首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to predict the long-term consequences of climate change, it is necessary to link future environmental changes to mechanisms that control plant population processes. This information can then be incorporated into strategies to more accurately model climate change impacts on species or to estimate future extinction risks. We examined the impact of increased temperatures on the longevity and dynamics of the persistent soil seed banks of eight ephemeral species from arid Australia. We found that the predicted global temperature increases under climate change will be reflected in increased soil temperatures, and that seeds in the soil seed bank will be exposed to long durations of high temperatures over the summer months. Three of the eight species studied had significantly greater levels of germination after exposure to predicted increased soil temperatures. Another species displayed a dramatic decrease in seed viability after such exposure. The capacity of such species to use the seed bank to bet hedge against rainfall events that cause germination but are insufficient to allow plant maturation, is compromised by increased germinability and subsequent loss or reduction of seed bank persistence. These predicted changes in the dynamics of soil seed banks increase the risk of local extinctions of these species, while the composition of the community may be altered by changes in species abundance. Our results show that the risk spreading mechanism provided by persistent seed banks could be compromised by the mechanistic impact of forecast temperature increases in arid habitats, and highlight the need to understand mechanisms that control population dynamics when attempting to address likely future impacts of climate change on biodiversity.  相似文献   

2.
The diaspore of the Australian arid zone shrub Acacia ligulata is dispersed by birds and ants. To investigate the benefits of providing a dispersal structure attractive to both groups, we compared the germination response and viability of seeds eaten by birds, handled by ants or collected from trees to simulated precursors of germination: scarification, fire and rainfall were simulated. Seed germination and viability were related to the degree of preheating disturbance to the seed coat. Heating increased the germinability of seeds not scarified or eaten by birds. In the absence of heating, ingestion by birds increased germinability. Heating increased the mortality of seeds. Our results suggest that ingestion of seeds by birds may break seed dormancy and hence enable some seeds to germinate soon after dispersal. Alternatively, seeds not eaten by birds are likely to remain dormant until sufficiently scarified by soil or stimulated by fire. Consequently, in areas such as the Simpson Desert, A. ligulata may be able to use a range of seedling establishment ‘windows’ provided by monsoon rains, post‐fire environments and unseasonal winter rains, and also spread the risk of unsuccessful seedling establishment by retaining dormant seeds in the seedbank.  相似文献   

3.
Nurse‐plants generally have positive effects on understorey species by creating more suitable conditions for stress‐intolerant plants relative to open micro‐habitats. However, long‐term effects of this plant–plant facilitation system have been rarely examined. Seeds of five desert annual species from Atiquipa coastal desert in Southern Peru were used to examine whether different microenvironmental conditions under the nurse‐plants Caesalpinia spinosa Molina (Kuntze) lead to differences in seed biology and germinability of annual plants relative to open, canopy‐free conditions. Seeds collected from plants associated with nurse‐plants were predicted to be (i) larger due to more favourable growing conditions, (ii) more viable and with greater germination rates, (iii) less variable in size and viability due to reduced environmental heterogeneity, and (iv) to germinate faster to avoid apparent competition with other annuals. Seed attribute measurements and germination trials in growth chambers were used to test these predictions. Although the plant abundance of only 2 of 5 species was strongly facilitated by the nurse‐plant, no significant differences were found in seed mass, viability or relative variability between understorey and open micro‐habitats for any of the species. Contrary to our predictions, final seed germination rates of seeds from open micro‐habitats were higher, and the open micro‐habitat treatment was more favourable for germination of seeds from both open and understorey environments. Taken together, these results suggest that plant–plant facilitation does not necessarily affect seed biology traits. Further studies addressing larger distribution ranges and/or density gradients of understorey species will illuminate the potential evolutionary effects of nurse‐plants.  相似文献   

4.
Seed dormancy is thought to be a key mechanism allowing annual plants to spread extinction risk in unpredictably varying environments. Theory predicts increasing germination fractions with increasing probability of reproductive success but solid empirical evidence is scarce and often confounded with environmental factors. Here we provide an empirical test of bet‐hedging via delayed germination for three annual plant species along a ‘predictability gradient’ in Israel. We excluded confounding environmental and maternal effects by raising inbred seed families and germinating them under controlled conditions. Additionally, we germinated field‐collected seeds in three consecutive seasons to compare their germination with inbred families where maternal effects were removed. Risk of reproductive failure was quantified using demographic data from the field and from second‐generation inbred lines raised in a rainfall gradient in the greenhouse. Our findings were consistent with bet‐hedging theory in that germination fraction was negatively related to species‐ and site‐specific risk of reproductive failure. Both field and hand‐raised seeds of one species exhibited higher dormancy with increasing risk of reproductive failure across sites, and hand‐raised seeds of another species showed the same pattern. The third species exhibited a rather random pattern of germination between years and sites, corresponding to the lack of site‐specific risk of reproductive failure. Species‐specific patterns of dormancy and risk could be related to alternative risk‐spreading strategies such as high adult survival, but were also affected by phylogeny. We provide strong empirical evidence for seed dormancy being a mechanism to reduce the risk of reproductive failure in highly variable environments, but a larger number of rigorous experimental tests of bet hedging germination are needed. Specifically, the genetic basis of bet‐hedging must be shown in species with different life histories, for demonstrating that dormancy is adaptive and how it is modified by other risk‐spreading traits.  相似文献   

5.
Arctic plant species are expected to lose range due to climate change. One approach to preserve the genetic and species diversity for the future is to store propagules in seed vaults. However, germinability of seeds is assumed to be low for Arctic species. We evaluated ex situ storage potential of 113 of the 161 native angiosperms of Svalbard by studying seed ripening and germination. Seeds or bulbils were collected, and germinability was tested after one winter of storage in the Svalbard Global Seed Vault. Twenty-six of the species did not produce ripe propagules, 8 produced bulbils, and 79 produced seeds. Bulbils sprouted to high percentages. Seeds of 10 species did not germinate, 22 had low germination (<20 %), 34 had germination of 21–70 %, and 13 had high germination percentages (>70 %). More than 70 % of the species belonging to Asteraceae, Brassicaceae, Caryophyllaceae, Juncaceae, Rosaceae, and Saxifragaceae germinated. Cold tolerant, common species had higher germination percentages than relatively thermophilous, rare species. Germination percentages were six times higher than observed in 1969 (n = 51) and 0.7 times that observed in 2008 (n = 22), indicating that recent climate warming improves germination in the Arctic. While in situ conservation is of vital importance, ex situ conservation in seed banks is a potential complementary conservation strategy for the majority of Arctic vascular plant species. For species that did not germinate, other methods for ex situ conservation should be sought, for example, growing in botanical gardens.  相似文献   

6.
Dormant seeds of 18 species from 9 families covering a diverse range of seed dormancy syndromes and life histories from the southwest Australian biodiversity hotspot were assessed for germinability following storage at 15–25°C for 36 months. A total of 10 species with physical dormancy (PY) and 8 with either physiological dormancy (PD) or morphophysiological dormancy (MPD) were assessed as part of the study. Prior to storage, germination from dormant seeds was 1–27%, rising to 41–100% following specific dormancy‐breaking treatments. When seed dormancy was removed prior to storage for 36 months seeds from all species were found to maintain a nondormant state and germinate to a similar level to that observed at the beginning of the experiment (44–100%). Likewise, seeds that did not receive a prestorage dormancy‐breaking treatment maintained a dormant state (0–50% germination) and subsequently responded well to a dormancy‐breaking treatment immediately prior to germination assessment (49–99%). There were minimal differences in response to dormancy‐breaking treatments before and after 36 months storage (average 4–6% difference) and in the germination responses observed between both storage environments assessed (15°C/15% eRH or 15–25°C air dried). Based on these findings, storing seeds in a nondormant state does not alter germinability and this approach provides significant benefits to current seed‐based restoration programs through reduction of double handling and improved seed use efficiency.  相似文献   

7.
  • Endozoochory is one of the main drivers shaping temperate grassland communities by maintaining plant populations of its constituents and enabling plants to colonize new habitats. Successful endozoochorous dispersal implies that seeds not only get consumed and survive the digestive tract but are also able to develop into viable seedlings in a dung environment.
  • We experimentally assessed the germination probability and timing of 15 annual and perennial temperate European grassland species in cattle and horse dung and in different climatic conditions (greenhouse and outdoor conditions).
  • Interspecific variation in germinability and germination timing are found, while life strategy had only an effect on germination timing. We found adverse effects of both cattle and horse dung on the germination characteristics of all tested grassland species, but the effects of cattle dung were more pronounced. In comparison with the control treatment, fewer seeds emerged in dung and more time was needed to germinate. Also, germination metrics clearly differed between the artificial greenhouse and outdoor conditions, with generally a lower germinability in outdoor conditions.
  • According to our results, a large cost seems to be associated with endozoochorous dispersal in this stage of the life cycle, as seed dispersal effectiveness strongly depends on the quality of the deposition site with a lowered survival and germination probability when seeds are deposited in dung.
  相似文献   

8.
Pastinaca sativa (wild parsnip) produces seeds on the primary, secondary, and tertiary umbels of the flowering stalk. Within plants, variation in seed weight is about twofold. Secondary and tertiary seed weight is 73% and 50% of primary seed weight, respectively. Maximum variation in seed weight between plants is sixfold when tertiary seeds from a small plant are compared to primary seeds from a large plant. Within an umbel order, variation in seed weight between plants is correlated with plant size. Under autumn germinating conditions in the laboratory, final germination of seeds from different umbel orders does not differ but smaller seeds germinate more rapidly than larger seeds. Under spring germination conditions in the laboratory, significantly more primary and secondary seeds germinate than tertiary seeds and the rate of germination is independent of seed weight. Field germination of seeds from different umbel orders produces similar results except that in the spring both secondary and tertiary seed germination is lower than that of primary seeds. These results suggest that with respect to seed germination characteristics small seeds may have a competitive advantage over large seeds in the autumn because they germinate more quickly, but in the spring small seeds are at a disadvantage because they have lower overall germination. Because most germination in the field occurs in the spring, population recruitment from small seeds is likely to be substanially less than that from large seeds.  相似文献   

9.
Within arid plant communities species vary considerably in the ability to germinate under water stress. Attempts to correlate this variation with environmental gradients have remained largely inconclusive. Germinating only at high water potentials can be seen as a form of predictive germination. Predictive germination provides a fitness variance reducing mechanism and is therefore expected to show negative correlations with other variance reducing life-history attributes such as large seed size or dormancy. We predicted that differences in life-history attributes rather than edaphic gradients could explain the variation in germination responses to water stress found in arid plant communities. To test our hypothesis we determined the germination response of 28 species from the arid Kalahari savannah to a gradient of osmotic stress, expressed as the water potential needed to reduce germination by 50%. In addition, we determined the life-history variables seed mass and germination fraction and the habitat variables soil texture preference and association with acacias. The data were analysed using phylogenetically independent contrasts in a multiple regression model.Contrary to our hypothesis we found no increase in the capacity to germinate under osmotic stress with increasing seed mass and an increase with increasing germination fraction. However, we also found no significant effect of the habitat variables. This result may be explained by variation in seedling drought tolerance. Drought tolerance will also have a variance-reducing effect and can be expected to trade-off with fractional germination. Our results suggest that in arid plant communities most variation in the capacity to germinate under water stress expresses different ways to make a living under similar conditions rather than adaptations to environmental gradients.  相似文献   

10.
Due to the high content of viable seeds, topsoil is usually spread on ground left bare during railway and motorway construction to facilitate the regeneration of vegetation cover. However, during handling of the topsoil, seeds are often buried deeply and they cannot germinate or the seedlings cannot emerge from depth. This study experimentally explores the predictive value of seed mass for seed germination, mortality and seedling emergence at different burial depths for 13 common annual species in semiarid Mediterranean environments. We separate the effect of burial depth on germination and emergence by means of two experiments. In the germination experiment, five replicates of 20 seeds for each species were buried at depths ranging from 0 to 4 cm under greenhouse conditions. Germinated and empty or rotten seeds were counted after 8 weeks. In the emergence experiment, five replicates of four newly-germinated seeds per species were buried at the same depths under controlled conditions and emergence was recorded after 3 weeks. The effect of burial depth on percentage of germination and seedling emergence was dependent on seed size. Although all species showed a decrease in germination with burial depth, this decrease was greater for small-than large-seeded species. Percentage of emergence was positively related to seed mass but negatively related to burial depth. Seed mortality was higher for small-than large-seeded species, but there was no general effect of burial depth on this variable. Thus, the current practice of spreading 30 cm deep layers of topsoil in post-construction restoration projects is unadvisable. In this restoration scenario, thinner layers of topsoil should be used to achieve the maximum potential of the topsoil for germination and seedling establishment.  相似文献   

11.
盐生植物种子萌发对环境的适应对策   总被引:45,自引:0,他引:45  
渠晓霞  黄振英 《生态学报》2005,25(9):2389-2398
盐生环境是一种严峻的胁迫环境,对植物的生长、发育、繁殖等生活史的各阶段都产生着重要的影响。盐生植物是生长在盐渍土壤上的一类天然植物区系,它们在长期的进化过程中形成了一系列适应盐生生境的特殊生存策略。一般情况下,盐生植物种子对环境的适应能力,是植物对盐生环境适应性的重要体现;而植物发育早期对盐度的适应能力又是决定物种分布和群落组成的关键因素。在对国内外相关文献进行分析归纳的基础上,从盐分对种子萌发的影响机理及植物种子萌发对盐生环境的适应对策两个方面综述了植物种子休眠萌发与盐生环境的关系。  相似文献   

12.
The dispersion and seedling establishment of pioneering plants can be favoured by the presence of frugivorous bats because the bats usually improve seed germination after ingestion. Although seed germinability is known to vary greatly after ingestion by different bats, the relative contribution of each bat species to seed germination within plant communities is poorly understood. In this study, we first determined the fauna of frugivorous bats in a semideciduous seasonal forest remnant in southern Brazil and subsequently identified the plant species of the seeds passed through their guts. Second, the germination performance (i.e., germination percentage and speed) of the seeds of three pioneering plants (Piper aduncum, Piper hispidinervum and Solanum granuloso-leprosum) ingested by the most abundant bats was compared with that of the non-ingested seeds (seeds collected from fruits). Additionally, the effects on seed germination of different bat species were compared. During one year, five species of frugivorous bats were caught, and the seeds of eleven identifiable plant species (not counting those of undetermined species) were found in their faeces. We found that the germination performance of the seeds of Piper species was significantly enhanced after ingestion by bats, whereas S. granuloso-leprosum seeds had neutral or reduced germinability when seeds in faeces were compared with pulp-removed seeds. Our results revealed that the bat species that were captured exerted different effects upon seed germination; such a disparity is expected to result in different rates of early establishment of these pioneer plants in tropical forests, most likely affecting forest composition and structure, particularly during the initial stages of succession.  相似文献   

13.
In the tropics, species with recalcitrant or desiccation-sensitive, Type III seeds are largely restricted to regions with comparatively high rainfall, because desiccation-induced seed death will be minimal in these environments. However, species with recalcitrant seeds do occur in drylands, although little is known about ecological adaptations to minimize seed death in these environments. Here we present data for the seed desiccation tolerance of 10 African dryland species and examine the relationships between seed size, rainfall at the time of seed shed, and desiccation tolerance for these and a further 70 species from the scientific literature. The combined data set encompasses species from 33 families. Three species (Syzygium cumini, Trichilia emetica, and Vitellaria paradoxa) had desiccation-sensitive seeds, and the remaining seven species investigated were desiccation-tolerant. The desiccation-sensitive species had large (>0.5 g) seeds, germinated rapidly, and had comparatively small investments in seed physical defenses. Furthermore, seed was shed in months of high rainfall (>60 mm). In comparison, for species with desiccation-tolerant seeds, seed mass varied across five orders of magnitude, and seed was shed in wet and dry months. Although infrequent in dryland environments (approximately 11% of the species examined here), species with desiccation-sensitive seeds do occur; large size, rapid germination, and the timing of dispersal all reduce the likelihood of seed drying. Furthermore, desiccation-sensitivity may be advantageous for large-seeded species by increasing the efficiency of resource use in seed provisioning.  相似文献   

14.
  • Divergence in seed germination patterns among populations of the same species is important for understanding plant responses to environmental gradients and potential plant sensitivity to climate change. In order to test responses to flooding and decreasing water potentials, over 3 years we germinated and grew seeds from three habitats of Euterpe edulis Mart. occurring along an altitudinal gradient.
  • Seed germination and root growth were evaluated under different water availability treatments: control, flood, −0.4 MPa, −0.8 MPa, in the years 2012, 2013 and 2014, and in the final year of the experiment (2014) at −1.0 MPa and −1.5 MPa.
  • Seeds from the montane habitat did not germinate in the flooding treatment. Seed germination of all three habitats decreased in the −1.5 MPa treatment and the montane habitat had lowest germination in this treatment. Time required for half of the seeds to germinate increased up to −0.8 MPa. Seeds from montane habitats germinated more slowly in all treatments. The only difference in seed germination synchrony was an increase in the submontane population under the flooding treatment. However, synchrony decreased at the lowest water potentials. Roots of the montane population were more vigorous in most treatments, except at −0.8 MPa.
  • The unusual ability of these seeds to germinate at low water potentials might be related to early seed germination at the onset of the rainy season, which potentially decreases seed predation pressure. Seeds of the montane population were more sensitive to both types of water stress. A predicted increase in the frequency and intensity of extreme high rainfall or drought events may predispose early stages of this population to adverse factors that might negatively affect population viability with elevational in future climate change scenarios.
  相似文献   

15.
Smaller seeds might encounter more severe selective pressure than larger ones because they have fewer food reserves and are more easily buried; thus, seed mass can be considered to be directly related to the effect of light on germination. To investigate the effect of light on seed germination and associated seed mass variation within a whole plant community, we compiled germination data for common herbaceous species from an alpine meadow on the eastern Qinghai‐Tibet plateau. The results showed the following. (i) Light had a general positive effect on seed germination. Under light, the proportion of species with lower germinability was decreased, mean germination percentage was increased by 20% and the speed of germination was doubled. (ii) Irrespective of light environment, species with medium‐sized seeds (seed mass ranging from 0.11 to 0.5 mg) had higher germination percentage and speed when compared with species within the largest seed mass group. (iii) The germination of smaller‐seeded species was more dependent on light stimulation than larger‐seeded ones. In darkness, the species within the smallest seed mass group had the lowest percentage and speed of germination; however, under light, the species within the largest seed mass group had the lowest percentage and speed of germination. Our results suggested that the germination characteristics and especially seeds’ response to light among species in the alpine meadow might be an adaptation to natural selective pressure.  相似文献   

16.
The role in seed dispersal played by the pygmy chimpanzees (Pan paniscus) inhabiting Wamba, Republic of Zaïre, was studied. Germination was tested for seeds of 17 plant species recovered from the feces of pygmy chimpanzees at Wamba. The fecal seeds of 13 species germinated, and in six of the species the germination rate for the fecal seeds was higher than that of control seeds. Although five other species showed a higher germination rate in the control seeds than in the fecal seeds, the remaining two species revealed no difference in germination rate between the fecal and control seeds. There was no great difference in germination velocity between the fecal and control seeds of the same species. For comparison, seeds of four plant species collected from the feces of common chimpanzees (Pan troglodytes) and gibbons (Hylobates lar) in captivity in Okinawa were tested for their germinability. In this test, although the seeds had passed through the digestive tract, their germinability demonstrated little change. Based on the behavioral characteristics of the pygmy chimpanzee at Wamba and observations of the captive primates on Okinawa, it seems that pygmy chimpanzees may play an important role in the seed dispersal of fruit plant species at Wamba.  相似文献   

17.
The capacity of seeds to germinate after ingestion by frugivores is important for the population dynamics of some plant species and significant for the evolution of plant-frugivore interactions. In this paper the effects of different vertebrates on seed germination of nearly 200 plant species are reviewed, searching for patterns that predict the circumstances in which germination of seeds is enhanced, inhibited, or unaffected by the passage through the digestive tract of a seed disperser. It was found that seed dispersers commonly have an effect on the germinability of seeds, or on the rate of germination, or both, in about 50% of the plants they consume, although the diversity of animal species tested so far is still rather low (42 bird species, 28 non-flying mammals, 10–15 bats, 12 reptiles, 2 fishes). Enhancement of germination occurred about twice as often as inhibition.

In spite of the morphological and physiological differences in their digestive tracts, the different animal groups tested have similar effects on seed germination, although non-flying mammals tend to influence germination slightly more often than the other groups. Data on fishes are still too scarce for any generalization. Seed retention time in the dispersers' digestive tract is one factor affecting germination, and helps to explain the variation in seed responses observed among plant species, and even within a species. However other factors are also important; for example, the type of food ingested along with the fruits may affect germination through its influence on chemical or mechanical abrasion of the seed coat. Seed traits such as coat structure or thickness may themselves be responsible for some of the variation in seed retention times. Seeds of different sizes, which usually have different transit times through frugivores, and seeds of either fleshy or dry fruits, show often similar germination response to gut passage.

Seeds of different plants species differ strongly in their germination response after ingestion, even by the same frugivore species. Congeneric plants often show little consistency in their response. Even within a species variation is found which can be related to factors such as the environmental conditions under which germination takes place, seed morphology, seed age, and the season when the seeds are produced.

The effect of gut passage on germination differs between tropical and temperate zones. Seed germination of both shrubs and trees (data on herbaceous species are still scarce) in the temperate zone is more frequently enhanced than in the tropics. This result supports the hypothesis that enhanced germination may be more advantageous in unpredictable or less constant environments. Significant differences in frugivore-mediated germination are also found among different life forms. In both tropical and temperate zones, trees appear to be consistently more affected than shrubs or herbs. This might be due to an overall higher thickness of the seed coats, or to a higher frequency of seed-coat dormancy in tree species.

The influence of frugivory upon the population dynamics of a species has to be evaluated relative to other factors that influence germination and seedling recruitment at a particular site. Whether seed ingestion by dispersers is really advantageous to a plant (as has commonly been assumed) can only be assessed if we also determine the fate of the ingested seeds under natural conditions, and compare it to the fate of seeds that have not been ingested.  相似文献   


18.
The seed size and number theories have been proposed to explain the advantages of having many small versus a few large seeds in plants. In particular, seed germination is predicted to be shaped by temperature, and may differ for small and large seeds. In this study, we experimentally test germination at different temperatures in 12 species of arid zone plants in the genus Frankenia L. that differ in seed mass. Seed mass was categorized as “smaller-seeded species” versus “larger-seeded species” for analysis (six species per category). Many of these species co-occur geographically and hence experience similar abiotic conditions (unpredictable rainfall, extremes in temperature, poor soil conditions). The results demonstrated differences in germination as a result of the temperature*seed mass(species) interaction effect. There were significant differences in germination rates across seed mass categories during the first eight days of germination. Germination rates were higher in the larger-seeded species than the smaller-seeded species. Smaller-seeded species had lower germination success but had higher germination rates at lower temperatures, and had a more stringent temperature as a germination cue. These findings are discussed in the context of life-history strategies in arid zone plants.  相似文献   

19.
Several theoretical and empirical studies have examined the influence of environmental conditions on seed traits and germination strategies of annual species. A positive relationship between seed mass and dormancy has been described for annuals occupying climatically unpredictable ecosystems. Larger-seeded species tend to have higher seedling survival rates, while dormancy allows a bet-hedging strategy in unpredictable environments. Until now, these ideas have been addressed primarily for only one or a few focal species, without considering differences among populations and communities. The novelty of the present study lies in the population and community-level approach, where a comprehensive seed trait database including 158 annual species occurring along a gradient of rainfall variability and aridity in Israel was used to ask the following question: Does average seed mass and dormancy of annual populations and communities decrease with increasing aridity and rainfall unpredictability?Soil seed bank samples were collected at the end of the summer drought, before the onset of the rains, from four plant communities. Germination was tested under irrigated conditions during three consecutive germination seasons to determine the overall seed germinability in each soil sample. Seed mass was obtained from newly produced seeds collected at the study sites in late spring. The community level results showed that, in contrast to common theoretical knowledge, seed mass and dormancy of the dominant annual species decreased with increasing aridity and rainfall variability. Accordingly, a negative correlation was found between seed mass and seed germination fractions. The present study demonstrates that an analysis of seed traits along climatic gradients is significantly improved by approaches that target both population and community levels simultaneously. A critical evaluation sheds new light upon the selective pressures that act on seed ecology of annuals along a climatic gradient and facilitates formulation of more mechanistic hypotheses about factors governing critical seed traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号