首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Endocrine cells containing bombesin-, enkephalin-, gastrin/CCK-, 5-HT-, and substance P-like material were demonstrated in the alimentary tract of Poecilia reticulata and Leuciscus idus melanotus. Endocrine cells with neuropeptide-Y-like immunoreactivity were found only in P. reticulata, those with VIP-like immunoreactivity only in L. idus melanotus. Gut nerves showing bombesin-, G/CCK-5-HT-, neurotensin-, substance P-and VIP-like immunoreactivity were observed in both species investigated, enkephalin- and neuropeptide Y-like immunoreactivity in P. reticulata alone. The distribution and amount of endocrine cells and nerves along the gut as visualized with the appropriate antisera varied in both teleosts. Histologically, the intestinal tract of these stomachless fish can be divided into three regions. A large number of endocrine cells with VIP-like immunoreactivity was noted in the rectum of L. idus melanotus. Endocrine cells containing bombesin-, enkepha-lin- and substance P-like material were found only in intestinal parts I and II in L. idus melanotus. Neuropeptide Y-like immunoreactivity was absent from intestinal part I of P. reticulata. The influence of starvation on the immunoreactivity of nerves and enteroendocrine cells in the teleost intestine was examined. After a starvation period of more than 6 weeks, no alterations were observed either in the appearance or amount of nerve and endocrine cell immunoreactivity.  相似文献   

2.
Historically, the enterochromaffin cell was the first endocrine cell type detected in avian gut; subsequently, a number of types of such cells were distinguished on the basis of the ultrastructural features of the secretory granules. More recently, immunocytochemical procedures have revealed somatostatin-, pancreatic polypeptide (PP)-, polypeptide YY-, glucagon-, secretin-, vasoactive intestinal peptide (VIP)-, gastrin-, cholecystokinin-, neurotensin-, bombesin-, substance P-, enkephalin-, motilin-, and FMRFamide-like immunoreactivity in avian gastrointestinal endocrine cells. Most endocrine cells are located in the antrum; there are a number in the proventriculus and small intestine but few in the gizzard, cecum, and rectum. Several avian gastroenteropancreatic hormones, including glucagon, VIP, secretin, bombesin, neurotensin, and PP, have been isolated and sequenced. They resemble the equivalent mammalian peptides in terms of molecular size but differ in amino acid composition and sequence; some (e.g., VIP) differ only in minor respects, others (e.g., secretin) more radically. Gastrointestinal endocrine cells appear late in development; available data indicate that few types are recognized by either immunocytochemistry or electron microscopy before 16 days of incubation. Experimental evidence has shown that at least the majority of gut endocrine cells are of endodermal origin and are not derived from the neural crest or neuroectoderm as earlier proposed. In early embryos, the progenitors of gastrointestinal endocrine cells are more widespread than are the differentiated cells in chicks at hatching. This, along with other observations, raises the question of factors that might influence the differentiation of gut endocrine cells.  相似文献   

3.
Summary The distribution of peptide hormone-like immunostaining in the gastrointestinal tract of 11 teleost species was investigated by immunofluorescence.Cells immunoreactive for somatostatin were found in the glandular epithelium of the stomach of four species and in the epithelium of the pyloric appendage of one species. The mid-gut epithelium contained cells reactive with antibodies to glucagon (three species), gastrin (five species), pancreatic polypeptide (five species), and substance P (two species). Cells immunoreactive for met-enkephalin were found in the epithelium of both the mid-gut and the stomach of six species.In six species in which the endocrine pancreas was investigated, insulin-, glucagon-, and somatostatin-like immunoreactivity was observed. Pancreatic polypeptide was definitely localised by immunostaining in cells of the endocrine pancreas of only one out of three species examined.Vasoactive intestinal polypeptide-, neurotensin-, bombesin-, and enkephalin-like immunoreactivity was identified in the gastrointestinal nerve fibres in various species.In view of the considerable species variation found, caution should be exercised in generalising about the peptides present in the gastrointestinal tract of fish.  相似文献   

4.
Summary Histological, cytochemical and immunocytochemical methods were used in light and electron microscopical studies to demonstrate the presence of a neuroendocrine system in the gut of the urodele, Salamandra salamandra.Cytochemical stains capable of detecting peptide-producing endocrine cells demonstrate cells reacting with Masson's silver (argentaffin) method, Grimelius' argyrophil silver method, masked metachromasia method and the lead haematoxylin stain.Using antisera raised to a variety of mammalian gut peptides, cells containing bombesin-, gastrin-, somatostatin-, substance P- and glucagon-like immunoreactivity were identified; vasoactive intestinal polypeptide- and substance P-like immunoreactivities were found in nerve fibres in the submucous and myenteric plexus. No immunoreactivity was detected for motilin, gastric inhibitory polypeptide, cholecystokinin or secretin.The ultrastructure of the immunoreactive cells and nerves was revealed by the semithin/thin method. All the cells identified contained numerous electrondense secretory granules, which varied in their chracteristic morphological structure from one cell type to another.The evidence collected in this study indicates that a complex neuroendocrine system regulating gut function is present in this amphibian and may have developed prior to the emergence of the phylum.  相似文献   

5.
The central ganglia of the leech, Hirudo medicinalis, were processed for the immunohistochemical localisation of bombesin-, substance P-, cholecystokinin-, vasoactive intestinal polypeptide-, enkephalin-, serotonin- and dopamine-beta-hydroxylase-related substances. To varying extents all of the substances were localised in neuropile processes, and all, with the exception of substance P, were associated with specific perikarya. The most prominent neuropeptides, in terms of the number of immunoreactive neurones, were cholecystokinin and vasoactive intestinal peptide. The dopamine-beta-hydroxylase positive neurones are thought to be octopaminergic, and the serotonin monoclonal antibody revealed positive staining in the Retzius cells. We were unable to demonstrate the coexistence of pairs of substances in any neurones in the leech ganglia.  相似文献   

6.
Using a specific antiserum to bovine proenkephalin 1–77 (synenkephalin), the distribution of this peptide in the frog adrenal gland has been studied by means of the indirect immunofluorescence technique. Proenkephalin immunoreactivity was found in all chromaffin cells, which also demonstrated enkephalin- and vasoactive intestinal peptide-like immunoreactivity. No nerve endings containing proenkephalin-, enkephalin-, or vasoactive intestinal peptide-like material could be detected. These data suggest a precursor-product mode of biosynthesis for enkephalins in amphibian chromaffin cells. On a phylogenic point of view, they further indicate a high stability of the structure of proenkephalin during the evolution process.  相似文献   

7.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

8.
Summary The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish,Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scatterd islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin-, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, -endorphin, -endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P-immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

9.
Summary The central ganglia of the leech,Hirudo medicinalis, were processed for the immunohistochemical localisation of bombesin-, substance P-, cholecystokinin-, vasoactive intestinal polypeptide-, enkephalin-, serotonin- and dopamine--hydroxylase-related substances. To varying extents all of the substances were localised in neuropile processes, and all, with the exception of substance P, were associated with specific perikarya. The most prominent neuropeptides, in terms of the number of immunoreactive neurones, were cholecystokinin and vasoactive intestinal peptide. The dopamine--hydroxylase positive neurones are thought to be octopaminergic, and the serotonin monoclonal antibody revealed positive staining in the Retzius cells. We were unable to demonstrate the coexistence of pairs of substances in any neurones in the leech ganglia.  相似文献   

10.
Summary The presence of bioactive peptides in the gut and their possible electrophysiological effects on the intestinal epithelium were studied in two teleost species, the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus). Vasoactive intestinal polypeptide-like immunoreactive nerve fibres were found beneath the intestinal epithelium of both species. Galanin-, metenkephalin-and calcitonin gene-related peptide-like immunoreactive nerve fibres were found exclusively in the mucosa of the tilapia. Both species had vasoactive intestinal polypeptide-, enkephalin- or neuropeptide Y-like immunoreactive endocrine cells; calcitonin gene-related peptide-like immunoreactive endocrine cells were additionally found in the tilapia. Somatostatin- and dopamine--hydroxylase-like immunoreactivities were not observed. Nerve cell bodies in the myenteric plexus of both species showed immunoreactivity for calcitonin gene-related peptide-, vasoactive intestinal polypeptide-, and galanin-like peptide. Enkephalin-like immunoreactive nerve cell bodies were present in the tilapia only. None of the peptides had a pronounced electrogenic effect. However, calcitonin gene-related peptide added to stripped intestinal epithelium of the tilapia, reduced the ion selectivity, and addition of galanin increased the ion selectivity. In goldfish intestine, both galanin and calcitonin gene-related peptide were without effect. Enkephalin counteracted the serotonin-induced reduction of the ion selectivity of the goldfish intestinal epithelium, but had no effect on the tilapia epithelium. In both species, vasoactive intestinal polypeptide reduced the ion selectivity of the intestinal epithelium, and neuropeptide Y induced an increase of the ion selectivity. Somatostatin showed no effect on the epithelial ion selectivity of either species. Tetrodotoxin did not inhibit the effects of the peptides studied. The changes in ion selectivity suggest that the enterocytes may be under the regulatory control of these peptides.  相似文献   

11.
Summary The presence and distribution of bombesin-, enkephalin-, gastrin/cholecystokinin-, neuropeptide Y-, neurotensin-, somatostatin-, substance P-, and VIP-like immunoreactivities in gut nerves of representatives of nineteen cyclostome, elasmobranch and teleost species have been studied.The results have been correlated to results from previous studies in other species. Nerve plexuses showing bombesinlike, substance P-like and VIP-like immunoreactivity are commonly occurring, while other neuropeptides may have a more varied distribution.Tentative evolutionary patterns, and the possible function and importance of each peptide is discussed.  相似文献   

12.
Neuron specific enolase (NSE), an isoenzyme of the glycolytic enzyme enolase, has been established by immunocytochemical means as a marker of morphological and functional maturation in central neurons and appears late in development. However, little is known about the presence of NSE in developing peripheral neurons and endocrine cells and its relationship to the development of classical neurotransmitters and peptides. We therefore investigated the appearance of NSE immunoreactivity in nerves and mucosal endocrine cells of the human respiratory tract in foetal, neonatal and adult life. NSE was found to be present in neuroblasts, nerve fibres and endocrine cells from the earliest period of gestation examined (8 weeks), before the appearance of acetylcholinesterase activity (10-12 weeks), dopamine-beta-hydroxylase (20 weeks), vasoactive intestinal polypeptide (20 weeks) or calcitonin (20 weeks). Bombesin-like immunoreactivity was found in a small proportion of mucosal endocrine cells as early as eight weeks in the foetal respiratory tract. These findings indicate that unlike central neurons and their processes, peripheral neurons of the lung contain NSE immunoreactivity well before full maturation and establishment of synaptic contact with end organs.  相似文献   

13.
The presence and distribution of bombesin-, enkephalin-, gastrin/cholecystokinin-, neuropeptide Y-, neurotensin-, somatostatin-, substance P-, and VIP-like immunoreactivities in gut nerves of representatives of nineteen cyclostome, elasmobranch and teleost species have been studied. The results have been correlated to results from previous studies in other species. Nerve plexuses showing bombensin-like, substance P-like and VIP-like immunoreactivity are commonly occurring, while other neuropeptides may have a more varied distribution. Tentative evolutionary patterns, and the possible function and importance of each peptide is discussed.  相似文献   

14.
Summary The midgut of Blaberus craniifer is principally made up of columnar epithelial cells which are derived from small regenerative cells found grouped in nidi. Between them, small sparsely granulated cells with clear cytoplasm can be observed lying on the basal lamina. Mainly based on the size, shape and texture of their secretory granules, at least ten types of such endocrine cells have been identified. Five cell types contain a uniform population of dense granules: (1) medium-sized, round to oval granules; (2) small elongated granules; (3) large irregular granules; (4) oval granules with a highly osmiophilic core; (5) oval, haloed granules. Five others are characterized by a heterogeneous population of granules: (6) small, round to oval, variably electron-dense granules; (7) oval medium-sized granules of variable electron density; (8) large irregular granules of variable electron density; (9) small dense granules and large vesicles with filamentous material; (10) small dense granules and very large pale vesicles.In addition, near the regenerative cells, large cells characterized by very large, irregular, dense granules (up to 4 m), lack contact with the lumen, and reach the basal lamina only by slender cytoplasmic processes.Several antisera raised against mammalian peptides and amine were used to reveal axonal fibers and endocrine cells. Serotonin-like immunoreactivity is localized in a profuse innervation of the muscle layers that surround the epithelium, whereas cholecystokinin and methionine-enkephalin antisera stain a more moderate number of axonal fibers. Cholecystokinin-, methionine-enkephalin-, substance P-, vasoactive intestinal peptide-, somatoliberin-, and gonadoliberin-like immunoreactivities were detected in endocrine cells of the epithelium. While most of the cells appear pyramidal, oval, fusiform or bowl-shaped, and seem to lack contact with the lumen, cells reaching it have been detected reacting with antisera to cholecystokinin, substance P, vasoactive intestinal peptide, somatoliberin and gonadoliberin.  相似文献   

15.
The presence of a substance P-like peptide in intestinal and body wall tissues, ventral nerve fiber and seminal vesicles of the earthworm Lumbricus terrestris has been demonstrated by means of a radioimmunoassay technique. The greatest substance P-like immunoreactivity was measured in intestinal tissues where it stimulates the rate of spontaneous contraction. This effect is inhibited by the substance P antagonist (D-pro2, D-trp7,9)-SP suggesting a possible involvement of receptor mechanisms. Dual localization of substance P-like immunoreactivity in earthworm intestinal and nerve tissues follows the pattern observed of peptidal hormones in vertebrates which are common to both endocrine and non-endocrine tissues.  相似文献   

16.
Summary The presence of immunoreactive enkephalin, dynorphin, vasoactive intestinal polypeptide, cholecystokinin, substance P and neuropeptide Y in nerve fibers that project to the guinea-pig inferior mesenteric ganglion was analysed, after different denervation and ligation procedures. A quantitative analysis demonstrates that enkephalin- and substance P fibers reach the ganglion mainly via lumbar splanchnic and partly via intermesenteric nerves. Dynorphin-, vasoactive intestinal polypeptide- and cholecystokinin fibers reach the ganglion mainly via colonic and partly via hypogastric or intermesenteric nerves. Neuropeptide Y fibers enter via intermesenteric, lumbar splanchnic and hypogastric nerves and pass through the ganglion. Analysis of serial 0.5 m sections tends to confirm co-existence: of dynorphin, vasoactive intestinal polypeptide and cholecystokinin in fibers projecting from the colon; of dynorphin with substance P in the lumbar splanchnic nerves; and of neuropeptide Y with substance P in the hypogastric and colonic fibers. Synaptic contacts, predominantly axodendritic, onto the ganglion cells from enkephalin-, vasoactive intestinal polypeptide-, and substance P-containing terminals were revealed by electron microscopy. Enkephalin-immunoreactive axon varicosities are filled with small, clear vesicles with a few large, cored vesicles and form asymmetric synapses; dynorphin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive axon varicosities are rich in large, dense-cored vesicles and form symmetric synapses.  相似文献   

17.
Summary The presence of peptides in the gastrointestinal tract of the rainbow trout, Salmo gairdneri, was investigated immunocytochemically. VIP-like immunoreactivity was demonstrated in nerves in all layers of the stomach and the intestine, whereas substance P-like immunoreactivity was localized to endocrine cells, predominantly in the mucosa of the stomach, and to nerves mainly concentrated in the myenteric plexus throughout the gut. Endocrine cells reactive to gastrin/CCK antiserum were demonstrated in the intestinal mucosa, while no immunoreactivity was found in the stomach. Bombesin-immunoreactive and somatostatin-immunoreactive cells were localized in the stomach mucosa, and cells reactive to glucagon antiserum in the intestinal mucosa. Radioimmunoassay of stomach mucosa and muscle confirmed the presence of VIP-like and substance P-like immunoreactivity in these tissues, while gastrin/CCK-like immunoreactivity was low and bombesin-like immuno-reactivity was insignificant. In conclusion, molecules resembling the mammalian brain-gut peptides may be involved in the neuronal and hormonal control of gut function in fish.  相似文献   

18.
Summary The presence and distribution of regulatory peptides in nerves and endocrine cells of the stomach, intestine and rectum of a urodele amphibian, the mudpuppy, Necturus maculosus, was studied immunohistochemically in sections or whole-mount preparations of the gut wall. The effect of the occurring peptides on gut motility was studied in isolated strip preparations of circular and longitudinal smooth muscle from different parts of the gut.Bombesin-, neurotensin-, substance P- and VIP-like immunoreactivity was present in abundant nerve fibres in the myenteric plexus of both stomach, intestine and rectum. Single fibres or bundles were present in the circular muscle layer and in a well-developed deep muscular plexus in the intestine and rectum. Immunoreactive nerve cells were found in the myenteric plexus of the stomach, intestine (neurotensin only) and rectum. Gastrin/CCK-like immunoreactivity was observed only in a few fibres in stomach and rectum.Endocrine cells containing bombesin-, met-enkephalin-, gastrin/CCK-, neurotensin-, somatostatin- or substance P- like immunoreactivity were present in the mucosa.The effect of bombesin was an inhibition of the rhythmic activity in circular muscle preparations and in longitudinal muscle from the rectum, while longitudinal muscle from the stomach usually responded with a weak increase in tonus. Neurotensin, like bombesin, was inhibitory on the spontaneous rhythmic activity of circular muscle throughout the gut, while the effect on longitudinal muscle was an increase in tonus. Met-enkephalin and substance P increased the tonus of all types of preparations, and often, in addition, initiated a rhythmic activity superimposed on this maintained tonus. VIP had a general inhibitory effect on the preparations, decreasing tonus and/or abolishing rhythmic activity.It is concluded that bombesin-, neurotensin-, substance P- and VIP-like peptides are present in nerves throughout the urodele gut and may have physiological functions in regulating the motility of the gut. The gastrin/CCK-like peptide present in nerves of the stomach and rectum may affect the function of these parts of the gut. The regulatory peptides present in endocrine cells may, perhaps with the exception of the somatostatin-like peptide, affect the motility humorally.  相似文献   

19.
20.
The gut of silver eels (Anguilla anguilla L.) was investigated in order to describe both the cholinergic and adrenergic intramural innervations, and the localization of possible accessory neuromediators. Histochemical reactions for the demonstration of nicotinamide adenine dinucleotide phosphate, reduced form-(NADPH-)diaphorase and acetylcholinesterase (AChEase) were performed, as well as the immunohistochemical testing of tyrosine hydroxylase, met-enkephalin, substance P, calcitonin gene-related peptide (CGRP), bombesin, vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), somatostatin, cholecystokinin-octapeptide (CCK-8), serotonin, cholineacetyl transferase. The results evidenced a different pattern in comparison with other vertebrates, namely mammals, and with other fish. Both NADPH-diaphorase and AChEase activities were histochemically detected all along the gut in the myenteric plexus, the inner musculature and the propria-submucosa. Tyrosine hydroxylase immunoreactivity was observed in the intestinal tract only, both in the myenteric plexus and in the inner musculature. Several neuropeptides (metenkephalin, CGRP, bombesin, substance P, VIP, NPY, somatostatin) were, in addition, detected in the intramural innervation; some of them also in epithelial cells of the diffuse endocrine system (met-enkephalin, substance P, NPY, somatostatin). Serotonin was only present in endocrine cells. Tyrosine hydroxylase immunoreactivity was present in localizations similar to those of NADPH-diaphorase-reactivity, and in the same nerve bundles in which substance P- and CGRP-like-immunoreactivities were detectable in the intestinal tract. In addition, NADPH-diaphorase-reactive neurons showed an anatomical relationship with AChEase-reactive nerve terminals, and a similar relationship existed between the latter and substance P-like immunoreactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号