首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Cereal aphids, including the bird cherry-oat aphid, Rhopalosiphum padi, and the grain aphid, Sitobion avenae, can transmit viruses that significantly reduce crop yields. To mitigate against yield losses, insecticides are routinely used to manage aphid populations.
  2. Aphids can form relationships with endosymbionts that confer fitness benefits or consequences to the aphid. Recent artificial inoculation experiments indicate that endosymbionts could increase aphid susceptibility to insecticides, but this has not been explored using aphid populations naturally infected with endosymbionts.
  3. Here, we sampled aphids from an important cereal production region in Lower Saxony, Germany. We characterized the endosymbiont profile of these aphid populations and conducted pyrethroid dose–response assays to test the hypothesis that facultative endosymbionts increase aphid susceptibility to insecticides.
  4. We find that the level of insecticide susceptibility is highly variable in S. avenae and we identify populations that are sensitive and tolerant to pyrethroids, including populations collected from the same field. For R. padi, we find evidence for decreased sensitivity to pyrethroids, representing the first report of reduced sensitivity to pyrethroids in R. padi sampled from Central Europe.
  5. We detected high endosymbiont infection frequencies in the aphid populations. 84% of aphids carry one facultative endosymbiont and 9% of aphids carry two facultative endosymbionts. We detected associations with Regiella insecticola, Fukatsia symbiotica, and Hamiltonella defensa. However, we do not identify a link between endosymbiont infection and insecticide susceptibility, indicating that other factors may govern the development of insecticide resistance and the need for alternative management strategies.
  相似文献   

2.
To infer the phylogeny of both the host and the endosymbiont of Peridinium quinquecorne Abé, the small subunit (SSU) ribosomal DNA (rDNA) from the host and two genes of endosymbiont origin (plastid‐encoded rbcL and nuclear‐encoded SSU rDNA) were determined. The phylogenetic analysis of the host revealed that the marine dinoflagellate P. quinquecorne formed a clade with other diatom‐harbouring dinoflagellates, including Kryptoperidinium foliaceum (Stein) Lindeman, Durinskia baltica (Levander) Carty et Cox and Galeidinium rugatum Tamura et Horiguchi, indicating a single endosymbiotic event for this lineage. Phylogenetic analyses of the endosymbiont in these organisms revealed that the endosymbiont of P. quinquecorne formed a clade with a centric diatom (SSU data indicated it to be closely related to Chaetoceros), whereas the endosymbionts of other three dinoflagellates formed a clade with a pennate diatom. The discrepancy between the host and the endosymbiont phylogenies suggests a secondary replacement of the endosymbiont from a pennate to a centric diatom in P. quinquecorne.  相似文献   

3.

Background  

The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them.  相似文献   

4.
The maximal growth rate (μmax) of 19 marine and estuarine diatoms decreased with increasing cell volume (V). The relationship between log μmax (Y) and log V (X) was calculated. Statistical analyses showed that the slope of the equation was not significantly different from those obtained by other researchers and that the 95% confidence intervals of mean μmax at cell volumes of 103–105μm3 were not significantly different from those cited in most studies. A new regression line for diatoms was calculated as follows: log μmax= 0.47–0.14 log V; r =–0.69. The rate of size reduction per generation of the 19 diatom species ranged from 0.03 to 0.87 μm per generation. The rate increased with increasing cell length and cell volume and with decreasing maximum division rate. Statistical analyses showed that the rate was closely related to the cell volume and to the reciprocal of the growth rate. The relationships between maximal growth rate and cell volume and between rate of size reduction and cell volume showed that a diatom with a large volume had a smaller maximal growth rate and a larger rate of size reduction than a diatom with a small volume. The estimates using the equation for the regression line between the rate of size reduction and the reciprocal of maximum division rate indicated that a diatom with a high maximum division rate would need more generation equivalents for a certain size reduction than a diatom with a low maximum division rate, but the periods required for reduction would be approximately equal irrespective of maximum division rate.  相似文献   

5.
DNA was isolated from muscle tissue and from concentrations of the egg and fat-body endosymbionts of the cockroaches Periplaneta americana, Blatta orientalis, Blaberus giganteus, Gromphadorhina portentosa, Leucophaea maderae, Cryptocercus punctulatus, and Nyctibora lutzi. Denatured DNA from each was immobilized on nitrocellulose membranes and reassociated with labeled probe DNAs from egg endosymbionts and muscle nuclei of B. orientalis. The DNAs were compared by extent of binding and by the thermal melting profiles of the DNA duplexes. The DNAs from the endosymbionts in the eggs and fat body in both P. americana and B. orientalis were shown to be virtually identical, confirming that transovarial transmission of the bacteria does take place. The thermal stabilities of the heteroduplexes formed with the probe DNA from egg endosymbionts of B. orientalis differed from the homologous duplexes by only 1°–11°C, indicating a close relationship among the endosymbiont strains. The heteroduplexes of the nuclear DNAs differ from the homologous duplexes by 2°–7°C. Compared with known systems in bacterial and Drosophila species, these results indicate similar base-pair mismatches for host and endosymbiont DNAs. From these correlations, we deduce that the endosymbionts have probably been associated with their host cockroaches since before the latter speciated.  相似文献   

6.
Bacterial endosymbionts have been detected in some groups of plant‐parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal‐parasitic or free‐living nematodes. This study was performed on a wide variety of plant‐parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty‐seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus ‘Candidatus Xiphinematobacter’ (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil–plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long‐term evolutionary persistence between hosts and endosymbionts.  相似文献   

7.

Background  

Many insects, including ants, are infected by maternally inherited Wolbachia endosymbiotic bacteria though other secondary endosymbionts have not been reported in ants. It has been suggested that the ability of Wolbachia to invade and remain in an ant population depends on the number of coexisting queens in a colony. We study the genetic and social structure of populations in the ant Formica cinerea which is known to have populations with either monogynous or polygynous colonies. We screen populations for several endosymbiotic bacteria to evaluate the presence of different endosymbionts, possible association between their prevalence and the social structure, and the association between endosymbiont prevalence and genetic differentiation of ant populations.  相似文献   

8.
9.
The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field‐collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3–5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host‐symbionts interactions between D. citri and its associated endosymbionts.  相似文献   

10.
1. The relationship between endosymbionts and insects represent complex eco‐evolutionary interactions. Vertically transmitted endosymbionts can be a source of evolutionary novelty by conferring ecologically important traits to their insect hosts, such as protection against natural enemies. Host–endosymbiont associations could constitute an adaptive complex (holobiont) on which selective pressures present in the environment can act, being transferred to the next generation. 2. Although several laboratory‐based studies have confirmed host genotype × symbiont interactions, few studies have been directed at those associations in the natural populations and their ability to protect themselves from parasitism pressure at the field level. 3. A field‐based approach to study the aphid genotype–endosymbiont associations and its relationship with the total parasitism in the grain aphid Sitobion avenae was conducted. From the field study, experiments were carried out to study the defensive effect of the two most common facultative endosymbionts (Regiella insecticola and Hamiltonella defensa) present in S. avenae against one of the most important parasitoid species, Aphidius ervi. 4. Evidence is presented here of a high specificity of the aphid clone–endosymbiont associations in the field; however, the field and experimental results here do not support a relationship between the aphid clone–endosymbiont associations and a proxy of total parasitism in S. avenae. These findings highlight the importance of particular host clone–endosymbiont couplings as a key factor in gaining an understanding of the coevolutionary dynamics of endosymbionts in nature and their effect on the invasive potential of pest insects.  相似文献   

11.
The elemental composition and the cell cycle stages of the marine diatom Thalassiosira pseudonana Hasle and Heimdal were studied in continuous cultures over a range of different light‐ (E), nitrogen‐ (N), and phosphorus‐ (P) limited growth rates. In all growth conditions investigated, the decrease in the growth rate was linked with a higher relative contribution of the G2+M phase. The other phases of the cell cycle, G1 and S, showed different patterns, depending on the type of limitation. All experiments showed a highly significant increase in the amount of biogenic silica per cell and per cell surface with decreasing growth rates. At low growth rates, the G2+M elongation allowed an increase of the silicification of the cells. This pattern could be explained by the major uptake of silicon during the G2+M phase and by the independence of this process on the requirements of the other elements. This was illustrated by the elemental ratios Si/C and Si/N that increased from 2‐ to 6‐fold, depending of the type of limitation, whereas the C/N ratio decreased by 10% (E limitation) or increased by 50% (P limitation). The variations of the ratios clearly demonstrate the uncoupling of the Si metabolism compared with the C and N metabolisms. This uncoupling enabled us to explain that in any of the growth condition investigated, the silicification of the cells increased at low growth rates, whereas carbon and nitrogen cellular content are differently regulated, depending of the growth conditions.  相似文献   

12.
The effects of nitrogen starvation in the presence or absence of sodium in the culture medium were monitored in batch cultures of the marine diatom Phaeodactylum tricornutum Bohlin. During nitrogen starvation in the presence of sodium, cell nitrogen and chlorophyll a decreased, mainly as a consequence of continued cell division. These decreases were accompanied by decreases in the rates of photosynthesis and respiration. There was no change in either cell volume or carbohydrate, but both carbon and lipid increased. During nitrogen starvation in the absence of sodium, cell division ceased. Cell nitrogen and chlorophyll a remained constant, and respiration did not decrease, but the changes in the photosynthetic rate and the lipid content per cell were similar to cultures that were nitrogen-starved in the presence of sodium. The carbon-to-nitrogen ratio increased in both cultures. Nitrogen, in the form of nitrate, and sodium were resupplied to cultures that had been preconditioned in nitrogen- and sodium-deficient medium for 5 d. Control cultures to which neither nitrate or sodium were added remained in a static state with respect to cell number, volume, and carbohydrate but showed slight increases in lipid. Cells in cultures to which 10 mM nitrate alone was added showed a similar response to cultures where no additions were made. Cells in cultures to which 50 mM sodium alone was added divided for 2 d, with concomitant small decreases in all measured constituents. Cell division resumed in cultures to which both sodium and nitrate were added. The lipid content fell dramatically in these cells and was correlated to metabolic oxidation via measured increases in the activity of the glyoxylate cycle enzyme, isocitrate lyase. We conclude that lipids are stored as a function of decreased growth rate and are metabolized to a small extent when cell division resumes. However, much higher rates of metabolism occur if cell division resumes in the presence of a nitrogen source.  相似文献   

13.
Marine phytoplankton and macroalgae acquire important resources, such as inorganic nitrogen, from the surrounding seawater by uptake across their entire surface area. Rates of ammonium and nitrate uptake per unit surface area were remarkably similar for both marine phytoplankton and macroalgae at low external concentrations. At an external concentration of 1 μM, the mean rate of nitrogen uptake was 10±2 nmol·cm?2·h?1 (n=36). There was a strong negative relationship between log surface area:volume (SA:V) quotient and log nitrogen content per cm2 of surface (slope=?0.77), but a positive relationship between log SA:V and log maximum specific growth rate (μmax; slope=0.46). There was a strong negative relationship between log SA:V and log measured rate of ammonium assimilation per cm2 of surface, but the slope (?0.49) was steeper than that required to sustain μmax (?0.31). Calculated rates of ammonium assimilation required to sustain growth rates measured in natural populations were similar for both marine phytoplankton and macroalgae with an overall mean of 6.2±1.4 nmol·cm?2·h?1 (n=15). These values were similar to maximum rates of ammonium assimilation in phytoplankton with high SA:V, but the values for algae with low SA:V were substantially less than the maximum rate of ammonium assimilation. This suggests that the growth rates of both marine phytoplankton and macroalgae in nature are often constrained by rates of uptake and assimilation of nutrients per cm2 surface area.  相似文献   

14.
Transparent exopolymer particles (TEP) play an important role in the ocean carbon cycle as they are sticky and affect particle aggregation and the biological carbon pump. We investigated the effect of growth rate on TEP production in nitrogen limited semi‐continuous cultures of the diatom Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle. Steady‐state diatom concentrations and other indicators of biomass (chl a, and total carbohydrate) were inversely related to growth rate, while individual cell volume increased with growth rate. There was no change in total TEP area with growth rate; however, individual TEP were larger at high growth rates and the number of individual TEP particles was lower. TEP concentration per cell was higher at higher growth rates. SYTOX Green staining showed that <5% of the diatom population had permeable cell membranes, with the proportion increasing at low growth rates. However, TEP production rates were greater at high growth rates, refuting our hypothesis that TEP formation is dependent on dying cells with compromised cell membranes in a diatom population. Measurements of particle size distribution in the cultures using laser scattering showed that they were most aggregated at high growth rates. These results indicate a coupling between TEP production and growth rate in diatoms under N limitation, with fast growing T. weissflogii producing more TEP and aggregates.  相似文献   

15.
Diatoms are the main primary producers in the Southern Ocean, governing the major nutrient cycles. Fragilariopsis kerguelensis (O’Meara) Hust. is the most abundant diatom species in the Southern Ocean and its paleo‐oceanographic record is frequently used to reconstruct the past position and nutrient characteristics of the Antarctic polar front. Here we report on the responses of F. kerguelensis on prolonged exposure to a range of iron concentrations, allowing a characterization of morphological and nutrient‐depletion changes in relation to iron status. Under iron limitation, F. kerguelensis grew slower, cells became smaller, chains became shorter, and the nutrient‐depletion ratios changed. Prolonged exposure to iron limitation caused F. kerguelensis to decrease its surface area and volume 2‐fold, and to increase its surface‐to‐volume ratio by 25%. With the decrease in growth rates, silicon (Si) and phosphorus (P) depletion per cell remained fairly constant, but when normalized per surface area (Si) or per cell volume (P), depletion increased. In contrast, nitrogen (N) depletion per cell decreased significantly together with the decrease in growth rates but was constant when normalized per cell volume. The different response in Si, P, and N depletion resulted in changes in the nutrient‐depletion ratios, most notably in the Si:N ratio, which significantly increased, and in the N:P ratio, which significantly decreased with decreasing growth rates. It is concluded that under iron limitation, variation in cell size and/or nutrient depletion ultimately can cause changes in oceanic biogeochemical nutrient cycles. It enables the use of cell size of F. kerguelensis as a paleo‐oceanographic proxy.  相似文献   

16.
The long-term effects of manipulating light intensity and nutrient enrichment on the structural characteristics of a diatom community inhabiting the sediments beneath a pure stand of dwarf Spartina alterniflora Loisel. were investigated over a yearly cycle. Clipping or shading the cord grass cover, or phosphorus enrichment caused significant decreases in both species diversity (H') and the number of diatom species, whereas nitrogen enrichment only significantly decreased the latter parameter. Of the 105 diatom taxa identified, only 10 were restricted to certain of the 12 study areas; and of these, 8 occurred exclusively in the clipped habitats. An analysis of variance (light × nutrient × collection date) involving 19 of the most abundant taxa revealed that certain experimental treatments had significant effects on the relative abundances of each and every taxon. However, attempts to group taxa with similar response patterns proved unsuccessful because of the frequent significance of the 3-way interaction term. Synthesis of these results with earlier work by the author showed that differences in structure of diatom communities inhabiting the sediments beneath the 3 dominant marsh grasses were not primarily caused by differences in reduction of light intensity by their grass canopies, and that clipping of the cord grass produced a shift in community structure towards that characteristic of a salt panne algal mat.  相似文献   

17.
【背景】养猪废水作为高浓度有机废水,是导致我国农业面源污染的主要因素之一。目前采用菌藻共生系统处理养猪废水越来越受到关注,与传统序批式反应器(Sequencing Batch Reactor,SBR)相比,藻辅助SBR具有提高脱氮除磷效果、增加污泥活性和降低能源消耗的特点。【目的】针对SBR中菌藻共生系统对养猪废水脱氮除磷效能的影响,比较分析菌藻共生系统与常规SBR系统中污泥特性及微生物群落结构特征差异。【方法】在室温条件下分别平行运行SBR+微藻(R1)和作为对照系统不添加微藻的SBR(R2)。监测R1和R2系统废水处理效果,污泥的粒径、沉降性和代谢产物等污泥特性。利用变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis,DGGE)技术分析R1和R2系统中的微生物种类和分布。【结果】与对照R2反应器相比,R1的化学需氧量(Chemical Oxygen Demand,COD)去除率提高了5.1%,NH4+-N提高了20.3%,总氮(Total Nitrogen,TN)提高了19.4%,总磷(Total Phosphorus,TP)提高了23.9%。进一步对反应器中的污泥特性进行分析发现,与R2相比,R1的胞外聚合物(ExtracellularPolymericSubstances,EPS)平均含量提高3.7%,可溶性微生物产物(Soluble MicrobialProduct,SMP)平均增加了38.5%。同时R1的污泥粒径较R2提高了14.8%,污泥体积指数(Sludge Volume Index,SVI)值较R2降低了11.7%,污泥的好氧呼吸速率(Specific Oxygen Uptake Rate,SOUR)较R2提高了64.8%,而且稳定的菌藻共生系统的形成进一步减少反应器出水中的悬浮固体浓度,表明藻类的添加对R1污泥特性具有改良作用【结论】R1反应器形成的菌藻共生体系可进一步优化微生物群落结构,其中放线菌纲(Actinobacteria)、α-变形菌纲(Alphaproteobacteria)和γ-变形菌纲(Gammaproteobacteria)为R1反应器的主要菌群,对养猪废水的处理起到重要作用。R1反应器中的藻类主要为链带藻属(Desmodesmus)和尖带藻属(Acutodesmus),对养猪废水的脱氮除磷起到重要作用。  相似文献   

18.
We explored statistical relationships between the composition of littoral diatom assemblages and 21 chemical and physical environmental variables in 69 lakes and 15 river sites in the lowland of northeastern Germany. Canonical correspondence analysis with single treatment and with forward selection of environmental variables was used to detect 11 important ecological variables (dissolved inorganic carbon [DIC], Na + , total phosphorus [TP], dissolved organic carbon [DOC], total nitrogen [TN], pH, oxygen saturation, dissolved iron, SO42 ? , NH4 + , soluble reactive silicium) and maximum water depth or Ca2 + or soluble reactive phosphorus that most independently explain major proportions of the total diatom variance among the habitats. Monte Carlo permutation tests showed that each contributed a significant additional proportion (P < 0.05) of the variance in species composition. Together, these 11 most important environmental variables explained 34% of the total variance in species composition among the sites and captured 73% of the explained variance from the full 21 parameters model. Weighted‐averaging regression and calibration of 304 indicator taxa with tolerance down‐weighting and classic deshrinking was used to develop transfer functions between littoral diatoms and DIC, pH, TP, TN, and Cl ? . The DOC:TP ratio was introduced and a weighted‐averaging model was developed to infer allochthonous DOC effects in freshwater ecosystems. This diatom‐DOC/TP model was significant (P < 0.001) and explained 7.6% of the total diatom variance among the sites, surpassing the inferential power of the diatom‐TP‐transfer function (7.3% explained variance). The root‐mean‐square errors of prediction of the models were estimated by jack‐knifing and were comparable with published data sets from surface sediment diatom samples. The data set of littoral diatoms and environmental variables allows use of the diatom‐environmental transfer functions in biomonitoring and paleolimnological approaches across a broad array of natural water resources (such as floodplains, flushed lakes, estuaries, shallow lakes) in the central European lowland ecoregion.  相似文献   

19.
20.
Facultative bacterial endosymbionts in insects have been under intense study during the last years. Endosymbionts can modify the insect's phenotype, conferring adaptive advantages under environmental stress. This seems particularly relevant for a group of worldwide agricultural aphid pests, because endosymbionts modify key fitness‐related traits, including host plant use, protection against natural enemies and heat tolerance. Aimed to understand the role of facultative endosymbionts on the success of introduced aphid pests, the distribution and abundance of 5 facultative endosymbionts (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica, Rickettsia and Spiroplasma) were studied and compared in 4 cereal aphids (Sitobion avenae, Diuraphis noxia, Metopolophium dirhodum and Schizaphis graminium) and in the pea aphid Acyrthosiphon pisum complex from 2 agroclimatic zones in Chile. Overall, infections with facultative endosymbionts exhibited a highly variable and characteristic pattern depending on the aphid species/host race and geographic zone, which could explain the success of aphid pest populations after their introduction. While S. symbiotica and H. defensa were the most frequent endosymbionts carried by the A. pisum pea‐race and A. pisum alfalfa‐race aphids, respectively, the most frequent facultative endosymbiont carried by all cereal aphids was R. insecticola. Interestingly, a highly variable composition of endosymbionts carried by S. avenae was also observed between agroclimatic zones, suggesting that endosymbionts are responding differentially to abiotic variables (temperature and precipitations). In addition, our findings constitute the first report of bacterial endosymbionts in cereal aphid species not screened before, and also the first report of aphid endosymbionts in Chile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号