首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An asymmetric fourth cell division in the sea urchin embryo results in formation of daughter cells, macromeres and micromeres, with distinct sizes and fates. Several lines of functional evidence presented here, including pharmacological interference and dominant negative protein expression, indicate that heterotrimeric G protein Gi and its interaction partner, activator of G-protein signaling (AGS), are necessary for this asymmetric cell division. Inhibition of Gi signaling by pertussis toxin interferes with micromere formation and leads to defects in embryogenesis. AGS was isolated in a yeast two-hybrid screen with G alpha i as bait and was expressed in embryos localized to the cell cortex at the time of asymmetric divisions. Introduction of exogenous dominant-negative AGS protein, containing only G-protein regulatory (GPR) domains, selectively prevented the asymmetric division in normal micromere formation. These results support the growing evidence that AGS is a universal regulator of asymmetric cell divisions in embryos.  相似文献   

2.
We have partially purified and characterized an 87 kDa gelatinase activity expressed in later stage sea urchin embryos. Cleavage activity was specific for gelatin and no cleavage of sea urchin peristome type I collagen, bovine serum albumin or casein was detected. Magnesium and Zn2+ inhibited the gelatinase and Ca2+ protected against inhibition. Ethylenediamine tetracetic acid, ethylenebisoxyethylenenitriol tetraacetic acid and 1,10-phenanthroline were inhibitory, suggesting that the gelatinase is a Ca2+- and Zn2+-dependent metalloproteinase. No inhibition was detected with serine or cysteine protease inhibitors and the vertebrate matrix metalloproteinase (MMP) inhibitor, Batimastat, was also ineffective. The vertebrate MMP activator p-aminophenylmercuric acetate was without effect. These results allow us to identify both similarities and differences between echinoderm and vertebrate gelatinases. J. Cell. Biochem. 66: 337–345, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The purification, biochemical characterization and functional features of a novel extracellular matrix protein are described. This protein is a component of the basal lamina found in embryos from the sea urchin species Paracentrotus lividus and Hemicentrotus pulcherrimus . The protein has been named PI-200 K or Hp-200 K, respectively, because of the species from which it was isolated and its apparent molecular weight in SDS-PAGE under reducing conditions. It has been purified from unfertilized eggs where it is found packed within cytoplasmic granules, and has different binding affinities to type I collagen and heparin, as assessed by affinity chromatography columns. By indirect immunofluorescence experiments it was shown that, upon fertilization, the protein becomes extracellular, polarized at the basal surface of ectoderm cells, and on the surface of primary mesenchyme cells at the blastula and gastrula stages. The protein serves as an adhesive substrate, as shown by an in vitro binding assay where cells dissociated from blastula embryos were settled on 200K protein-coated substrates. To examine the involvement of the protein in morphogenesis of sea urchin embryo, early blastula embryos were microinjected with anti-200K Fab fragments and further development was followed. When control embryos reached the pluteus stage, microinjected embryos showed severe abnormalities in arms and skeleton elongation and patterning. On the basis of current results, it was proposed that 200K protein is involved in the regulation of sea urchin embryo skeletogenesis.  相似文献   

4.
Sea urchin embryos are uniquely suitable for the study of morphogenetic cell interactions. Efforts to identify the molecules responsible for morphogenetic cell adhesion led to the isolation of a 22S glycoprotein complex from Paracentrotus lividus sea urchin embryo, that has been called toposome. The biological activity of toposome in mediating cellular adhesion has been fully documented. Its function in determining positional guidance during the development of the sea urchin embryo has been proposed. Here studies on the molecular structure of toposome are reported showing that, under non-reducing conditions, it is resolved in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in a major band with an apparent molecular weight of 260 kDa, a doublet of 180-160 kDa and a lower band of 80 kDa. Digestion with EndoH endoglycosidase reduced the molecular sizes of the bands of 10%, 20% and 40%, respectively. In order to establish if the oligomeric integrity of toposome was essential for its function, the biological activity of each subunit on cells dissociated from sea urchin blastula embryos was tested. The resulting swimming embryoids were lacking skeleton, while reaggregating cells supplemented with native toposome developed into pluteus-like structures with skeletal elements.  相似文献   

5.
Maitotoxin (MTX), a potent marine toxin involved in ciguatera poisoning, inhibited sea urchin egg fertilization in a dose-dependent manner with an IC50 of 7.5 x 10(-3) MU (mouse-unit)/ml. It did not affect male gametes fertilizing capabilities but provoked exocytosis in female gametes. It induced a K+ loss simultaneously with a Na+ entry into unfertilized eggs and increased the Ca2+ influx at higher concentrations. On isolated cortex preparations, high concentrations of MTX reduced the rate of ATP-dependent Ca2+ accumulation into reticulum compartments and caused a leakage of Ca2+ from a preparation pre-loaded with 45Ca2+. Verapamil (10(-4) M) similarly blocked the increase of egg permeability to Ca2+ and the effect on Ca2+ sequestering into intracellular compartment, induced by MTX. Ion transport perturbations which evolved relatively slowly are probably not the direct cause of fertilization inhibition which could be related to a modification of the plasma membrane of the female gametes by this hydrophilic toxin.  相似文献   

6.
7.
We have investigated the biochemical and functional properties of toposome, a major protein component of sea urchin eggs and embryos. Atomic force microscopy was utilized to demonstrate that a Ca(2+)-driven change in secondary structure facilitated toposome binding to a lipid bilayer. Thermal denaturation studies showed that toposome was dependent upon calcium in a manner paralleling the effect of this cation on secondary and tertiary structure. The calcium-induced, secondary, and tertiary structural changes had no effect on the chymotryptic cleavage pattern. However, the digestion pattern of toposome bound to phosphatidyl serine liposomes did vary as a function of calcium concentration. We also investigated the interaction of this protein with various metal ions. Calcium, Mg(2+), Ba(2+), Cd(2+), Mn(2+), and Fe(3+) all bound to toposome. In addition, Cd(2+) and Mn(2+) displaced Ca(2+), prebound to toposome, while Mg(2+), Ba(2+), and Fe(3+) had no effect. Collectively, these results further enhance our understanding of the role of Ca(2+) in modulating the biological activity of toposome.  相似文献   

8.
We describe the structure and function of the toposome, a modified calcium-binding, iron-less transferrin, the first member of a new class of cell adhesion proteins. In addition to the amino acid sequence of the precursor, we determined by Edman degradation the N-terminal amino acid sequences of the mature hexameric glycoprotein present in the egg as well as that of its derived proteolytically modified fragments necessary for development beyond the blastula stage. The approximate C-termini of the fragments were determined by a combination of mass spectrometry and migration in reducing gels before and after deglycosylation. This new member of the transferrin family shows special features which explain its evolutionary adaptation to development and adhesive function in sea urchin embryos: (i) a protease-inhibiting WAP domain, (ii) a 280 amino acid cysteine-less insertion in the C-terminal lobe, and (iii) a 240 residue C-terminal extension with a modified cystine knot motif found in multisubunit external cell surface glycoproteins. Proteolytic removal of the N-terminal WAP domain generates the mature toposome present in the oocyte. The modified cystine knot motif stabilizes cell-bound trimers upon Ca-dependent dissociation of hexamer-linked cells. We determined the positions of the developmentally regulated cuts in the cysteine-less insertion, which produce the fragments observed previously. These fragments remain bound to the hexameric 22S particle in vivo and are released only after treatment of the purified toposome with reducing agents. In addition, some soluble smaller fragments with possible signal function are produced. Sequence comparison of five sea urchin species reveals the location of the cell-cell contact site targeted by the species-specific embryo dissociating antibodies. The evolutionary tree of 2-, 1-, and 0-ferric transferrins implies their evolution from a basic cation-activated allosteric design modified to serve multiple functions.  相似文献   

9.
Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase.  相似文献   

10.
Summary Blastula cell surface membranes of the sea urchin, Strongylocentrotus purpuratus, were isolated on polycationic beads by a method modified from Jacobson and Branton (1977) and Jacobson (1980). This study represents the first application of this procedure to an embryonic system. Embryo cells were attached to polylysine-coated polyacrylamide beads and lysed, leaving the embryo cell surface membranes still attached to the beads, and cytoplasmic particles were washed free of the exposed inner surfaces of the membranes. Cell surface membrane sheets were desorbed from the beads and collected by centrifugation. Approximately 8% and 5% of the cell surface membranes of dissociated embryo cells were recovered on the beads and in the membrane pellet, respectively. Specific activities of [3H]concanavalin A-binding and of the cell surface marker enzymes, alkaline phosphatase and Na+/K+ ATPase, were 16-, 19-, and 32-fold higher, respectively, in the cell surface membrane fraction than in the embryo cell homogenate. Membranes were relatively free of cytoplasmic contaminants as judged from electron micrographs and enzyme analysis. Activities in the membrane fraction of the cytoplasmic marker enzymes, cytochrome c oxidase, catalase, acid phosphatase, NADP- and NADPH-cytochrome c reductase, and acetylcholinesterase, were substantially less than homogenate levels. The entire procedure can be completed in 4 h. Since this cell surface membrane isolation technique relies only on the tendency of a negatively charged cell to adhere to a positively charged surface, it is less likely than most other methods to exhibit species and developmental stage specificity and should prove useful in the study of the developmental role of embryonic stage-specific membrane components.  相似文献   

11.
In the fertilization of sea urchin eggs, intracellular [Ca2+] (Cai) increases transiently and intracellular pH (pHi) elevates accordingly. Unlinking these two activating factors experimentally, the requirement of the increase in pHi for sperm aster formation in the sea urchin, Clypeaster japonicus, was investigated. When the eggs were injected with an EGTA or BAPTA solution, they incorporated sperm but did not organize the sperm aster. Using these sperm-incorporated eggs under the condition that an increase in Cai was blocked, pHi was regulated by two methods: (i) perfusing ammonium acetate-containing seawater; and (ii) injecting pH buffer solutions of various pH values. By either of the two methods, the sperm aster formed at pHi 7.0 or more and functioned in female pronuclear migration when the sperm aster reached the female pronucleus. Hence, the step of the transient increase in Cai at fertilization can be bypassed. In contrast, a pHi increase is indispensably required for sperm aster formation in sea urchin eggs. Moreover, under the condition that there was the transient increase in Cai, the threshold pHi value for sperm aster formation was pHi 7.0 or more. Consequently, whether a Cai increase on fertilization occurs or not, the threshold pHi value for sperm aster formation is constant in sea urchin eggs.  相似文献   

12.
Summary A new embryonic extracellular matrix protein has been purified from eggs of the sea urchin Paracentrotus lividus. The molecule is a 210 kD dimer consisting of two 105 kD subunits that are held together by S-S bridges. In the unfertilized egg, the protein is found within granules uniformly distributed throughout the cytoplasm. After the egg is fertilized, the antigen is polarized to the apical surface of ectodermal and endodermal cells during all of the developmental stages examined, until the pluteus larva is formed. The protein promotes the adhesion of blastula cells to the substrate and is antigenically distinct from echinonectin, a well characterized substrate adhesion molecule. This report adds a new candidate to the list of known extracellular matrix molecules for the regulation of differentiation and morphogenesis in the sea urchin embryo. Offprint requests to: V. Matranga  相似文献   

13.
The hyaline layer (HL) is an apically located extracellular matrix (ECM) which surrounds the sea urchin embryo from the time of fertilization until metamorphosis occurs. While gelatin-cleavage activities were absent from freshly prepared hyaline layers, a dynamic pattern of activities developed in layers incubated at 15 or 37 degrees C in Millipore-filtered sea water (MFSW). Cleavage activities at 90, 55, 41, and 32 kDa were evident following incubation at either temperature. The activation pathway leading to the appearance of these species was examined to determine the minimum salt conditions required for processing and to establish precursor-product relationships. In both qualitative and quantitative assays, the purified 55 kDa gelatinase activity was inhibited by 1,10-phenanthroline (a zinc-specific chelator) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA). Calcium reconstituted the activity of the EGTA-inhibited enzyme with an apparent dissociation constant (calcium) of 1.2 mM. Developmental substrate gel analysis was performed using various stage embryos. The 55 and 32 kDa species comigrated with gelatin-cleavage activities present in sea urchin embryos. Collectively, the results reported here document a zymogen activation pathway which generates a 55 kDa, gelatin-cleaving activity within the extraembryonic HL. This species displayed characteristics of the matrix metalloproteinase class of ECM modifying enzymes.  相似文献   

14.
Toposome, a high molecular mass protein, is an abundant component of the yolk granule in the sea urchin egg and embryo. Toposome is composed of a 160 kDa polypeptide that is proteolytically processed into smaller species of 120 and 90 kDa during embryonic development. The exact biological function of toposome during early development is unknown. In this study we have examined calcium binding to toposome and the effect of this binding on the secondary and tertiary structural characteristics of the purified protein. Initially, we used equilibrium dialysis to quantify calcium binding to toposome. Monophasic binding of up to 600 M of calcium per mole of protein was detected with an intrinsic dissociation constant (calcium) of 240 microm. Increasing concentrations of calcium resulted in an increase in alpha helical content from 3.0 to 22.0%, which occurred with an apparent dissociation constant (calcium) of 25 microm. In parallel experiments, toposome binding to liposomes required similar concentrations of calcium; an apparent dissociation constant (calcium) of 25 microm was recorded. Endogenous tryptophan fluorescence measurements, both in the presence and absence of liposomes, demonstrated that the tertiary structure is sensitive to increasing concentrations of calcium with an apparent dissociation constant (calcium) of 240 microm. Toposome-driven, liposome aggregation assays revealed a similar calcium requirement. Collectively, these results define a two-step model for calcium modulation of toposome structure and function.  相似文献   

15.
In the sea urchin embryo, primary mesenchyme cells (PMC) are committed to produce the larval skeleton, although their behavior and skeleton production are influenced by signals from the embryonic environment. Results from our recent studies showed that perturbation of skeleton development, by interfering with ectoderm-extracellular matrix (ECM) interactions, is linked to a reduction in the gene expression of a transforming growth factor (TGF)-beta growth factor, Pl-univin, suggesting a reduction in the blastocoelic amounts of the protein and its putative involvement in signaling events. In the present study, we examined PMC competence to respond to environmental signals in a validated skeleton perturbation model in Paracentrotus lividus. We found that injection of blastocoelic fluid (BcF), obtained from normal embryos, into the blastocoelic cavity of skeleton-defective embryos rescues skeleton development. In addition, PMC from skeleton-defective embryos transplanted into normal or PMC-less blastula embryos are able to position in correct regions of the blastocoel and to engage spicule elongation and patterning. Taken together, these results demonstrate that PMC commitment to direct skeletogenesis is maintained in skeleton perturbed embryos and confirm the role played by inductive signals in regulating skeleton growth and shape.  相似文献   

16.
In sea urchin eggs, 10 μg/mL melittin was found to induce fertilization envelope formation without any increase in [Ca2+]i (the intracellular free Ca2+ level). On the other hand, 10 μmol/L Br-A23187 and 100 μg/mL SDS induced fertilization envelope formation associated with [Ca2+]i increase. If EGTA was injected into eggs to make an intracellular concentration of 2 mmol/L, [Ca2+]i became quite low and was not altered by melittin, or by Br-A23187 and SDS. In eggs containing EGTA, fertilization envelope formation was induced by melittin even in Ca2+-free artificial sea water, but not by Br-A23187 or SDS. Thus [Ca2+]i is essential for induction of a fertilization envelope in sea urchin eggs by Br-A23187 or SDS but not by melittin. Melittin probably activates some Ca2+-independent reaction downstream of Ca2+-dependent reactions in a sequential reaction system that finally results in fertilization envelope formation.  相似文献   

17.
In the present study it was found that serotonergic apical ganglion (SAG)-forming cells in plutei of the sea urchin, Hemicentrotus pulcherrimus, possessed a characteristic pear shape with broad apical sides and a pointed basal side in the acron epithelium. The basal side extended axons through the space between the epithelium and the basal lamina toward the midline of the embryo that aligned parallel to the embryonic anteroposterior axis. Serotonergic apical ganglion-forming cells had epithelial cell surface-specific proteins on their entire surface. The SAG in 4-arm plutei was composed of a 4-cell trunk region that aligned at right angles to the embryonic anteroposterior axis, and forked into two branches of one to two cells at both ends. Two branches extended toward the oral and the other two toward the aboral region, respectively. Double-stained immunohistochemistry using antiserotonin antibodies and oral ectoderm-specific anti-Ecto V monoclonal antibody or aboral ectoderm-specific anti-Ars antibodies indicated that SAG was in the aboral ectoderm region. Serotonergic apical ganglion cells were first detected in late gastrulae and increased in number rapidly between 36 and 48 h after fertilization, and then slowly afterwards. A 5-bromo-2-deoxyuridine incorporation study indicated that none of the increased SAG cells were in the S phase during the aforementioned period, suggesting that SAG cells do not proliferate by cell division, but acquire the property in particular cells by transdifferentiation using a mechanism that has yet to be elucidated.  相似文献   

18.
Pamlin, an important extracellular protein required early for sea urchin embryogenesis, is readily isolated from the embryos of Hemicentrotus pulcherrimus . A molecular image analysis of pamlin was conducted using immuno-electron microscopy, rotary shadowing and negative staining technique-applied electron microscopy. The electron microscopy showed that a monoclonal antibody to the pamlin α-subunit bound to a position 13.5 nm from one end of a purified 255 kDa pamlin molecule, which is a 132 nm long and 6.8 nm wide linear structure. The pamlin structure is composed of three subunits, a 47 nm long 52 kDa α-subunit that attaches to one end of a 105 nm long 180 kDa β-subunit, and a 15.6 nm diameter globular 23 kDa γ-subunit that binds to the middle of the β-subunit. The α- and β-subunits together form a 125–140 nm linear structure. Intermolecular aggregation frequently occurred between the free end of two β-subunits of the αβγ pamlin molecule, leaving the entire α-subunit surface free. Occasionally associations between the ends of α-subunits, or between an α-subunit and the middle of a β-subunit also occurred, but no aggregations of pamlin formed through the γ-subunit. These homophilic molecular aggregations of pamlin formed a large supramolecular network. In addition, the single pamlin molecule rounded at one end under high calcium ion concentration to form a 'loop', suggesting the presence of a calcium sensitive region in the molecule.  相似文献   

19.
In sea urchin eggs, the activity of ornithine decarboxylase (ODC) [ E C 4.1.1.17] is detectable only in the particulate fraction yielded by centrifuging egg homogenates at 10,000g for 30 minutes. ODC activity in the particulate fraction isolated from fertilized eggs is higher than that from unferti-lized eggs. ODC activity in the particulate fraction isolated from either unfertilized or fertilized eggs is enhanced by adding the supernatant fraction obtained by centrifugation at 105,000g for two hours. Heating this supernatant at 70°C for 15 minutes results In complete loss of the stimulating capacity for ODC activity. Sea urchin eggs seem to contain heat labile activating substance(s) for ODC activity. The substance does not pass through the ultrafiltration membrane Diafro UM–10. Only eggs and unhatched embryos, in which mitosis occurs frequently, contain the activating substance. In the presence of the activating substance, Ca2+enhanced ODC activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号