首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. FST-values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits.  相似文献   

2.
Natural selection has been invoked to explain the observed geographic distribution of allozyme allele frequencies for a number of teleost species. The effects of selection on allozyme loci in three species of Pacific salmon were tested. A simulation-based approach to estimate the null distribution of population differentiation (F ST) and test for F ST outliers was used. This approach showed that a majority of allozyme loci conform to neutral expectations predicted by the simulation model, with relatively few F ST outliers found. No consistent F ST outlier loci were found across species. Analysis of population sub-groups based on geography and genetic identity reduced the number of outlier loci for some species, indicating that large geographic groups may include genetically divergent populations and/or that there is geographic heterogeneity in selection pressure upon allozyme loci. Two outlier allozyme loci found in this analysis, lactate dehydrogenase-B and malic enzyme, have been shown to be influenced by selection in other teleost species. This approach is also useful in identifying allozyme loci (or other genetic markers) that meet assumptions for population genetic study.  相似文献   

3.
The comparison of the degree of differentiation in neutral marker loci and genes coding quantitative traits with standardized and equivalent measures of genetic differentiation (FST and QST, respectively) can provide insights into two important but seldom explored questions in evolutionary genetics: (i) what is the relative importance of random genetic drift and directional natural selection as causes of population differentiation in quantitative traits, and (ii) does the degree of divergence in neutral marker loci predict the degree of divergence in genes coding quantitative traits? Examination of data from 18 independent studies of plants and animals using both standard statistical and meta‐analytical methods revealed a number of interesting points. First, the degree of differentiation in quantitative traits (QST) typically exceeds that observed in neutral marker genes (FST), suggesting a prominent role for natural selection in accounting for patterns of quantitative trait differentiation among contemporary populations. Second, the FSTQST difference is more pronounced for allozyme markers and morphological traits, than for other kinds of molecular markers and life‐history traits. Third, very few studies reveal situations were QST < FST, suggesting that selection pressures, and hence optimal phenotypes, in different populations of the same species are unlikely to be often similar. Fourth, there is a strong correlation between QST and FST indices across the different studies for allozyme (r=0.81), microsatellite (r=0.87) and combined (r=0.75) marker data, suggesting that the degree of genetic differentiation in neutral marker loci is closely predictive of the degree of differentiation in loci coding quantitative traits. However, these interpretations are subject to a number of assumptions about the data and methods used to derive the estimates of population differentiation in the two sets of traits.  相似文献   

4.
Interdemic selection by the differential migration of individuals out from demes of high fitness and into demes of low fitness (Phase III) is one of the most controversial aspects of Wright's Shifting Balance Theory. I derive a relationship between Phase III migration and the interdemic selection differential, S, and show its potential effect on FST. The relationship reveals a diversifying effect of interdemic selection by Phase III migration on the genetic structure of a metapopulation. Using experimental metapopulations, I explored the effect of Phase III migration on FST by comparing the genetic variance among demes for two different patterns of migration: (1) island model migration and (2) Wright's Phase III migration. Although mean migration rates were the same, I found that the variance among demes in migration rate was significantly higher with Phase III than with island model migration. As a result, FST for the frequency of a neutral marker locus was higher with Phase III than it was with island model migration. By increasing FST, Phase III enhanced the genetic differentiation among demes for traits not subject to interdemic selection. This feature makes Wright's process different from individual selection which, by reducing effective population size, decreases the genetic variance within demes for all other traits. I discussed this finding in relation to the efficacy of Phase III and random migration for effecting peak shifts, and the contribution of genes with indirect effects to among‐deme variation.  相似文献   

5.
Aim This study investigated the influence of contemporary habitat loss on the genetic diversity and structure of animal species using a common, but ecologically specialized, butterfly, Theclinesthes albocincta (Lepidoptera: Lycaenidae), as a model. Location South Australia. Methods We used amplified fragment length polymorphism (AFLP) and allozyme datasets to investigate the genetic structure and genetic diversity among populations of T. albocincta in a fragmented landscape and compared this diversity and structure with that of populations in two nearby landscapes that have more continuous distributions of butterflies and their habitat. Butterflies were sampled from 15 sites and genotyped, first using 363 informative AFLP bands and then using 17 polymorphic allozyme loci (n = 248 and 254, respectively). We complemented these analyses with phylogeographic information based on mitochondrial DNA (mtDNA) haplotype information derived from a previous study in the same landscapes. Results Both datasets indicated a relatively high level of genetic structuring across the sampling range (AFLP, FST = 0.34; allozyme, FST = 0.13): structure was greatest among populations in the fragmented landscape (AFLP, FST = 0.15; allozyme, FST = 0.13). Populations in the fragmented landscape also had significantly lower genetic diversity than populations in the other two landscapes: there were no detectable differences in genetic diversity between the two continuous landscapes. There was also evidence (r2 = 0.33) of an isolation by distance effect across the sampled range of the species. Main conclusions The multiple lines of evidence, presented within a phylogeographic context, support the hypothesis that contemporary habitat fragmentation has been a major driver of genetic erosion and differentiation in this species. Theclinesthes albocincta populations in the fragmented landscape are thus likely to be at greater risk of extinction because of reduced genetic diversity, their isolation from conspecific subpopulations in other landscapes, and other extrinsic forces acting on their small population sizes. Our study provides compelling evidence that habitat loss and fragmentation have significant rapid impacts on the genetic diversity and structure of butterfly populations, especially specialist species with particular habitat preferences and poor dispersal abilities.  相似文献   

6.
The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of only 20 pine species worldwide with wingless, bird-dispersed seeds; having the reputed capacity to reproduce vegetatively; and forming distinct growth morphologies at different elevations in this part of its natural range. Genetic differentiation, as measured with 21 allozyme loci, among the three studied watersheds is virtually negligible (FST = 0.004). This is a surprising result because the upper-elevation sites vary somewhat in slope aspect; thus, aspect was confounded with watershed effect. Differentiation between the upper-elevation prostrate krummholz thickets and lower-elevation upright tree clump growth forms is modest (FST = 0.051). Much stronger differentiation was measured among the individual thickets and clumps within their sample sites (FST = 0.334). Within krummholz thickets, multiple individuals are present and genetic relationships often resemble half- to full-sibling family structure (mean r = 0.320). Canonical trend surface analysis in two intensively sampled thickets indicates greatest genotypic variation in the direction of the prevailing wind. At lower elevations, most (72%) of the tree clumps contained more than one genotype; the remaining clumps are probably multistemmed trees. Within tree clumps, family relationships are closer than those for krummholz thickets—commonly full-sibling to selfed structure (mean r = 0.597). Genetic structure is apparently profoundly influenced by the seed-caching behavior of Clark's nutcracker (Nucifraga columbiana Wilson). Western pine species typically show little among-population differentiation and high levels of within-population genetic variation. In whitebark pine in the eastern Sierra Nevada of California, genetic variation is highly structured, especially within the natural groupings—krummholz thickets and upright tree clumps.  相似文献   

7.
Contrary to assumptions commonly made in the study of population genetics, the demographic properties of many populations are not always constant. Important characteristics of populations such as migration rate and population size may vary in time and space. Moreover, local populations often come and go; the rate of extinction and the properties of colonization may also vary. In this paper, the approach to equilibrium following a disturbance in the genetic variance among populations is described. The rate of migration is shown to be critical in determining the extent to which extinction and recolonization affects genetic differentiation. Perturbations and variations through time and space in demographic parameters such as population size and migration rate are shown to be important in determining the partitioning of genetic variance. Equations are given to predict the average through time of genetic differentiation among populations in the event of a single disturbance or in constant fluctuations in the pertinent demographic parameters. In general, these fluctuations increase the FST of a species. Spatial demographic variation affects FSTmuch more than temporal variation. These demographic properties make some species unsuitable for the empirical analysis of migration with indirect genetic measures. Demographic instability may play a large role in the evolution of genetic variation.  相似文献   

8.
The relationship between social structure and partitioning of genetic variance was examined in two red howler monkey populations (W and G) in Venezuela, one of which (G) was undergoing rapid growth through colonization by new troops. Rates and patterns of gene flow had been determined through radiotelemetry and direct observation data on solitary migrants, and 10 years of troop censusing. Standard electrophoresis techniques were used to examine 29 loci in blood samples taken from 137 of the study animals. Analysis of genetic variance demonstrated: (1) a significantly high level of genetic variation among troops within populations (FST = 0.225 for W and 0.142 for G), and (2) a significant excess of heterozygosity within troops relative to expected (FIS = -0.136 for W and -0.064 for G), despite relatively high levels of observed and inferred inbreeding in W. Differences between the populations in FST values conformed to those predicted based on differences in colonization rate. Comparison of partitioning of genetic variance among different genealogical subsets of troops demonstrated that the pattern of genetic differentiation observed among troops within populations was promoted by an essentially single-male harem breeding structure, a very low rate of random exchange of breeding males among troops, and a high degree of relatedness among troop females. Between-troop genetic differentiation (FST) was thereby increased relative to that expected from other types of social organization, while the correlation between uniting gametes within troops (FIS) was decreased. Genetic differentiation between populations (2%) corresponded to that predicted from migration rates. Such a mosaic of genetic variation, combined with differences in reproductive success observed among troops and a high troop failure rate, create conditions in which interdemic selection could result in more rapid spread of advantageous gene combinations than would be expected in a panmictic population, particularly in a colonizing situation in which the founder population is small.  相似文献   

9.
Relatively little information is available on mating systems and interpopulational gene flow in species of homosporous pteridophytes. Because of the proximity of antheridia and archegonia on the same thallus, it has long been maintained that intragametophytic selling is the predominant mode of reproduction in natural populations of homosporous ferns and other homosporous plants. Furthermore, quantitative estimates of interpopulational gene flow via spore dispersal are lacking. In this paper, we examine five species of homosporous ferns (Botrychium virginianum, Polystichum munitum, P. imbricans, Blechnum spicant, and Dryopteris expansa) and present estimates of 1) rates of intragametophytic selling, 2) levels of interpopulational gene flow, and 3) interpopulational genetic differentiation (FST). Our data demonstrate that mating systems vary among species of ferns, just as they do among species of seed plants. The data also suggest that levels of interpopulational gene flow are generally high. The FST values indicate little genetic divergence among populations for all species except Dryopteris expansa, which exhibits significant levels of interpopulational genetic differentiation. Patterns of genetic diversity in the five species examined are related to the mating system and rate of interpopulational gene flow in each species. The FST values for all species except Botrychium virginianum are in close agreement with those predicted for an island model of population structure.  相似文献   

10.
The amount of gene flow among local populations partly determines the relative importance of genetic drift and natural selection in the differentiation of such populations. Land snails, because of their limited powers for dispersal, may be particularly likely to show such differentiation. In this study, we directly estimate gene flow in Albinaria corrugata, a sedentary, rock-dwelling gastropod from Crete, by mark-recapture studies. In the same area, 23 samples were taken and studied electrophoretically for six polymorphic enzyme loci. The field studies indicate that the population structure corresponds closely to the stepping-stone model: demes are present on limestone boulders that are a few meters apart, and dispersal takes place mainly between adjacent demes. Average deme size (N) is estimated at 29 breeding individuals and the proportion of migrants per generation at 0.195 (Nm = 5.7). We find no reason to assume long-distance dispersal, apart from dispersal along occasional stretches of suitable habitat. Genetic subdivision of the population, as derived from FST values, corresponds to the direct estimate only at the lowest spatial level (distance between sample sites < 10 m), where values for Nm of 5.4 and 17.6 were obtained. In contrast, at the larger spatial scales, FST values give gene-flow estimates that are incompatible with the expected amount of gene flow at these scales. We explain these discrepancies by arguing that gene flow is in fact extremely limited, making correct estimates of Nm from FST impossible at the larger spatial scales. In view of these low levels of gene flow, it is concluded that both genetic drift and natural selection may play important roles in the genetic differentiation of this species, even at the lowest spatial scales.  相似文献   

11.
This paper examines two wild populations of Limonium carolinianum for population genetic subdivision and spatial patterns of genetic variation in an attempt to simultaneously test for both the action of local adaptation to tidal gradients and isolation by distance (IBD). A VNTR (variable number of tandem repeats) genetic “fingerprinting” marker was used to infer relatedness among mapped plants in two populations. Band sharing within and between populations estimated F'ST, an approximate measure of FST. Regression models were used to analyze the relationship between band sharing and spatial separation in tidal elevation and horizontal distance, as well as the relationship of fecundity differences with band sharing and spatial distance. Populations differed in band size frequency distributions and mean number of bands per profile and, therefore, likely differed in effective population size. F'ST was estimated at 0.0678 and was significantly greater than F'ST among randomly constructed subpopulations. Band sharing decreased 0.13% per meter in one population but showed no significant relation to distance in the other. In the population with significant IBD band sharing increased with increasingly different tidal elevation, contrary to an adaptive hypothesis, possibly due to directional gene flow or drift. Deme sizes were approximately 25 meters and greater than 100 meters, spanning larger areas than the entire environmental gradient. Fecundity differences were not associated with spatial parameters or band sharing. Unequal potential maternal fecundity measured as variance in number of seeds per maternal family was a significant source of genetic sampling variance. The VNTR marker employed is capable of detecting adaptation as identity by descent in ecological time and is an appropriate method for estimating the net evolutionary fate of polygenic traits. The results show that the net balance between selection along an environmental gradient and the effects of IBD and unequal maternal fecundity favor genetic differentiation by random processes in populations of Limonium.  相似文献   

12.
This study assesses two hypotheses on the genetic diversity of populations of Gigartina skottsbergii Setchell et Gardner (Rhodophyta, Gigartinales) at the border of the species distribution: 1) peripheral populations display a reduced genetic diversity compared with central populations, and 2) genetic differentiation is higher among peripheral than among central populations. Two peripheral and four central populations were sampled along the Chilean coast and 113 haploid individuals were analyzed using 17 random amplification of polymorphic DNA loci. The genetic diversity was estimated by allele diversity (He), allele richness (Â), and the mean pair‐wise differences among multilocus genotypes. All three estimates consistently and significantly indicated a lower genetic diversity within the peripheral than within the central populations. Genetic differentiation between the two peripheral populations was stronger (FST=0.35) than between central populations at similar spatial scales (FST ranging from 0 to 0.25). In addition, it appeared from the distribution of pair‐wise differences that peripheral populations are in demographic expansion after a recent bottleneck. The results are discussed in the specific context of potential overharvesting of these wild populations.  相似文献   

13.
A leading hypothesis for the immense diversity of the Orchidaceae is that skewed mating success and small, disjunct populations lead to strong genetic drift and switches between adaptive peaks. This mechanism is only possible under conditions of low gene flow that lead to high genetic differentiation among populations. We tested whether orchids typically exhibit high levels of population genetic differentiation by conducting a meta‐analysis to compare mean levels of population genetic differentiation (FST) between orchids and other diverse families and between rare and common orchids. Compared with other families, the Orchidaceae is typically characterized by relatively low genetic differentiation among populations (mean FST = 0.146) at allozyme loci. Rare terrestrial orchids showed higher population genetic differentiation than common orchids, although this value was still lower than the mean for most plant families. All lines of evidence suggest that orchids are typically characterized by low levels of population genetic differentiation, even in species with naturally disjunct populations. As such, we found no strong evidence that genetic drift in isolated populations has played a major role in the diversification of the Orchidaceae. Further research into the diversification of the family needs to unravel the relative roles of biotic and environmental selective pressures in the speciation of orchids.  相似文献   

14.
The reproductive composition and genetic diversity of populations of the red seaweed Lithothrix aspergillum Gray (O. Corallinales) were studied at three southern California sites (Shaw's Cove and Treasure Island, Laguna Beach; Indian Rock, Santa Catalina Island) and at a fourth site (Bodega Bay) located in northern California. Sexually reproducing populations were confined to southern California. Diploid individuals were numerically dominant over haploid (gametophytic) individuals at all sites. Intertidal and subtidal subpopulations from Shaw's Cove differed in their reproductive profiles. Most intertidal specimens found on emersed surfaces were densely branched, turf-forming, and bore tetrasporangial (68.6%), carposporangial (11.4%), or spermatangial (5.7%) conceptacles, reflecting a sexual life history; none produced asexual bispores. In contrast, 74.3% of the larger, loosely branched subtidal specimens bore bisporangial conceptacles indicative of asexual reproduction. Nearly 70% of the Indian Rock thalli showed no evidence of conceptacle formation. Only asexual, diploid bispore-producing thalli were obtained from the Bodega Bay site. Genetic diversity (mean number of alleles per locus, percent of polymorphic loci, and average expected heterozygosity) of diploid L. aspergillum populations varied with life-history characteristics and geographic location. A total of 30 alleles was inferred from zymograms of 16 loci examined by starch-gel electrophoresis; of these loci, 11 were polymorphic. The genetic diversity of sexual, diploid populations of L. aspergillum (alleles per locus [A/L] = 1.4-1.5; percent polymorphic loci [%P] = 37.5-50.0) was relatively high compared with other red seaweeds. Lowest diversity (A/L = 1.0; %P = 0.0) occurred in the exclusively asexual Bodega Bay population which consisted of genetic clones. All sexual L. aspergillum populations deviated significantly from Hardy-Wein-berg expectations due to lower than expected heterozygosity. Genetic differentiation (Wright's Fstatistic [FST]; Nei's Genetic Distance [D]) among sexually reproducing southern California populations was low (FST= 0.030) on a local scale (ca. 5 km), suggesting high levels of gene flow, but high genetic differention (FST= 0.390 and 0.406) occurred among southern California populations separated by ca. 70 km. Very high genetic differentiation (FST= 0.583–0.683) was obtained between northern and southern California populations separated by 700–760 km. Our genetic and reproductive data suggest that the L. aspergillum population from Bodega Bay is sustained by perennation, vegetative propagation, or asexual reproduction by bispores and may represent an isolated remnant or a population established by a founder event.  相似文献   

15.
16.
Genetic variation among populations of chewing lice (Geomydoecus actuosi) was examined in relation to chromosomal and electrophoretic variation among populations of their hosts (Thomomys bottae) at a contact zone. Louse demes were characterized by low levels of genetic heterozygosity (H? = 0.039) that may result from founder effects during primary infestation of hosts, compounded by seasonal reductions in louse population size. Louse populations sampled from different hosts showed high levels of genetic structuring both within and among host localities. Microgeographic differentiation of louse populations is high (mean FST = 0.092) suggesting that properties of this host–parasite system promote differentiation of louse populations living on different individual hosts. Among-population differentiation in lice (FST = 0.240) was similar to that measured among host populations (FST = 0.236), suggesting a close association between gene flow in pocket gophers and gene flow in their lice.  相似文献   

17.
Variation of 17 allozyme loci was examined in 530 Apodemus uralensis individuals caught in the Ural region from 2005 to 2007. In the populations examined, the mean value of the genetic differentiation index F ST constituted 0.169. It was demonstrated that F ST values for the samples obtained from the 1-km2 plot in different years, as well as for the samples trapped at a distance from 0.3 to 5 km during one year, could be remarkably higher than the mean value, pointing to their high, statistically significant differentiation. It seems likely that this differentiation was caused by spatial population subdivision, associated with the mice migrations, temporal change of the population structure, and the gene drift. Population of A. uralensis from radioactively contaminated zone displayed no specificities in the allozyme set and frequencies, which could basically distinguish these animals from the other Ural populations.  相似文献   

18.
The ability of a species to adapt to sub-optimal conditions at the margin of its distribution range and to cope with environmental stress is considered to be important for its successful geographic expansion. To ascertain the roles of phenotypic differentiation and plasticity in the expansion of the annual Atriplex tatarica, we compared plants from populations found in Marginal and Central areas of the species’ range. We grew these plants under marginal climatic conditions in pots with different types of substrate. We assessed the population genetic structure at five putatively neutral allozyme loci to evaluate whether there was any evidence of reduced genetic diversity in Marginal populations compared to Central ones. We used the QST vs. FST approach (while FST gives a standardised measure of the genetic differentiation among populations for a genetic locus, QST measures the amount of genetic variance among populations relative to the total genetic variance) to ascertain the roles of adaptive vs. non-adaptive processes on phenotypic differentiation. Plants native to the Marginal area of the species’ range flowered earlier and had a lower shoot mass and a higher reproductive allocation than plants native to the Central part of the species’ range. The Marginal populations of Atriplex tatarica showed lower genetic diversity at allozyme loci and higher phenotypic differentiation than the Central populations. We recorded similar plastic responses to substrates in plants native to both regions. Our results indicate that Marginal populations of expanding A. tatarica maintain the ability to adapt locally and to elicit a plastic response to environmental stress, despite loss of genetic diversity.  相似文献   

19.
Life cycle and breeding system variation in Epichloë grass endophytes (choke disease) is tightly linked to the degree of stroma formation. It is not known whether this variation results from differences in host resistance, fungal virulence, or environmental conditions. We found genetic differentiation between 173 asymptomatic (NS) and 93 stromata-forming (S) Epichloë strains isolated from one grass species, Brachypodium sylvaticum, based on 13 presumed allozyme loci, of which six were variable. The fungal strains originated from 10 sites in Switzerland, three sites of which were represented by both NS and S subpopulations. In total, 19 allozyme genotypes, that were nonrandomly distributed among S and NS were detected. Genetic variation measured as GST between S and NS strains isolated from the same site ranged from 0.73 to 0.98. Clonality, measured as linkage disequilibrium at one site, was significant in the NS subpopulation (P ? 0.001), but not in the S subpopulation (P = 0.21), implying asexual reproduction by NS strains as well as successful horizontal transmission of S strains. Since all seeds are usually infected vegetatively, horizontal transmission implies the occurrence of multiple host infections. Altogether, these results provide indirect evidence that NS and S strains do not belong to one panmictic population and that differentiation patterns of stroma formation found in nature are due to genetic differences among fungi in associations with their host plants. We discuss the direction of evolution of disease expression in this system. The distribution of genetic variability suggests that the asymptomatic strains were derived from stromata-forming populations.  相似文献   

20.
Abstract

We collected larval damselflies from 17 sites in the North, South and Chatham Islands, and tested the hypotheses that: (1) genetic markers (e.g., allozymes, mtDNA) would successfully discriminate taxa; and (2) the dispersal capabilities of adult damselflies would limit differentiation among locations. Four species from three genera were identified based on available taxonomic keys. Using 11 allozyme loci and the mitochondrial cytochrome c‐oxidase subunit I (COI) gene, we confirmed that all taxa were clearly discernible. We found evidence for low to moderate differentiation among locations based on allozyme (meani F ST = 0.09) and sequence (COI) divergence (<0.034). No obvious patterns with respect to geographic location were detected, although slight differences were found between New Zealand's main islands (North Island, South Island) and the Chatham Islands for A. colensonis (sequence divergence 0.030–0.034). We also found limited intraspecific genetic variability based on allozyme data (Hexp < 0.06 in all cases). We conclude that levels of gene flow/dispersal on the main islands may have been sufficient to maintain the observed homogeneous population structure, and that genetic techniques, particularly the COI gene locus, will be a useful aid in future identifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号