and it may well be an important source of nitrogen for marine macrophytes.  相似文献   

12.
Measurements of net photosynthesis (PS, O2 evolution), dark respiration (R, O2 consumption), and light and dark carbon fixation (14C) were conducted on whole blades, isolated blade discs, sporophylls, apical scimitars and representative portions of stipe and holdfast of the giant kelp Macrocystis pyrifera L.C. Ag. On a dry weight basis, highest net PS rates were observed in apical scimitar segments and whole blades (3.81 and 3.07 mgC · g dry wt?1· h?1, respectively), followed by sporophylls (1.42 mgC·g dry wt?1· h?1) and stipe segments (0.15 mgC·g dry wt?1· h?1). No PS capacity was observed in holdfast material. Respiration rates showed similar ranking ranging from 1.22 mgC·g dry wt?1·h?1 for apical scimitar to 0.18–0.22 mgC·g dry wt?1· h?1 for holdfast material. Considerable within blade variability in both PS and R was also found. Steepest PS and R gradients on both an areal and weight basis were found within immature blades followed by senescent and mature blade material. Highest net PS rates were associated with the blade tips ranging from 3.08 (mature blades) to 10.3 mgC·dry wt?1·h?1 (immature blades). Highest rates of R generally occurred towards the basal portions of blades and ranged from 1.03–1.80 mgC·g dry wt?1·h?1 for immature blades. The variability within and between blades was high, with coefficients of variation approaching 50%. The observed patterns can be related to the decreasing proportionment of photosynthetic tissue and increasing proportionment of structural tissue as occurs from the blade tip to the blade base. Rates of light carbon fixation (LCF) revealed longitudinal profiles similar to oxygen measurements for the different blade types, with the absolute rates being slightly lower. Patterns of dark carbon fixation (DCF) were less easily interpreted. Highest rates of DCF (0.04–0.06 mgC·g dry wt?1·h?1) occurred at the basal portions of immature and senescent blades. Longitudinal profiles of total chlorophyll (a + c) on both an areal and weight basis were very similar to the profiles of PS. Normalized to chlorophyll a, PS displayed an unusual longitudinal profile in immature tissue; however, such profiles for mature and senescent tissues were similar to those for PS on an areal basis. It was demonstrated that it is difficult, if not impossible, to select single tissue discs that are representative of whole blades. The metabolic longitudinal profiles reveal a characteristic developmental pattern; the previous working definitions of immature, mature, and senescent blades, based on morphology and frond position thus have a physiological basis.  相似文献   

13.
Tadpoles of Rana grylio were raised as edible frogs in fishponds of Guanqiao in Wuhan City, Hubei, China, during cyanobacterial blooms from June to October. The dominant cyanobacterial species was Microcystis, which was found to be lethally toxic by intraperitoneal (i.p.) mouse bioassay. Little is known about the effect of tadpoles on toxic cyanobacterial blooms. To evaluate the potential of the tadpoles to graze on cyanobacterial blooms, the tadpoles were fed on Microcystis collected from the field in the laboratory. The Microcystis cells decreased from 1.19 × 107 cells mL?1 to 3.23 × 106 cells mL?1, with a sharp reduction of 73% of the initial Microcystis population observed in the first 24 h after introduction of the tadpoles. The ponds containing tadpoles had a markedly lower density of Microcystis than those lacking tadpoles. Tadpoles exposed to either cultured Microcystis aeruginosa (NIES–90, 2.768 µg microcystins mg–1 dw–1) cells or lysed M. aeruginosa cells grew well, however, indicating that they were unaffected by Microcystis toxins. We found a significant increase in tadpole body weight after feeding on either field Microcystis or cultured M. aeruginosa. The mean increase in individual body weight was 20 mg day?1 when fed on Microcystis from the pond, and 7 mg day?1 when fed on M. aeruginosa from culture. Our study strongly suggested that there is a direct trophic relationship between R. grylio tadpoles and toxic Microcystis blooms and they possess the potential to graze on toxic Microcystis. The results imply that R. grylio tadpoles may play an important ecological role in reducing toxic cyanobacterial blooms caused by Microcystis.  相似文献   

14.
The rates of net photosynthesis as a function of irradiance and temperature were determined for gametophytes and embryonic sporophytes of the kelp, Macrocystis pyrifera (L.) C. Ag. Gametophytes exhibited higher net photosynthetic rates based on oxygen and pH measurements than their derived embryonic sporophytes, but reached light saturation at comparable irradiance levels. The net photosynthesis of gametophytes reached a maximum of 66.4 mg O2 g dry wt?1 h?1 (86.5 mg CO2 g dry wt?1 h?1), a value approximately seven times the rate reported previously for the adult sporophyte blades. Gametophytes were light saturated at 70 μE m?2 s?1 and exhibited a significant decline in photosynthetic performance at irradiances 140 μE m?1 s?1. Embryonic sporophytes revealed a maximum photosynthetic capacity of 20.6 mg O2 g dry wt?1 h?1 (25.3 mg CO2 g dry wt?1 h?1), a rate about twice that reported for adult sporophyte blades. Embryonic sporophytes also became light saturated at 70 μE m?2 s?1, but unlike their parental gametophytes, failed to exhibit lesser photosynthetic rates at the highest irradiance levels studied; light compensation occurred at 2.8 μE m?2 s?1. Light-saturated net photosynthetic rates of gametophytes and embryonic sporophytes varied significantly with temperature. Gametophytes exhibited maximal photosynthesis at 15° to 20° C, whereas embryonic sporophytes maintained comparable rates between 10° and 20° C. Both gametophytes and embryonic sporophytes declined in photosynthetic capacity at 30° C. Dark respiration of gametophytes was uniform from 10° to 25° C, but increased six-fold at 30° C; the rates for embryonic sporophytes were comparable over the entire range of temperatures examined. The broader light and temperature tolerances of the embryonic sporophytes suggest that this stage in the life history of M. pyrifera is well suited for the subtidal benthic environment and for the conditions in the upper levels of the water column.  相似文献   

15.
Photosynthesis-irradiance relationships were determined in the field for five species of littoral and shallow sublittoral marine benthic green algae (Chlorophyta) of differing morphologies. Each species exhibited a linear increase in photosynthetic rate with increasing irradiance up to a maximum light-saturated value. Full sunlight (1405 to 1956 μE·m?2·s?1) inhibited photosynthesis of all species except the thick, optically dense, Codium fragile (Sur.) Har. Compensation irradiances ranged from 6.1 μE·m?2·s?1 for Enteromorpha intestinalis (L.) Link to 11.4 μE·m?2·s?1 for Ulva lobata (Kütz) S. & G. and did not reveal a consistent relationship to seaweed morphology. Saturation irradiances were determined statistically (Ik) and visually from graphical plots. with the latter technique resulting in values three to eight times higher and different comparative rankings of species than the former. Ik saturation irradiances were highest for Chaetomorpha linum (Müll.) Kütz. (81.9 μE·m?2·s?1) and lowest for Codium fragile (49.6 μE·m?2·s?1) and did not reveal a relationship with seaweed morphology. Regression equations describing light-limited photosynthetic rates and the relative magnitudes of the maximal net photosynthetic responses both strongly suggested a relationship with seaweed morphology. Highest net photosynthetic rates were obtained for the thin, sheet-like algae Ulva lobata (9.2 mg C·g dry wt?1·h?1), U. rigida C. Ag. (6.5 mg C·g dry wt?1·h?1) and the tubular form, Enteromorpha intestinalis (7.3 mg C·g dry wt?1·h?1), while lowest rates occurred for Codium fragile (0.9 mg C·g dry wt?1·h?1). Similarly, steepest light-limited slopes were found for the algae of simpler morphology, while the most gradual slope was determined for Codium fragile, the alga with greatest thallus complexity.  相似文献   

16.
Cyanobacterial blooms have increased in freshwater ecosystems worldwide in the last century, mostly resulting from eutrophication and climate change. These blooms represent serious threats to environmental and human health because of the production of harmful metabolites, called cyanotoxins. Like many countries, Egypt has been plagued with cyanobacterial blooms in most water sources, including the Nile River, irrigation canals, lakes and fishponds. However, the data about cyanotoxins produced in these blooms are limited. Only two types of cyanotoxins, microcystins and cylindrospermopsin, have been identified and characterised, mainly from Microcystis and Cylindrospermopsis blooms. The data revealed the presence of microcystins in raw and treated drinking waters at concentrations (0.05–3.8 µg l?1), exceeding the WHO limit (1 µg l?1) in some drinking water treatment plants. In addition, Nile tilapia Oreochromis niloticus caught from ponds containing heavy cyanobacterial blooms have accumulated considerable amounts of cyanotoxins in their edible tissues. The data presented here could be the catalyst for the establishment of a monitoring and management programme for harmful cyanobacteria and their cyanotoxins in Egyptian fresh waters. This review also elucidates the important research gaps and possible avenues for future research on cyanobacterial blooms and cyanotoxins in Egypt.  相似文献   

17.
Microcystins, toxins produced by cyanobacteria, may play a role in fish kills, although their specific contribution remains unclear. A better understanding of the eco-toxicological effects of microcystins is hampered by a lack of analyses at different trophic levels in lake foodwebs. We present 3 years of monitoring data, and directly compare the transfer of microcystin in the foodweb starting with the uptake of (toxic) cyanobacteria by two different filter feeders: the cladoceran Daphnia galeata and the zebra mussel Dreissena polymorpha. Furthermore foodwebs are compared in years in which the colonial cyanobacterium Microcystis aeruginosa or the filamentous cyanobacterium Planktothrix agardhii dominated; there are implications in terms of the types and amount of microcystins produced and in the ingestion of cyanobacteria. Microcystin concentrations in the seston commonly reached levels where harmful effects on zooplankton are to be expected. Likewise, concentrations in zooplankton reached levels where intoxication of fish is likely. The food chain starting with Dreissena (consumed by roach and diving ducks) remained relatively free from microcystins. Liver damage, typical for exposure to microcystins, was observed in a large fraction of the populations of different fish species, although no relation with the amount of microcystin could be established. Microcystin levels were especially high in the livers of planktivorous fish, mainly smelt. This puts piscivorous birds at risk. We found no evidence for biomagnification of microcystins. Concentrations in filter feeders were always much below those in the seston, and yet vectorial transport to higher trophic levels took place. Concentrations of microcystin in smelt liver exceeded those in the diet of these fish, but it is incorrect to compare levels in a selected organ to those in a whole organism (zooplankton). The discussion focuses on the implications of detoxication and covalent binding of microcystin for the transfer of the toxin in the foodweb. It seems likely that microcystins are one, but not the sole, factor involved in fish kills during blooms of cyanobacteria.  相似文献   

18.
Abstract Cyanobacterial blooms were sampled at five locations in Lake Grand-Lieu on seven different occasions during May–October 1994. Strains of Microcystis aeruginosa and Anabaena circinalis were isolated from the samples. Microcystins were detected in freeze-dried field samples and the isolated strains by HPLC. The toxins were present in the blooms sampled between June and October. The microcystin content in the blooms varied with site and time, from undetectable concentrations to 0.23 mg g−1. The highest concentrations of microcystin were found in blooms sampled in September. Microcystin-LR and microcystins with retention times close to the retention time of [Dha7]microcystin-RR (probably varieties of microcystin-RR) were found in the field samples. Sixteen of the 98 isolated M. aeruginosa strains and 2 of the 24 A. circinalis strains produced microcystins. The total amount of microcystins varied from undetectable concentrations to 5.06 mg g−1 in the M. aeruginosa isolates, and from undetectable concentrations to 1.86 mg g−1 in the A. circinalis strains. Microcystin-LR was the main toxin found in strains of M. aeruginosa, but was not present in strains of A. circinalis. Both microcystin-producing strains and strains that did not produce microcystin coexisted in the bloom samples. Received: 23 January 1997; Accepted: 25 March 1997  相似文献   

19.
20.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号