首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A native isolate of the colonial benthic diatom Staurosirella pinnata was cultivated for biosilica production. The silicified cell walls (frustules) were used as a source of homogeneous and structurally predictable porous biosilica for dye trapping and random laser applications. This was coupled with the extraction of lipids from biomass showing potential to fabricate photoactive composite materials sustainably. The strain was selected for its ease of growth in culture and harvesting. Biosilica and lipids were obtained at the end of growth in indoor photobioreactors. Frustules were structurally characterized microscopically and their chemistry analyzed with Fourier Transform Infrared Spectroscopy. Frustule capacity of binding laser dyes was evaluated on a set of frustules/Rhodamine B (Rho B) solutions and with respect to silicon dioxide and diatomite by Fluorescence Spectroscopy demonstrating a high affinity for the organic dye. The effect of dye trapping property in conveying Rho B emission to frustules, with enhancement of scattering events, was analyzed on Rho B doped polyacrylamide gels filled or not with frustules. Amplified spontaneous emission was recorded at increasing pump power indicating the onset of a random laser effect in frustule filled gels at lower power threshold compared to unfilled matrices.  相似文献   

2.
Rhodococcus rhodochrous IGTS8 was previously isolated because of its ability to use coal as its sole source of sulfur for growth. Subsequent growth studies have revealed that IGTS8 is capable of using a variety of organosulfur compounds as sources of sulfur but not carbon. In this article, the ability of IGTS8 to selectively remove organic sulfur from water-soluble coal-derived material is investigated. The microbial removal of organic sulfur from coal requires microorganisms capable of cleaving carbon-sulfur bonds and the accessibility of these bonds to microorganisms. The use of water-soluble coal-derived material effectively overcomes the problem of accessibility and allows the ability of microorganisms to cleave carbon-sulfur bonds present in coal-derived material to be assessed directly. Three coals, two coal solubilization procedures, and two methods of biodesulfurization were examined. The results of these experiments reveal that the microbial removal of significant amounts of organic sulfur from water-soluble coal-derived material with treatment times as brief as 24 h is possible. Moreover, the carbon content and calorific value of biotreated products are largely unaffected. Biotreatment does result, however, in an increased hydrogen and nitrogen content and a decreased oxygen content of the coal-derived material. The aqueous supernatant obtained from biodesulfurization experiments does not contain sulfate, sulfite, or other forms of soluble sulfur at increased concentrations in comparison with control samples. Sulfur removed from water-soluble coal-derived material appears to be incorporated into biomass. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
Due to their sustainability, intact cell walls, availability of pure cultures, and others, living diatoms show a lot of promise for the application in various fields in particular for micro/nano-devices. In order to purify the biosilica structures of diatoms called frustules, a two-step acid cleaning and baking method was employed. By this path, organic matter and inorganic impurities can be removed very effectively. In addition, the highest quality of frustules was achieved when the samples were cleaned in an excess of boiling 10~15 % HCl and subsequently heated to 600 °C at a heating rate of 3 °C min?1 for 6 h. In our operation, the native frustule morphology was maintained completely, and dry frustules with more than 90 % SiO2 in weight can be obtained, and furthermore, the surface area of them reached a good value of 48.47 m2 g?1.  相似文献   

4.
Diatoms are single‐celled microalgae that possess a nanostructured, porous biosilica shell called a frustule. This study characterized the micro‐photoluminescence (μ‐PL) emission of single living cells of the photosynthetic marine diatom Thalassiosira pseudonana in response to UV laser irradiation at 325 nm using a confocal Raman microscope. The photoluminescence (PL) spectrum had two primary peaks, one centered at 500–510 nm, which was attributed to the frustule biosilica, and a second peak at 680 nm, which was attributed to auto‐fluorescence of photosynthetic pigments. The portion of the μ‐PL emission spectrum associated with biosilica frustule in the single living diatom cell was similar to that from single biosilica frustules isolated from these diatom cells. The PL emission by the biosilica frustule in the living cell emerged only after cells were cultivated to silicon depletion. The discovery of the discovery of PL emission by the frustule biosilica within a single living diatom itself, not just its isolated frustule, opens up future possibilities for living biosensor applications, where the interaction of diatom cells with other molecules can be probed by μ‐PL spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The qualitative and quantitative aspects of elemental sulfur metabolization in wheat leaves and its effect upon photosynthetic metabolism were studied through the application of micronized sulfur upon the third leaf. Energy-dispersive x-ray analysis combined with scanning electron microscopy emphasized the existence of a sulfur peak associated with a strong potassium peak in the spectra of different tissue regions for treated leaves only, supplying an original evidence of sulfur uptake. Experiments with35S-labeled micronized sulfur showed that about 2% of the labeled S was absorbed and metabolized into cystine, methionine, glutathione, and sulfate. The close correlation between the excess of oxygen uptake and oxygen needs for sulfur oxidation in conjunction with the absence of hydrogen sulfide released by treated leaves support direct and fast oxidation of sulfur into sulfate according to a pathway still unclear but independent of photosynthetic CO2 metabolism in treated leaf. The mechanisms involved in the primary metabolism of element sulfur in wheat therefore appear to be different from those in fungi.  相似文献   

6.
A filtration-aided acid cleaning method was used to collect biosilica structures from a diatom culture medium, natural seawater, or water bloom. Cell extraction, acid cleaning, and acid removal were all performed on a polytetrafluoroethylene (PTFE) filter cloth, significantly improving the treatment capacity and efficiency of the traditional acid wash method. Five typical diatoms were cultivated in the laboratory for acid cleaning. Different growth speeds were introduced, and different process parameters for acid cleaning were utilized. After the acid cleaning, biosilica structures were collected from the frustules of diatoms using different methods. Girdle bands and valves of Coscinodiscus sp. were separated by floating of the valves. Central spines of Ditylum brightwellii and valves of Skeletonema costatum were separately collected by settling or filtration. Rod-like frustules, such as those of Bacillaris paradoxa, are not suitable for large quantities of acid wash. The silica structures were observed and tested using an AFM-calibrated glass needle to determine their elasticity. Elasticity tests showed that ringent girdle bands are more flexible than complete ones (Coscinodiscus sp.) and that both long-chain clusters of Nitzschia palea and central spines of D. brightwellii have certain elasticities. The required pressure for deforming or breaking the biosilica structures of diatoms was also determined.  相似文献   

7.
The biological formation of inorganic materials (biomineralization) often occurs in specialized intracellular vesicles. Prominent examples are diatoms, a group of single-celled eukaryotic microalgae that produce their SiO2 (silica)-based cell walls within intracellular silica deposition vesicles (SDVs). SDVs contain protein-based organic matrices that control silica formation, resulting in species specifically nanopatterned biosilica, an organic-inorganic composite material. So far no information is available regarding the molecular mechanisms of SDV biogenesis. Here we have investigated by fluorescence microscopy and subcellular membrane fractionation the intracellular transport of silaffin Sil3. Silaffins are a group of phosphoproteins constituting the main components of the organic matrix of diatom biosilica. We demonstrate that the N-terminal signal peptide of Sil3 mediates import into a specific subregion of the endoplasmic reticulum. Additional segments from the mature part of Sil3 are required to reach post-endoplasmic reticulum compartments. Further transport of Sil3 and incorporation into the biosilica (silica targeting) require protein segments that contain a high density of modified lysine residues and phosphoserines. Silica targeting of Sil3 is not dependent on a particular peptide sequence, yet a lysine-rich 12–14-amino acid peptide motif (pentalysine cluster), which is conserved in all silaffins, strongly promotes silica targeting. The results of the present work provide the first insight into the molecular mechanisms for biogenesis of mineral-forming vesicles from an eukaryotic organism.  相似文献   

8.
Diatoms are photoautotrophic micro-organisms that use inorganic carbon sources and light in photosynthesis. Diatom frustules were characterized in terms of particle techniques and compared with siliceous earth, i.e. depositions of diatoms that have wide technical applications. To obtain enough biomass for frustule characterization Cyclotella cryptica has been cultivated in a 15 l photobioreactor under controlled conditions. Native diatom frustules are characterized by a 1.5-fold lower density and 80-fold higher specific surface than siliceous earth. Therefore, native diatom frustules provides a material with novel properties which might be interesting for special technical application.  相似文献   

9.
The frustule of diatoms, through appropriate chemical modification, can be developed for a high adsorption level of recombinant proteins and viral nanoparticles. Field emission scanning electron microscopy (FE-SEM) analysis of clean frustules revealed a 3D loculate areolae structure (valvar phase porous pattern of the siliceous cell wall). Isocyanatopropyl triethoxysilane (IPS) and iminodiacetic acid (IDA) were used to immobilize Cu2+ ions (an average Cu2+ adsorption capacity about 190 μmol of Cu2+/ml of the Cu2+-coupled biosilica reached). FE-SEM, energy dispersion X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) were used to confirm the chemical modification of the Cu2+-coupled biosilica. Protein adsorption was confirmed with the detection of a recombinant (His)6-tagged green fluorescent protein binding using fluorescent microscopy. Infectious bursal disease virus VP2-441 subviral particles (SVPs) were found to bind to the Cu2+-coupled biosilica (approximately 3 × 10?9 mol of VP2-441 SVPs/ml of modified frustules), a level higher than the previously obtained 9 × 10?10 mol/ml for SVP binding using a commercial Ni–NTA resin. These give diatom frustules the potential to be developed into a material useful in viral nanoparticle purification systems or as a biosensor for the detection of viruses.  相似文献   

10.
Chlorella pyrenoidosa Chick (Emerson strain 3) utilizes thiosulfate for growth as effectively as sulfate, and more effectively than a variety of organic sulfur compounds containing sulfur in various oxidation states. Thiosulfates, differentially labeled with 35S in either the SH— or SO3 — sulfur moieties, were used to follow the incorporation of thiosulfate-sulfur into constituents of the insoluble fraction and of the soluble pools. Labeled sulfate was also used for purposes of comparison. Label from both sulfur atoms of thiosulfate and from sulfate is incorporated into the cysteine, homocysteine, and glutathione of the soluble pools, and into the methionine and cystine of protein in the insoluble fraction. Label from SO3-sulfur of thiosulfate is incorporated more slowly into protein methionine and cystine than label from the SH-sulfur. Moreover, the SO3-sulfur of thiosulfate is recovered largely as sulfate in both the soluble pools and the insoluble fraction, while only a trace of SH-sulfur is recovered as sulfate in either case. Consistent with this, the metabolism of the SO3-sulfur of thiosulfate more closely resembles the metabolism of sulfate. Thus it would appear that exogenous thiosulfate undergoes early dismutation in which the SO3-sulfur is preferentially oxidized, and the SH-sulfur is preferentially incorporated in a reduced state. These results are discussed in relation to the conversion of sulfate to thiosulfate by cell-free extracts of Chlorella previously described.  相似文献   

11.
A detailed immunocytochemical and biochemical study of the location and expression of frustulins, a family of proteins associated with the frustules of diatoms, has been performed for Cylindrotheca fusiformis Reimann et Lewin, Navicula pelliculosa (Brébisson et Kützing) Hilse, and Navicula salinarum (Grunow) Husted. Immunocytochemistry revealed that frustulins, which share homologous epitopes but are different in size, were predominantly located in the organic casing. Based on timed immunolocalization experiments and Western blotting analysis of cell extracts obtained sequentially after repleting silicate to Si-synchronized cells, the continuous presence of the frustulins in the mature and parental organic casing of the examined species was observed. The frustulins of N. pelliculosa appeared as proteins similar to those of C. fusiformis, sharing identical epitopes. The extractions, however, yielded a markedly lower abundance of frustulins in N. pelliculosa. Peak concentrations of extracted frustulins appeared to be expressed just ahead of the silicification process in C. fusiformis, whereas the level of expression in N. pelliculosa increased along with maturation of the new valves. For N. salinarum, the presence of the frustulins could not be confirmed properly by Western blotting, most probably because of the small sample volumes, inefficient extraction, and a lower amount of homologous frustulins in the casing of this species. It is concluded that the frustulins of these species are not associated with the silicalemma of the newly formed silica deposition vesicles and therefore do not seem to be involved in the silicification process itself. Overall, the results imply a structural role of the frustulins in the casing of diatoms rather than a regulation of the silicification process.  相似文献   

12.
Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase.  相似文献   

13.
The cell wall (frustule) of the freshwater diatom Pinnularia viridis (Nitzsch) Ehrenberg is composed of an assembly of highly silicified components and associated organic layers. We used atomic force microscopy (AFM) to investigate the nanostructure and relationship between the outermost surface organics and the siliceous frustule components of live diatoms under natural hydrated conditions. Contact mode AFM imaging revealed that the walls were coated in a thick mucilaginous material that was interrupted only in the vicinity of the raphe fissure. Analysis of this mucilage by force mode AFM demonstrated it to be a nonadhesive, soft, and compressible material. Application of greater force to the sample during repeated scanning enabled the mucilage to be swept from the hard underlying siliceous components and piled into columns on either side of the scan area by the scanning action of the tip. The mucilage columns remained intact for several hours without dissolving or settling back onto the cleaned valve surface, thereby revealing a cohesiveness that suggested a degree of cross-linking. The hard silicified surfaces of the diatom frustule appeared to be relatively smooth when living cells were imaged by AFM or when field-emission SEM was used to image chemically cleaned walls. AFM analysis of P. viridis frustules cleaved in cross-section revealed the nanostructure of the valve silica to be composed of a conglomerate of packed silica spheres that were 44.8 ± 0.7 nm in diameter. The silica spheres that comprised the girdle band biosilica were 40.3 ± 0.8 nm in diameter. Analysis of another heavily silicified diatom, Hantzschia amphioxys (Ehrenberg) Grunow, showed that the valve biosilica was composed of packed silica spheres that were 37.1 ± 1.4 nm and that silica particles from the girdle bands were 38.1 ± 0.5 nm. These results showed little variation in the size range of the silica particles within a particular frustule component (valve or girdle band), but there may be differences in particle size between these components within a diatom frustule and significant differences are found between species.  相似文献   

14.
1. Photosynthetic bacteria in water suspension break open when treated with supersonic vibration thus liberating the cell contents, including a water soluble protein to which is attached the otherwise water insoluble pigments, bacteriochlorophyll and carotinoids. Both types of pigments appear to be combined with the same protein. 2. The protein pigment compound is insoluble in the region of pH 3.0 to 4.5 and in neutral solution can be completely precipitated by 0.5 saturated (NH4)2SO4. It is soluble in distilled water and adsorbable on fullers'' earth. 3. Supersonic extracts of photosynthetic bacteria do not have the ability to carry on photosynthesis, but will act as a photocatalyst for the oxidation of ascorbic acid with visible or infrared radiation. The rate of the photochemical oxidation is proportional to the light intensity.  相似文献   

15.
Dissolved organic carbon (DOC) in Lake Fryxell, 10 streams flowing into the lake, and the moat surrounding the lake was studied to determine the influence of sources and biogeochemical processes on its distribution and chemical nature. Lake Fryxell is an amictic, permanently ice-covered lake in the McMurdo Dry Valleys which contains benthic and planktonic microbial populations, but receives essentially no input of organic material from the ahumic soils of the watershed. Biological activity in the water column does not appear to influence the DOC depth profile, which is similar to the profiles for conservative inorganic constituents. DOC values for the streams varied with biomass in the stream channel, and ranged from 0.2 to 9.7 mg C/L. Fulvic acids in the streams were a lower percentage of the total DOC than in the lake. These samples contain recent carbon and appear to be simpler mixtures of compounds than the lake samples, indicating that they have undergone less humification. The fulvic acids from just above the sediments of the lake have a high sulfur content and are highly aliphatic. The main transformations occurring as these fractions diffuse upward in the water column are 1) loss of sulfur groups through the oxycline and 2) decrease in aliphatic carbon and increase in the heterogeneity of aliphatic moieties. The fraction of modem14C content of the lake fulvic acids range from a minimum of 0.68 (approximately 3000 years old) at 15m depth to 0.997 (recent material) just under the ice. The major processes controlling the DOC in the lake appear to be: 1) The transport of organic matter by the inflow streams resulting in the addition of recent organic material to the moat and upper waters of the lake; 2) The diffusion of organic matter composed of relict organic material and organic carbon resulting from the degradation of algae and bacteria from the bottom waters or sediments of the lake into overlying glacial melt water, 3) The addition of recent organic matter to the bottom waters of the lake from the moat.  相似文献   

16.
We experimentally demonstrate an ultra‐sensitive immunoassay biosensor using diatom biosilica with self‐assembled plasmonic nanoparticles. As the nature‐created photonic crystal structures, diatoms have been adopted to enhance surface plasmon resonances of metal nanoparticles on the surfaces of diatom frustules and to increase the sensitivity of surface‐enhanced Raman scattering (SERS). In this study, a sandwich SERS immunoassay is developed based on the hybrid plasmonic‐biosilica nanostructured materials that are functionalized with goat anti‐mouse IgG. Our experimental results show that diatom frustules improve the detection limit of mouse IgG to 10 pg/mL, which is ?100× better than conventional colloidal SERS sensors on flat glass.

Ultra‐sensitive immunoassay biosensor using diatom biosilica with self‐assembled plasmonic nanoparticles.  相似文献   


17.
This investigation reports on the fractionation of filtrate from the green alga Hormotila blennista known to contain autostimulatory properties. Acid, basic, and volatile acid filtrate extracts reduced the lag time of H. blennista at low concentrations. Whole filtrate did not express those lag time reducing capacities which were demonstrated in filtrate extracts. Glycolic acid was identified in both the acid and volatile acid extracts. Growth rate stimulation could not be demonstrated with any filtrate extract. Stimulatory properties of filtrate were shown to be dialyzable and heat labile. It was suggested that heat-labile low molecular weight organic extracellular products are responsible for the growth rate stimulatory property of filtrate. Although dialysis and heat treatments of filtrate removed growth rate stimulation, filtrate properties capable of extending final population levels were retained. High molecular weight heat-stable extracellular products appear to be at least partially responsible for these extended growth levels.  相似文献   

18.
Future materials are envisioned to include bio-assembled, hybrid, three-dimensional nanosystems that incorporate functional proteins. Diatoms are amenable to genetic modification for localization of recombinant proteins in the biosilica cell wall. However, the full range of protein functionalities that can be accommodated by the modified porous biosilica has yet to be described. Our objective was to functionalize diatom biosilica with a reagent-less sensor dependent on ligand-binding and conformational change to drive FRET-based signaling capabilities. A fusion protein designed to confer such properties included a bacterial periplasmic ribose binding protein (R) flanked by CyPet (C) and YPet (Y), cyan and yellow fluorescent proteins that act as a FRET pair. The structure and function of the CRY recombinant chimeric protein was confirmed by expression in E. coli prior to transformation of the diatom Thalassiosira pseudonana. Mass spectrometry of the recombinant CRY showed 97% identity with the deduced amino acid sequence. CRY with and without an N-terminal Sil3 tag for biosilica localization exhibited characteristic ribose-dependent changes in FRET, with similar dissociation constants of 123.3 μM and 142.8 μM, respectively. The addition of the Sil3 tag did not alter the affinity of CRY for the ribose substrate. Subsequent transformation of T. pseudonana with a vector encoding Sil3-CRY resulted in fluorescence localization in the biosilica and changes in FRET in both living cells and isolated frustules in response to ribose. This work demonstrated that the nano-architecture of the genetically modified biosilica cell wall was able to support the functionality of the relatively complex Sil3-CyPet-RBP-YPet fusion protein with its requirement for ligand-binding and conformational change for FRET-signal generation.  相似文献   

19.
The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time. To date, little is known about the molecular composition, intracellular assembly, and biological functions of organic matrices. Here we have performed structural and functional analyses of the organic microrings and organic microplates from T. pseudonana. Proteomics analysis yielded seven proteins of unknown function (termed SiMat proteins) together with five known silica biomineralization proteins (four cingulins and one silaffin). The location of SiMat1-GFP in the insoluble organic microrings and the similarity of tyrosine- and lysine-rich functional domains identifies this protein as a new member of the cingulin protein family. Mass spectrometric analysis indicates that most of the lysine residues of cingulins and the other insoluble organic matrix proteins are post-translationally modified by short polyamine groups, which are known to enhance the silica formation activity of proteins. Studies with recombinant cingulins (rCinY2 and rCinW2) demonstrate that acidic conditions (pH 5.5) trigger the assembly of mixed cingulin aggregates that have silica formation activity. Our results suggest an important role for cingulins in the biogenesis of organic microrings and support the hypothesis that this type of insoluble organic matrix functions in biosilica morphogenesis.  相似文献   

20.
The intricate, hierarchical, highly reproducible, and exquisite biosilica structures formed by diatoms have generated great interest to understand biosilicification processes in nature. This curiosity is driven by the quest of researchers to understand nature's complexity, which might enable reproducing these elegant natural diatomaceous structures in our laboratories via biomimetics, which is currently beyond the capabilities of material scientists. To this end, significant understanding of the biomolecules involved in biosilicification has been gained, wherein cationic peptides and proteins are found to play a key role in the formation of these exquisite structures. Although biochemical factors responsible for silica formation in diatoms have been studied for decades, the challenge to mimic biosilica structures similar to those synthesized by diatoms in their natural habitats has not hitherto been successful. This has led to an increasingly interesting debate that physico-chemical environment surrounding diatoms might play an additional critical role towards the control of diatom morphologies. The current study demonstrates this proof of concept by using cationic amino acids as catalyst/template/scaffold towards attaining diatom-like silica morphologies under biomimetic conditions in ionic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号