首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl 13 . The F2 individuals and F3 families of the cross HA-R5 (resistant) × HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F2 individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl 13 gene. Genotyping the F2 population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15–22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl 13 gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl 13 gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.  相似文献   

2.
The inheritance of resistance to lettuce root aphid, Pemphigus bursarius, was studied in lettuce using the Wellesbourne cultivars Avondefiance and Avoncrisp as resistant parents and Borough Wonder and Webb's Wonderful as aphid-susceptible parents. All four cultivars were crossed in all possible combinations including reciprocals and the response to root aphid of plants in the P1F1F2 and BC generations was assessed using apterae of P. bursarius from the lettuce cv. Iceberg. Resistance to attack was clearly inherited and the parents appeared to be homozygous for their resistance or susceptibility. In the F1 generation, however, in all crosses between resistant and susceptible parents, segregation into susceptible, resistant and some slightly less resistant plants occurred. This and the highly significant differences in segregation between pairs of reciprocal crosses in the F1 and other generations indicate that the inheritance of resistance to root aphid is controlled by extra-nuclear factors. Modifying genes might also be involved but there appears to be no linkage of root aphid resistance with resistance to downy mildew, for which the Wellesbourne lettuces were bred.  相似文献   

3.
Six hundred and one lines from the John Innes Pisum germplasm collection were surveyed for resistance to downy mildew (Peronospora pisi). Potential sources of resistance were identified in forty-seven lines. Using the inoculation methods described resistant varieties/lines showed no evidence of infection. Isolates from recent outbreaks in the United Kingdom when screened against a representative test array of resistant and susceptible lines showed no evidence for a race structure in Peronospora pisi, although differences were found in overall virulence. The inheritance of resistance was studied in F2 and F3 families. Under the test conditions adopted the results obtained suggest that resistance may either be determined by a single dominant gene or by two recessive genes, but the lack of concordance between F2 and F3 segregation patterns was a disturbing feature despite careful control of experimental conditions. This, coupled with difficulties in obtaining large F3 families presents considerable problems in interpretation. It is proposed that inbred lines of JI 411 Cobri and JI 399 Cennia be adopted as standards.  相似文献   

4.
The Pl Arg locus in the sunflower (Helianthus annuus L.) inbred line Arg1575-2 conferring resistance to at least four tested races (300, 700, 730, 770) of downy mildew (Plasmopara halstedii) was localized by the use of simple sequence repeat (SSR) markers. Bulked segregant analysis (BSA) was conducted on 126 individuals of an F2 progeny from a cross between a downy mildew susceptible line, CmsHA342, and Arg1575-2. Twelve SSR markers linked to the Pl Arg locus were identified. All markers were located proximal to Pl Arg on linkage group LG1 based on the map of Yu et al. (2003) in a window of 9.3 cM. Since Pl Arg was mapped to a linkage group different from all other Pl genes previously mapped with SSRs, it can be concluded that Pl Arg provides a new source of resistance against P. halstedii in sunflower.  相似文献   

5.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

6.
A sunflower line, XRQ, carrying the gene Pl5, which gives resistance to all French downy mildew races shows cotyledon-limited sporulation in seedling immersion tests; consequently, segregations in crosses with other downy mildew resistance sources were tested both by this method and by a secondary infection on leaves. Pl5 was found to segregate independently of Pl7 (HA338) but to be closely linked, or allelic, with Pl8 (RHA340). F3 and F4 progenies from a cross with a line containing Pl2 showed that Pl5 carries resistance to race 100 which segregates independently of Pl2. The Pl5 gene was mapped on linkage group 6 of the Cartisol RFLP map, linked to two RFLP markers, ten AFLP markers and the restorer gene Rf1. Tests with downy mildew race 330 distinguished Pl5 and Pl8, the first being susceptible, the second resistant, whereas both these genes were active against race 304 to which Pl6 (HA335) and Pl7 gave susceptibility. It is concluded that Pl5 and Pl8 are closely linked on linkage group 6 and form a separate resistance gene group from Pl6/Pl7 on linkage group 1. The origins of these groups of downy mildew resistance genes and their use in breeding are discussed. Received: 10 November 2000 / Accepted: 8 February 2001  相似文献   

7.
Transgenic pearl millet lines expressing pin gene—exhibiting high resistance to downy mildew pathogen, Sclerospora graminicola—were produced using particle-inflow-gun (PIG) method. Shoot-tip-derived embryogenic calli were co-bombarded with plasmids containing pin and bar genes driven by CaMV 35S promoter. Bombarded calli were cultured on MS medium with phosphinothricin as a selection agent. Primary transformants 1T0, 2T0, and 3T0 showed the presence of both bar and pin coding sequences as evidenced by PCR and Southern blot analysis, respectively. T1 progenies of three primary transformants, when evaluated for downy mildew resistance, segregated into resistant and susceptible phenotypes. T1 plants resistant to downy mildew invariably exhibited tolerance to Basta suggesting co-segregation of pin and bar genes. Further, the downy mildew resistant 1T1 plants were found positive for pin gene in Southern and Northern analyses thereby confirming stable integration, expression, and transmission of pin gene. 1T2 progenies of 1T0 conformed to dihybrid segregation of 15 resistant:1 susceptible plants.  相似文献   

8.
The association between variation for pre-infection peroxidase activity and levels of field resistance-susceptibility to downy mildew (Bremia lactucae) was investigated in lettuce (Lactuca sativa) cultivars, accessions of L. serriola (prickly lettuce), segregating F2 populations and selected F3 families from a cross between field resistant and susceptible lettuce cultivars. A trend was apparent in this series of experiments indicating that one component of field resistance could be related to a high level of peroxidase activity prior to infection. The data suggest that in breeding programmes there could be merit in imposing primary selection for high peroxidase activity prior to field selection for resistance.  相似文献   

9.
Quantitative trait loci (QTLs) for resistance to pathogen populations of Scelerospora graminicola from India, Nigeria, Niger and Senegal were mapped using a resistant x susceptible pearl millet cross. An RFLP map constructed using F2 plants was used to map QTLs for traits scored on F4 families. QTL analysis was carried out using the interval mapping programme Mapmaker/QTL. Independent inheritance of resistance to pathogen populations from India, Senegal, and populations from Niger and Nigeria was shown. These results demonstrate the existence of differing virulences in the pathogen populations from within Africa and between Africa and India. QTLs of large effect, contributing towards a large porportion of the variation in resistance, were consistently detected in repeated screens. QTLs of smaller and more variable effect were also detected. There was no QTLs that were effective against all four pathogen populations, demonstrating that pathotype-specific resistance is a major mechanism of downy mildew resistance in this cross. For all but one of the QTLs, resistance was inherited from the resistant parent and the inheritance of resistance tended to be the result of dominance or over-dominance. The implications of this research for pearl millet breeding are discussed.  相似文献   

10.
The inheritance of resistance to downy mildew disease and the defense-related enzymes β-1,3-glucanase and peroxidase was studied in crosses of pearl millet using a generation-mean analysis. The study material comprised six generations (susceptible and resistant parents, F1, F2, BC1 and BC2) in three crosses. Seedlings from these generations were inoculated with the downy mildew pathogen Sclerospora graminicola and disease incidence was recorded. Analysis of constitutive levels of β-1,3-glucanase and peroxidase in the seedlings of different generations indicated that the resistant populations showed higher enzyme activities, while lower activities of the enzymes were recorded in the susceptible populations. In the generation-mean analysis, the significance of scaling tests revealed the existence of non-allelic interactions in the inheritance of resistance to downy mildew as well as with the enzymes. Among the gene effects, both additive and dominant effects were significant. All the non-allelic interaction effects were significant in the crosses. Studies on the isozyme patterns of the enzymes substantiated the results of the disease-incidence experiments in most of the generations. The results indicated that the inheritance of downy mildew disease resistance and the expression of β-1,3-glucanase and peroxidase in pearl millet is not only under the control of additive and dominant genes but are also governed by complex non-allelic interactions. Received: 30 April 2000 / Accepted: 17 October 2000  相似文献   

11.
Downy mildew is a fungal disease of sunflower that can lead to severe yield losses. The damage caused by the pathogen can be controlled by growing resistant sunflower varieties. Gene Pl arg was introgressed into cultivated sunflower from the wild species Helianthus argophyllus and provides resistance against all known downy mildew races. In this study, we used a mapping population from the cross-RHA 419/RHA-N-49. We identified a new co-segregating simple sequence repeat marker ORS675 and confirmed the co-segregation of markers ORS716 and ORS662 with Pl arg gene. The markers were validated on two registered resistant inbred lines RHA 443 and RHA 464, as well as on twenty inbred lines RH 1–20 obtained through methods of classical breeding. Molecular marker ORS716 was assessed for usefulness in selecting resistant progeny in 12 BC populations. Markers were found to be valuable for molecular breeding in diverse genetic backgrounds and enabled transfer of the resistance gene in different sunflower genotypes.  相似文献   

12.
The impact of powdery (Uncinula necator) and downy mildew (Plasmopara viticola) on grapevine leaf gas exchange was analysed. Gas exchange measurements (assimilation A, transpiration E, stomatal conductance gs, intercellular concentration of CO2Ci) were made on three different leaf materials: (i) healthy tissue of diseased leaves, (ii) infected tissue of diseased leaves, (iii) healthy tissue of healthy leaves (control treatment). Using the same source of leaf tissue, photosynthetic pigment concentration (chlorophyll a, b) and fluorescence levels (minimal fluorescence F0, maximal fluorescence Fm and the optimal quantum yield [Fm ? F0]/Fm) were determined to explain the mechanism of action of the two diseases on leaf assimilation. The results indicated that powdery and downy mildew reduced the assimilation rates, not only through a reduction in green leaf area (visual lesions), but also through an influence on gas exchange of the remaining green leaf tissues, determining a ‘virtual lesion’. The ratios between virtual and visual lesions were higher in powdery mildewed leaves than in the downy mildewed leaves. The photosynthetic fluorescence level (Fv/Fm) was affected by neither of the two pathogens. The reduction in intercellular concentration of CO2 and photosynthetic pigment may explain the lower assimilation rates in the healthy tissues of powdery and downy mildewed leaves respectively.  相似文献   

13.
 These studies were undertaken to determine whether downy mildew resistance genes in sunflower were independent as first reported, or linked as suggested by more recent hypotheses. The segregations for downy mildew reaction of 111 F3 progenies from a cross between a susceptible line and a line with Pl2 were used to locate this gene on the sunflower consensus RFLP linkage map. It was shown that Pl2 was linked to the same RFLP markers on linkage group 1 as Pl1 and Pl6, mapped earlier, and at a very similar distance. The F3 progenies showed exactly the same segregation patterns when tested with race 1 and race D. One hundred and fifty four progenies from a cross between a susceptible line and HA335, containing Pl6 (considered as giving resistance to all Plasmopara halstedii races), were tested with the five French downy mildew races, 1, A, B, C and D. Two progenies were observed to show segregation for races 1 and D, while appearing homozygous-resistant to races A , B and C. Tests on F4 progenies confirmed this separation of resistances with fixation of susceptibility to races 1 and D and resistance to races A, B and C. It is concluded that the Pl6 gene is not a “strong” gene, giving resistance to all downy mildew races, but rather a cluster of genes, each providing resistance to one, or a few, downy mildew races. The genes giving resistance to races 1 and D, on one hand, and to races A, B and C, on the other hand, must be very closely linked, with about 0.6 cM between the two groups. Received: 23 December 1996 / Accepted: 18 April 1997  相似文献   

14.
Few widely effective resistance sources to sunflower rust, incited by Puccinia helianthi Schwein., have been identified in confection sunflower (Helianthus annuus L.). The USDA inbred line HA-R6 is one of the few confection sunflower lines resistant to rust. A previous allelism test indicated that rust resistance genes in HA-R6 and RHA 397, an oilseed-type restorer line, are either allelic or closely linked; however, neither have been characterized nor molecularly mapped. The objectives of this study are (1) to locate the rust resistance genes in HA-R6 and RHA 397 on a molecular map, (2) to develop closely linked molecular markers for rust resistance diagnostics, and (3) to determine the resistance spectrum of two lines when compared with other rust-resistant lines. Two populations of 140 F2:3 families each from the crosses of HA 89, as susceptible parent, with HA-R6 and RHA 397 were inoculated with race 336 of P. helianthi in the greenhouse. The resistance genes (R-genes) in HA-R6 and RHA 397 were molecularly mapped to the lower end of linkage group 13, which encompasses a large R-gene cluster, and were designated as R 13a and R 13b, respectively. In the initial maps, SSR (simple sequence repeat) and InDel (insertion and deletion) markers revealed 2.8 and 8.2 cM flanking regions for R 13a and R 13b, respectively, linked with a common marker set of four co-segregating markers, ORS191, ORS316, ORS581, and ZVG61, in the distal side and one marker ORS464 in the proximal side. To identify new markers closer to the genes, sunflower RGC (resistance gene candidate) markers linked to the downy mildew R-gene Pl 8 and located at the same region as R 13a and R 13b were selected to screen the two F2 populations. The RGC markers RGC15/16 and a newly developed marker SUN14 designed from a BAC contig anchored by RGC251 further narrowed down the region flanking R 13a and R 13b to 1.1 and 0.1 cM, respectively. Both R 13a and R 13b are highly effective against all rust races tested so far. Our newly developed molecular markers will facilitate breeding efforts to pyramid the R 13 genes with other rust R-genes and accelerate the development of rust-resistant sunflower hybrids in both confection and oilseed sunflowers.  相似文献   

15.

Key message

Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified.

Abstract

Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate–high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.
  相似文献   

16.
Two soybean accessions, PI 587886 and PI 587880A, previously identified as having resistance to Phakospora pachyrhizi Syd. (soybean rust, SBR) were used to create two populations (POP-1 and POP-2) segregating for SBR resistance. F2-derived F3 (F2:3) families from each population were grown in a naturally SBR-infected field in Paraguay to determine inheritance and map resistance genes. Over 6,000 plants from 178 families in POP-1 and over 5,000 plants from 160 families in POP-2 were evaluated at R5 for lesion type: immune reaction (IR), reddish-brown (RB), or tan (TAN) colored lesions. Based on the lesion type present, each F2:3 family was rated as resistant, segregating or susceptible and this classification was used to infer the F2-phenotype and genotype. For both populations, the F2 segregation ratios fit a 1:2:1 (resistant:segregating:susceptible) ratio expected for a single gene (P > 0.05). The RB lesions occurred almost exclusively in the heterozygous class, indicating incomplete dominance under the conditions of this study. Molecular markers flanking the locations of the known resistance genes were used to map the resistance gene in both populations to the Rpp1 locus. However, evaluation of PI 587886 and PI 587880A against eight P. pachyrhizi isolates indicated that the resistance allele in these two accessions was different from Rpp1. This test also demonstrated that these accessions were resistant to at least one P. pachyrhizi isolate collected in the southern US. This is the first report of using an adult plant field-screen with natural rust pressure to map SBR resistance.  相似文献   

17.
Downy mildew (DM), caused by Pseudoperonospora cubensis (Berk. & M.A. Curtis) Rostovzev, is a worldwide major disease of cucumbers (Cucumis sativus L.). By screening 10 introgression lines (ILs) derived from interspecific hybridization between cucumber and the wild Cucumis, C. hystrix, through a whole plant assay, one introgression line (IL52) was identified with high DM‐resistance. IL52 was further used as a resistant parent to make an F2 population with ‘changchunmici’ (susceptible parent). The F2 population (300 plants) was investigated for DM‐yellowing, DM‐necrosis and DM‐resistance in the adult stage. A genetic map spanning 642.5 cM with 104 markers was constructed and used for QTL analysis from the population. Three QTL regions were identified on chromosome 5 and chromosome 6. By interval mapping analysis, two QTLs for DM‐resistance were determined on chromosome 5 (DM_5.1 and DM_5.2), which explained 17.9% and 14.2% of the variation, respectively. QTLs for DM‐yellowing were in the same regions as DM‐resistance. For DM‐necrosis, by interval mapping analysis, one QTL was determined on chromosome 5 (Necr_5.1) that explained 18.3% of the variation and one on chromosome 6 (Necr_6.1) that explained 13.9% of the variation. Our results indicated that the identification of molecular markers linked to the QTLs could be further applied for marker‐assisted selection (MAS) of downy mildew resistance in cucumber.  相似文献   

18.
Genetic characterization of powdery mildew resistance genes were conducted in common wheat cultivars Hope and Selpek possessing resistance gene Pm5, cvs. Ibis and Kormoran expressing resistance gene Mli, a backcross-derived line IGV 1–455 and a Triticum sphaerococcum var. rotundatum Perc. line Kolandi. Monosomic analyses revealed that one major recessive gene is located on chromosome 7B in the lines IGV 1–455 and Kolandi. Allelism tests of the F2 and F3 populations involving the tested resistant lines crossed with either cv. Hope or Selpek indicated that their resistance genes are alleles at the Pm5 locus. The alleles are now designated Pm5a in Hope and Selpek, Pm5b in Ibis and Kormoran, Pm5c in T. sphaerococcum var. rotundatum line Kolandi, and Pm5d in backcross-derived line IGV 1–455, respectively. Received: 5 November 1999 / Accepted: 14 April 2000  相似文献   

19.
Nucleotide binding site-leucine rich repeat (NBS-LRR) proteins are encoded by a ubiquitous gene family in sunflower and frequently harbor disease resistance genes. We investigated NBS-LRR-encoding resistance gene candidates (RGCs) flanking the downy mildew resistance genes Pl 8 and Pl 14 and the rust resistance gene R Adv , which map on the NBS-LRR clusters of linkage groups 1 and 13 in sunflower genome. We shotgun sequenced bacterial artificial chromosome (BAC) clones proximal to Pl 8 , Pl 14 , and R Adv and identified seven novel non-Toll/interleukin-1 receptor (TIR)-like NBS-LRR RGCs, which clustered with previously identified RGCs of linkage group 13 but were phylogenetically distant from the TIR- and non-TIR-NBS-LRR-encoding superfamilies of sunflower. Six of the seven predicted RGCs have intact open reading frames and reside in genomic segments with abundant transposable elements. The genomic localization and sequence similarity of the novel non-TIR-like predicted RGCs suggests that they originated from tandem duplications. RGCs in the proximity of Pl 8 and R Adv were likely introgressed from silverleaf sunflower genome, where the RGC cluster of linkage group 13 is duplicated in two independent chromosomes that have different architecture and level of recombination from the respective common sunflower chromosomes.  相似文献   

20.
The Pl1 locus in sunflower, Helianthus annuus L., conferring resistance to downy mildew, Plasmopara halstedii, race 1 has been located in linkage group 1 of the consensus RFLP map of the cultivated sunflower. Bulked segregant analyses were used on 135 plants of an F2 progeny from a cross between a downy mildew susceptible line, GH, and RHA266, a line carrying Pl1. Two RFLP markers and one RAPD marker linked to the Pl1 locus have been identified. The RFLP markers are located at 5.6 cM and 7.1 cM on either side of Pl1. The RAPD marker is situated at 43.7 cM from Pl1. The significance and applications of these markers in sunflower breeding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号