首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding which factors and rules govern the process of assembly in communities constitutes one of the main challenges of plant community ecology. The presence of certain functional strategies along broad environmental gradients can help to understand the patterns observed in community assembly and the filtering mechanisms that take place. We used a trait‐based approach, quantifying variations in aboveground (leaf and stem) and belowground (root) functional traits along environmental gradients in Mediterranean forest communities (south Spain). We proposed a new practical method to quantify the relative importance of species turnover (distinguishing between species occurrence and abundance) versus intraspecific variation, which allowed us to better understand the assemblage rules of these plant communities along environmental gradients. Our results showed that the functional structure of the studied plant communities was highly determined by soil environment. Results from our modelling approach based on maximum likelihood estimators showed a predominant influence of soil water storage on most of the community functional traits. We found that changes in community functional structure along environmental gradients were mainly promoted by species turnover rather than by intraspecific variability. Specifically, our new method of variance decomposition demonstrated that between‐site trait variation was the result of changes in species occurrence rather than in the abundance of certain dominant species. In conclusion, this study showed that water availability promoted the predominance of specific trait values (both in above and belowground fractions) associated to a resource acquisition or conservation strategy. In addition, we provided evidence that changes on community functional structure along the environmental gradient were mainly promoted by a process of species replacement, which represent a crucial step towards a more general understanding of the relative importance of intraspecific versus interspecific trait variation in these woody Mediterranean communities.  相似文献   

2.
Studies of community assembly focus on finding rules that predict which species can become member of a plant community. Within a community, species can be categorized in two ways: functional groups classify species according to their functional traits, whereas generalized guilds group species based on their (co-)occurrence, spatial distribution and abundance patterns. This study searches for community assembly rules by testing for coherence among functional groups and generalized guilds, as well as for correlations between the individual functional traits and assembly features, in two wetland plant communities in South Africa. The classifications of functional groups and generalized guilds were not consistent. However, rhizome internode length was related to fine-scale spatial pattern, suggesting that in systems dominated by clonal species (including wetlands, where recruitment sites are strongly limited) community assembly may be strongly linked to colonization ability. Functional groups do not predict guilds in wetland plant communities, precluding their use as the basis for assembly rules. However, an explicit consideration of clonal strategies and their effect on species’ spatial patterns appears to be important for understanding community assembly in systems dominated by clonal plants.  相似文献   

3.
The study of diversity gradients due to elevation dates back to the foundation of biogeography and ecology. Although elevation-driven patterns of plant diversity have been reported for centuries, uncertainty still exists about the assembly rules that drive these patterns. In this study, we revealed the causal factor of community assemblies for the diversity of tree and herb species along an elevation. To this end, we applied an integrated method using both functional traits and phylogeny, called the mean pairwise functional-phylogenetic distance, to understand the assembly rules for woody and herbaceous species communities along an elevation gradient. At higher elevation sites, woody and herbaceous communities were comprised of species having similar traits. The phylogenetic trends for woody species were consistent with the functional trends; closely related species co-occurred more frequently than expected at higher elevations. Phylogenetic trends for herb species were opposite to the functional trends; species with similar traits but having a random phylogenetic distribution co-occurred at higher elevations. We suggest that the community assembly rules for woody and herb species vary with elevation; and functional constraints due to environmental filtering at higher elevation act as assembly rules along gradients in both woody and herbaceous communities, even though their phylogenetic backgrounds differ.  相似文献   

4.
Community ecology aims to understand what factors determine the assembly and dynamics of species assemblages at different spatiotemporal scales. To facilitate the integration between conceptual and statistical approaches in community ecology, we propose Hierarchical Modelling of Species Communities (HMSC) as a general, flexible framework for modern analysis of community data. While non‐manipulative data allow for only correlative and not causal inference, this framework facilitates the formulation of data‐driven hypotheses regarding the processes that structure communities. We model environmental filtering by variation and covariation in the responses of individual species to the characteristics of their environment, with potential contingencies on species traits and phylogenetic relationships. We capture biotic assembly rules by species‐to‐species association matrices, which may be estimated at multiple spatial or temporal scales. We operationalise the HMSC framework as a hierarchical Bayesian joint species distribution model, and implement it as R‐ and Matlab‐packages which enable computationally efficient analyses of large data sets. Armed with this tool, community ecologists can make sense of many types of data, including spatially explicit data and time‐series data. We illustrate the use of this framework through a series of diverse ecological examples.  相似文献   

5.
Question: Is the response of plant traits to environment at the community level similar when considering species abundance and when considering species presence only? Location: Mountain grasslands, central Argentina. Methods: We used data from 57 floristic samples, ordinated through DCCA along moisture and grazing gradients combined with trait values from 85 species (plant height, leaf area, leaf thickness leaf toughness and SLA). For each sample, we calculated the weighted average (considering species abundance) and the simple average (considering only species presence). Through multiple regressions we analysed how each average (dependent variable) responded to moisture and grazing (DCCA scores along Axes 1 and 2, respectively, as independent variables). Results: Weighted averages of all traits were significantly associated to both gradients, while simple averages did not always respond. In some cases the responses followed similar but weaker trends than the responses of weighted averages, but in other cases these responses were qualitatively different. Traits more associated with size (plant height, leaf area, leaf thickness) responded more consistently (similar trends for both averages) to grazing than to moisture, while traits more associated with plant resource acquisition (SLA, leaf toughness) responded more consistently to moisture than to grazing. Conclusion: The trait values and combinations which determine the probability of species presence are not necessary the same as those which determine their probability of becoming abundant. To understand community assembly rules, both species presence and species abundance should be taken into account as the result of different, although closely linked, filtering processes.  相似文献   

6.
Reliably predicting vegetation distribution requires habitat distribution models (HDMs) that are ecologically sound. Current correlative HDMs are increasingly criticized because they lack sufficient functional basis. To include functional information into these models, we integrated two concepts from community ecology into a new type of HDM. We incorporated: 1) species selection by their traits in which only those species that pass the environmental filter can be part of the community (assembly theory); 2) that the occurrence probability of a community is determined by the extent to which the community mean traits fit the required traits as set by the environment. In this paper, our trait‐based HDM is presented and its predictive capacity explored. Our approach consists of two steps. In step 1, four plant traits (stem‐specific density and indicator values for nutrients, moisture and acidity) are predicted from four dominant environmental drivers (disturbance, nutrient supply, moisture supply and acidity) using regression. In step 2, these traits are used to predict the occurrence probability of 13 vegetation types, covering the majority of vegetation types across the Netherlands. The model was validated by comparison to the observed vegetation type for 263 plots in the Netherlands. Model performance was within the range of conventional HDMs and decreased with increasing uncertainty in the environment‐trait relationships and with an increasing number of vegetation types. This study shows that including functionality into HDMs is not necessarily at the cost of model performance, while it has several conceptual advantages among including an increased insight in the functional characteristics of the vegetation and sources of unpredictability in community assembly. As such it is a promising first step towards more functional HDMs. Further development of a trait‐based HDM hinges on replacing indicator values by truly functional traits and the translation of these relationships into mechanistic relationships.  相似文献   

7.
One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a ‘Holy Grail’ in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community‐ and ecosystem‐level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait‐based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta‐analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized.  相似文献   

8.
Concerning forest communities, not much is known about the relationship between wood traits and environmental conditions. Using a succession series, we analyzed which wood anatomical traits were correlated with successional stage and asked which traits and which environmental factors were particularly important for the trait–environment relationship. An extensive dataset of 11 groups of wood traits was generated for 93 woody species that occurred in 27 permanent plots in a secondary subtropical secondary broadleaved forest in Zhejiang Province (SE-China) and subjected to Fourth Corner Analyses, using different permutation models. We encountered a strong relationship of wood porosity, visibility of growth rings and vessel arrangement to the successional gradient. Compared to biotic community characteristics such as density of plants, abiotic environmental variables such as soil characteristics, aspect and inclination of the plots showed only marginal correlations to wood anatomical traits. Furthermore, the link between environment and species composition of the forest communities was found to be more important in explaining the trait–environment relationship than between the communities and species wood traits. In addition, our results support the idea that most of the species in the subtropical forest might be functionally equivalent.  相似文献   

9.
Alex Fajardo  Andrew Siefert 《Oikos》2019,128(6):881-891
It is assumed that widespread, generalist species have high phenotypic variation, but we know little about how intraspecific trait variation (ITV) relates to species abundance and niche breadth. In the temperate rainforest of southern Chile, we hypothesized that species with wide niche breadth would exhibit 1) high among‐plot ITV, 2) a strong relationship between trait values and the environment, and 3) a close fit between traits and local environment trait optima. We measured leaf functional traits (leaf area, LMA, leaf N and P concentrations) of saplings in woody species, and compared the relative abundance of each species with its niche breadth, measured as the range of light, soil N and P availability. We used the slope of the linear regression of species’ trait–environment relationships to assess the strength and direction of these relationships, and measured the degree to which species’ trait values track the environmental optimum across plots. In some cases, species having wide niche breadth had high ITV in leaf N and also matched traits (LMA and leaf P) to local optima along the light gradient; they also had high ITV in general and matched leaf P to local optima along the soil P gradient. The relationship between species with wide niche breadth and the strength of intraspecific trait–environment relationships was generally weak and varied depending on the niche dimension and trait in question. Species varied considerably in the strength of trait–environment relationships and total magnitude of ITV, and this variation was not generally strongly related to species abundances or niche breadth patterns. In conclusion, trait variation at the community level is not driven by a few abundant, widely distributed species, but depends on the aggregate trait responses of both abundant and rare species. This makes it difficult to scale individual species trait responses up to the community level.  相似文献   

10.
李月娟  李娇凤  常斌  姜勇  梁士楚 《生态学报》2019,39(15):5555-5563
研究植物功能性状在不同尺度的变异和关联,对于揭示植物对环境的适应策略和群落构建规律具有重要意义。以岩溶石山青冈群落为研究对象,测量了研究区内20个样方74种木本植物的叶面积、比叶面积和木材密度3个功能性状值,利用性状梯度分析法分析了3个性状在群落内部(α组分)及群落间(β组分)的变异格局及相关性。结果表明:(1)群落内3个植物功能性状的α值范围均大于β值范围,即物种相对于共生物种性状值的变化大于沿着群落平均性状梯度的变化。(2)植物功能性状比叶面积的种内差异引起的变化小于群落水平。(3)叶面积与比叶面积、比叶面积与木材密度、叶面积与木材密度的β组分相关性均最强,而α组分间无相关性或相关性较弱,即叶面积与比叶面积、比叶面积与木材密度、叶面积与木材密度两两性状间的相关性在群落间的依赖程度比群落内共生物种的依赖性要强,暗示物种在群落内和群落间采取不同的生态策略来适应环境。  相似文献   

11.
马乐  闫勇智  于佳伟  弓晓倩  李奉时  张庆 《生态学报》2023,43(20):8598-8607
沙地生态系统修复是恢复生态学研究的热点问题,适生植物筛选是修复的关键。植物功能性状反映了植物在不同环境中的生存策略,探究沙地植物功能性状及其与环境之间的关系,有助于筛选用于植被恢复的物种,为保护沙地生态系统提供理论依据。以毛乌素沙地为研究区,分析了1983-2015年间沙地典型飞播样地群落演替特征及其对环境因子的响应,建立基于10个植物功能性状的毛乌素沙地潜在种库,进一步筛选飞播恢复下沙地不同演替阶段的适生植物。研究表明:(1)飞播恢复下的毛乌素沙地植物群落分为三个演替阶段:固沙先锋物种群落、沙生植物为主的杂类草群落、中生植物为主的杂类草群落。(2)土壤因子是群落演替的主要驱动力,其中土壤全氮、土壤总有机碳、土壤硝态氮是影响群落演替的关键因素。(3)基于功能性状筛选出29种适生物种用于植被恢复,演替第一阶段可用雾冰藜、猪毛菜等,演替第二阶段可用拂子茅、无芒隐子草等,演替第三阶段可用草地风毛菊、猪毛蒿等。通过物种功能性状特征可以快速选择适合沙地退化生态系统修复的候选物种,为植被恢复提供了一定的理论支持。  相似文献   

12.
Conflicting hypotheses predict how traits mediate species establishment and community assembly. Traits of newly establishing individuals are predicted to converge, or be more similar to the resident, preexisting community, when the biotic or abiotic environment favors a single best phenotype, but are predicted to diverge when trait differences reduce competitive interactions. We tested these competing hypotheses using transplant seedlings in an old‐field environment, and assessed the contribution of inter‐ and intra‐specific transplant trait variation to community‐level patterns. Using a soil moisture gradient and resident plant removals, we determined when traits of newly‐establishing plants converge or diverge from the resident community by calculating community weighted mean traits for transplant and resident communities. We saw evidence of environmentally‐ and competitively‐driven trait shifts that resulted in both trait convergence and divergence from the resident community, whose traits reflect the combined effects of both drivers. Leaf dry matter content (LDMC) of transplants diverged in the presence of competition, whereas plant height and stem‐specific density (SSD) showed the opposite pattern, converging with the resident community in their presence. Specific leaf area (SLA) shifted with competition but did not reflect resident community SLA. All transplant traits were influenced by soil moisture, often in an interaction with competition, indicating that the strength of convergence or divergence is contingent on the abiotic environment. Intraspecific differences in transplant traits among treatments were evident in three of four traits; intraspecific height and SLA trends mirrored transplant community‐level trends, whereas intraspecific shifts in SSD were distinct from community‐level trends. Our study shows competition between plant species may cause traits of newly establishing plants to converge with the resident community, as frequently as it selects for trait divergence. These opposing effects of competition suggest that it plays a pervasive role in both intraspecific and species‐level trait differences among communities.  相似文献   

13.
从物种多样性和功能多样性探讨沉水植物群落对水深的响应可深刻揭示水深对群落构建的影响机制。以南四湖不同水深沉水植物群落为研究对象,对比分析了群落的9个加权功能性状(株高、茎分支数、茎节数、茎直径、根长、根围直径、生物量分配比、比叶面积、植物体磷含量)、5个物种多样性指数(Berger-Parker生态优势度指数、Margalef丰富度指数、Simpson多样性指数、Shannon-Wiener多样性指数和Pielou均匀度指数)和5个功能多样性指数(功能丰富度FRic指数、功能均匀度FEve指数、功能离散度FDiv指数、功能分散度FDis指数和二次熵Rao指数)以及物种多样性和功能多样性关系对水深的响应规律。研究结果表明:(1)水深可显著改变群落株高、根长、根围直径、比叶面积、生物量分配比和植物体磷含量6个加权功能性状;群落茎分支数、茎节数和茎直径3个加权功能性状对水深变化无显著响应;(2)水深可显著影响群落物种多样性和功能多样性,中等水深处沉水植物群落具有较高的Margalef丰富度指数、Shannon-Wiener多样性指数、Berger-Parker生态优势度指数、Pielou均匀度指数以及功能丰富度FRic指数、功能均匀度FEve指数、功能离散度FDis指数、二次熵Rao指数;(3)水深可改变5个物种多样性指数与功能丰富度FRic指数、功能均匀度FEve指数、功能离散度FDiv指数3个功能多样性指数间的相关关系,但对5个物种多样性指数与功能离散度FDis指数、二次熵Rao指数2个功能多样性指数间的相关关系无显著影响。研究结论为:群落不同测度的物种多样性和功能多样性指数及其相关关系对水深变化的响应迥异,在探讨水深对沉水植物群落构建的影响机制时应从多个方面综合考量。  相似文献   

14.
One of the few rules in ecology is that communities are composed of many rare and few common species. Trait‐based investigations of abundance distributions have generally focused on species‐mean trait values with mixed success. Here, using large tropical tree seedling datasets in China and Puerto Rico, we take an alternative approach that considers the magnitude of intraspecific variation in traits and growth as it relates to species abundance. We find that common species are less variable in their traits and growth. Common species also occupy core positions within community trait space indicating that they are finely tuned for the available conditions. Rare species are functionally peripheral and are likely transients struggling for success in the given environment. The work highlights the importance of considering intraspecific variation in trait‐based ecology and demonstrates asymmetry in the magnitude of intraspecific variation among species is critical for understanding of how traits are related to abundance.  相似文献   

15.
Differences among plant species in visitation rate and seed set within a community may be explained both by the species’ floral traits and the community context. Additionally, the importance of species’ floral traits vs. community context on visitation rate and seed set may vary among communities. In communities where the pollinator-to-flower ratio is low, floral traits may be more important than community context, as pollinators may have the opportunity to be choosier when visiting plant species. In this study we investigated whether species’ floral traits (flower shape, size and number, and flowering duration) and community context (conspecific and heterospecific flower density, and pollinator abundance) could explain among-species variation in visitation rate and seed set. For this, we used data on 47 plant species from two Norwegian plant communities differing in pollinator-to-flower ratio. Differences among species in visitation rate and seed set within a community could be explained by similar variables as those explaining visitation rate and seed set within species. As expected, we found floral traits to be more important than community context in the community with a lower pollinator-to-flower ratio; whereas in the community with a higher pollinator-to-flower ratio, community context played a bigger role. Our study gives significant insights into the relative importance of floral traits on species’ visitation rate and seed set, and contributes to our understanding of the role of the community context on the fitness of plant species.  相似文献   

16.
Ecological studies of communities have become increasingly focused on the role of genetics. These studies often conclude that genetics and evolution play an important role in community structure and function. For instance, studies have shown that the structure of insect communities associated with a host plant is heritable and therefore can potentially evolve. However, when studying communities of interacting species two problems are faced: (1) the traits that determine the outcomes of these interactions are often unknown, and (2) communities are normally highly multidimensional (n-dimensional for n species). In order to surmount these problems, we adapt a commonly used approach for studying the evolution of multivariate quantitative traits to the study of biological communities. Specifically, we propose utilizing a community-based genetic covariance matrix (G-matrix) and an associated vector of community selection gradients for predicting changes in community composition, where the “traits” under study are the abundances, or other properties, of various interacting species. This approach capitalizes on the relative ease with which data on the abundance of individuals interacting with individuals of a focal species (e.g., abundances of various herbivorous insects on a plant) can be collected and on the utility of the quantitative genetic approach for predicting multidimensional evolution. In order to evaluate the utility and accuracy of the G-matrix approach for predicting the evolution of communities, we develop and analyze numerical simulations of evolving communities. Results of these simulations show that an approach based on community G-matrices and selection gradients provides a rich understanding of how underlying genetics shape community structure and, in many cases, accurately predicts how community structure changes over time.  相似文献   

17.
研究植物功能性状的种间和种内变异,有助于揭示植物对环境的适应策略及其群落构建机制研究。以桂林岩溶石山青冈群落主要木本植物为研究对象,选取叶干物质含量(LDMC)、叶厚度(LT)、比叶面积(SLA)和木材密度(WD)4个功能性状,采用混合线性模型结合方差分解方法对其在种内和种间尺度的变异程度和相对贡献进行分析,同时运用零模型方法探讨驱动岩溶石山青冈群落构建的潜在机制。结果表明:(1) LDMC,LT,SLA和WD这4个性状在种内和种间水平上均存在不同程度的变异幅度,种间变异大于种内变异,但种内变异亦不容忽略。(2)零模型检验表明,将种内变异纳入考虑的环境过滤检测得到改善,基于个体性状值的尺度考虑群落构建机制研究是必要的。(3)对于桂林岩溶石山青冈群落,环境过滤作用确实是群落构建的重要驱动机制,与相似性限制作用和随机作用共同塑造了以青冈为优势物种的群落构建。  相似文献   

18.
Rojo  C.  Alvarez-Cobelas  M. 《Hydrobiologia》2000,424(1-3):141-146
When looking for a pattern of phytoplankton behaviour across trophic gradients, we need to cross the boundaries between different disciplinary areas, from autoecology to systems ecology, because eutrophication is a complex process which involves different time scales and different levels of community structure. Thus, we submit our observations to the muddled conceptual world of assemblage ecology. These inaccuracies arise, for example, from both species and community arguments; eutrophication as a fertilization or a metabolic phenomenon; and the notions frequently interwoven of pattern, process and rules. We suggest that it is advantageous to tackle this issue from the perspective of general ecology, rather than from a specifically planktonic orientation. In this way, useful general ecological tools, for example, time series and assembly-rule studies, can be used. Time-series study allows the dynamics of any variable to be described or to show that long term variable fluctuations may sometimes be unregulated, in response to some exogenous factor. Rules of assembly help us to resolve which traits are selectively involved during the eutrophication process. In this context, we advocate (1) the use of traits instead of morphospecies in phytoplankton studies, (2) looking for the dynamic patterns of phytoplankton with eutrophication, (3) the use of time series techniques to study phytoplankton trajectories, (4) the use of assembly rules to discern patterns in the formation of multispecies assemblages, (5) the consideration of the pelagic food-web in studies of phytoplankton dynamics and, as an overall suggestion, to borrow knowledge and inspiration from general ecology.  相似文献   

19.
该研究采用样线和样地相结合的方法,对甘肃省白水江国家级自然保护区摩天岭北坡大垭子梁森林不同海拔(1 600~2 100m)的植物群落进行野外调查、采样分析,并运用线性回归分析、Pearson相关性分析及曲线拟合分析方法,研究木本植物的比叶面积(SLA)、叶干物质含量(LDMC)、叶碳氮磷含量(LCC、LNC、LPC)及其计量比(C/N、C/P、N/P)等叶性状变化特征,以及在物种和群落水平随海拔梯度的变化趋势和相关性。结果表明:(1)摩天岭北坡大垭子梁山地森林为落叶阔叶林带,共有木本植物13科23种,其中乔木6种,灌木17种,且整体上灌木种类较为丰富。此外,有些物种在不同海拔间都有分布,如华北落叶松(Larix principis-rupprechtii)、胡枝子(Lespedeza bicolor)等,反映出不同植物对于异质环境的适应。(2)8个叶功能性状中变异系数最小的是LCC(4.6%),属于弱变异,最大的是SLA(42.1%),其他叶性状都属于中等变异,表明在其他叶性状的协同作用下,使得木本植物的碳获取保持在一定的水平以确保群落的稳定性。(3)叶片功能性状间的关联性普遍存在,是植物适应环境的一种对策.该研究表明SLA-LNC以及LNC-LPC在物种和群落水平上的相关性及其相关程度均一致,而其他叶性状间相关关系则有所不同,这为以后进行大尺度研究时对叶性状的选择提供了一定的依据。(4)叶性状随海拔的变化趋势,除C/N和N/P在物种和群落水平上变化趋势不一致外,其他各个性状随海拔的总体变化趋势基本一致,但显著程度只有LNC一致外其他均不同,反映了木本植物的不同叶片功能性状对海拔造成的不同环境的适应。  相似文献   

20.
Understanding how species traits evolved over time is the central question to comprehend assembly rules that govern the phylogenetic structure of communities. The measurement of phylogenetic signal (PS) in ecologically relevant traits is a first step to understand phylogenetically structured community patterns. The different methods available to estimate PS make it difficult to choose which is most appropriate. Furthermore, alternative phylogenetic tree hypotheses, node resolution and clade age estimates might influence PS measurements. In this study, we evaluated to what extent these parameters affect different methods of PS analysis, and discuss advantages and disadvantages when selecting which method to use. We measured fruit/seed traits and flowering/fruiting phenology of endozoochoric species occurring in Southern Brazilian Araucaria forests and evaluated their PS using Mantel regressions, phylogenetic eigenvector regressions (PVR) and K statistic. Mantel regressions always gave less significant results compared to PVR and K statistic in all combinations of phylogenetic trees constructed. Moreover, a better phylogenetic resolution affected PS, independently of the method used to estimate it. Morphological seed traits tended to show higher PS than diaspores traits, while PS in flowering/fruiting phenology depended mostly on the method used to estimate it. This study demonstrates that different PS estimates are obtained depending on the chosen method and the phylogenetic tree resolution. This finding has implications for inferences on phylogenetic niche conservatism or ecological processes determining phylogenetic community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号