首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lack of magnesium suppresses cell growth, but the molecular mechanism is not examined in detail. We examined the effect of extracellular magnesium deficiency on cell cycle progression and the expression of cell cycle regulators in renal epithelial NRK-52E cells. In synchronized cells caused by serum-starved method, over 80% cells were distributed in G1 phase. Cell proliferation and percentage of the cells in S phase in the presence of MgCl(2) were higher than those in the absence of MgCl(2) , suggesting that magnesium is involved in the cell cycle progression from G1 to S phase. After serum addition, the expression levels of p21(Cip1) and p27(Kip1) in the absence of MgCl(2) were higher than those in the presence of MgCl(2) . The exogenous expression of p21(Cip1) or p27(Kip1) increased the percentage in G1 phase, whereas it decreased that in S phase. The mRNA levels and promoter activities of p21(Cip1) and p27(Kip1) in the absence of MgCl(2) were higher than those in the presence of MgCl(2) . The phosphorylated p53 (p-p53) level was decreased by MgCl(2) addition. Pifithrin-α, a p53 inhibitor, decreased the p-p53, p21(Cip1) and p27(Kip1) levels, and the percentage in G1 phase in the absence of MgCl(2) . Rotenone, a mitochondrial respiratory inhibitor, decreased ATP content and increased the p-p53 level in the presence of MgCl(2) . Together, lack of magnesium may increase p21(Cip1) and p27(Kip1) levels mediated by the decrease in ATP content and the activation of p53, resulting in the suppression of cell cycle progression from G1 to S phase in NRK-52E cells.  相似文献   

2.
3.
Butyrate, a short-chain fatty acid produced in the colon, as well as its prodrug tributyrin, reduce proliferation and increase differentiation of colon cancer cells. p21(Waf1/Cip1) and p27(Kip1) are negative regulators of cell cycle and are thought to have a key function in the differentiation of various cell lines. We studied the effects of butyrate on differentiation, VDR expression, as well as on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Butyrate induced cell differentiation, which was further enhanced after addition of 1,25-dihydroxycholecalciferol. Synergistic effect of butyrate and dihydroxycholecalciferol in Caco-2 cells was due to butyrate-induced overexpression of VDR. While butyrate as well as dihydroxycholecalciferol increased p21(Waf1/Cip1) and p27(Kip1) expression, in contrast combined exposure of butyrate and dihydroxycholecalciferol resulted in a synergistic amplification of p21(Waf1/Cip1), but not of p27(Kip1) expression. These data imply that butyrate selectively increases p21(Waf1/Cip1) expression via upregulation of VDR in Caco-2 cells.  相似文献   

4.
Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells.  相似文献   

5.
The timing of cellular exit from the cell cycle during differentiation is specific for each cell type or lineage. Granulosa cells in the ovary establish quiescence within several hours after the ovulation-inducing luteinizing hormone surge, whereas they undergo differentiation into corpora lutea. The expression of Cdk inhibitors p21(Cip1/Waf1) and p27(Kip1) is up-regulated during this process, suggesting that these cell cycle inhibitors are involved in restricting proliferative capacity of differentiating granulosa cells. Here we demonstrate that the lack of p27(Kip1) and p21(Cip1) synergistically renders granulosa cells extended an proliferative life span. Immunohistochemical analyses demonstrated that corpora lutea of p27(Kip1), p21(Cip1) double-null mice showed large numbers of cells with bromodeoxyuridine incorporation and high proliferative cell nuclear antigen expression, which were more remarkable than those in p27(Kip1) single-deficient mice showing modest hyperproliferation. In contrast, differentiating granulosa cells in p21(Cip1)-deficient mice ceased proliferation similarly to those in wild-type mice. Interestingly, granulosa cells isolated from p27(Kip1), p21(Cip1) double-null mice exhibited markedly prolonged proliferative life span in culture, unlike cells with other genotypes. Cultured p27(Kip1), p21(Cip1) double-null granulosa cells maintained expression of steroidogenic enzymes and gonadotropin receptors through 8-10 passages and could undergo further differentiation in responses to cAMP accumulation. Thus, the cooperation of p27(Kip1) and p21(Cip1) is critical for withdrawal of granulosa cells from the cell cycle, in concert with luteal differentiation and possibly culture-induced senescence.  相似文献   

6.
The cyclin-dependent kinase (Cdk) inhibitors p21(Cip1) and p27(Kip1) have been proposed to exert redundant functions in cell cycle progression and differentiation programs, although nonoverlapping functions have also been described. To gain further insights into the relevant mechanisms and to detect possible functional differences between both proteins, we conditionally expressed p21(Cip1) and p27(Kip1) in K562, a multipotent human leukemia cell line. Temporal ectopic expression of either p21(Cip1) or p27(Kip1) arrested proliferation, inhibited Cdk2 and Cdk4 activities, and suppressed retinoblastoma phosphorylation. However, whereas p21(Cip1) arrested cells in both G(1) and G(2) cell cycle phases, p27(Kip1) blocked the G(1)/S-phase transition. Furthermore, although both p21(Cip1) and p27(Kip1) associated with Cdk6, only p27(Kip1) significantly inhibited its activity. Most importantly, each protein promoted differentiation along a distinct pathway; p21(Cip1) triggered megakaryocytic maturation, whereas p27(Kip1) resulted in the expression of erythroid markers. Consistently, p21(Cip1) and p27(Kip1) were rapid and transiently up-regulated when K562 cells are differentiated into megakaryocytic and erythroid lineages, respectively. These findings demonstrate distinct functions of p21(Cip1) and p27(Kip1) in cell cycle regulation and differentiation and indicate that these two highly related proteins possess unique biological activities and are not functionally interchangeable.  相似文献   

7.
8.
p27Kip1 regulates T cell proliferation   总被引:6,自引:0,他引:6  
Our studies addressed the mechanism by which serum acts in conjunction with T cell receptor (TCR) agonists to promote the proliferation of primary splenic T cells. When added to resting splenocytes, TCR agonists initiated G(0)/G(1) traverse and activated cyclin D3-cdk6 complexes in a serum-independent manner. On the other hand, both TCR agonists and 10% serum were required for the activation of cyclin E-cdk2 and cyclin A-cdk2 complexes and the entry of cells into S phase. Serum facilitated cdk2 activation by maximizing the extent and extending the duration of the TCR-initiated down-regulation of the cdk2 inhibitor, p27(Kip1). Although p27(Kip1) levels were reduced (albeit submaximally) in cells stimulated in serum-deficient medium, nearly all of the cdk2 complexes in these cells contained p27(Kip1). In contrast, in cells receiving TCR agonist and 10% serum, little if any p27(Kip1) was present in cyclin-cdk2 complexes. Unlike wild-type splenocytes, p27(Kip1)-null splenocytes did not require serum for cdk2 activation or S phase entry whereas loss of the related cdk2 inhibitor, p21(Cip1), did not override the serum dependence of these responses. We also found that cdk2 activation was both necessary and sufficient for maximal expression of cdk2 protein. These studies provide a mechanistic basis for the serum dependence of T cell mitogenesis.  相似文献   

9.
When suspended in methylcellulose, primary mouse keratinocytes cease proliferation and differentiate. Suspension also reduces the activity of the cyclin-dependent kinase cdk2, an important cell cycle regulatory enzyme. To determine how suspension modulates these events, we examined its effects on wild-type keratinocytes and keratinocytes nullizygous for the cdk2 inhibitor p21(Cip1). After suspension of cycling cells, amounts of cyclin A (a cdk2 partner), cyclin A mRNA, and cyclin A-associated activity decreased much more rapidly in the presence than in the absence of p21(Cip1). Neither suspension nor p21(Cip1) status affected the stability of cyclin A mRNA. Loss of p21(Cip1) reduced the capacity of suspended cells to growth arrest, differentiate, and accumulate p27(Kip1) (a second cdk2 inhibitor) and affected the composition of E2F DNA binding complexes. Cyclin A-cdk2 complexes in suspended p21(+/+) cells contained p21(Cip1) or p27(Kip1), whereas most of the cyclin A-cdk2 complexes in p21(-/-) cells lacked p27(Kip1). Ectopic expression of p21(Cip1) allowed p21(-/-) keratinocytes to efficiently down-regulate cyclin A and differentiate when placed in suspension. These findings show that p21(Cip1) mediates the effects of suspension on numerous processes in primary keratinocytes including cdk2 activity, cyclin A expression, cell cycle progression, and differentiation.  相似文献   

10.
Members of the gamma2-herpesvirus family encode cyclin-like proteins that have the ability to deregulate mammalian cell cycle control. Here we report the key features of the viral cyclin encoded by Murine Herpesvirus 68, M cyclin. M cyclin preferentially associated with and activated cdk2; the M cyclin/cdk2 holoenzyme displayed a strong reliance on phosphorylation of the cdk T loop for activity. cdk2 associated with M cyclin exhibited substantial resistance to the cdk inhibitor proteins p21(Cip) and p27(Kip). Furthermore, M cyclin directed cdk2 to phosphorylate p27(Kip1) on threonine 187 (T187) and cellular expression of M cyclin led to down-regulation of p27(Kip1) and the partial subversion of the associated G1 arrest. Mutation of T187 to a non-phosphorylatable alanine rendered the p27(Kip1)-imposed G1 arrest resistant to M cyclin expression. Unlike the related K cyclin, M cyclin was unable to circumvent the G1 arrest associated with p21(Cip1) and was unable to direct its associated catalytic subunit to phosphorylate this cdk inhibitor. These results imply that M cyclin has properties that are distinct from other viral cyclins and that M cyclin expression alone is insufficient for S phase entry.  相似文献   

11.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

12.
We investigated the role of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1) in cell cycle regulation during hypoxia and reoxygenation. While moderate hypoxia (1 or 0.1% oxygen) does not significantly impair bromodeoxyuridine incorporation, at very low oxygen tensions (0.01% oxygen) DNA replication is rapidly shut down in immortalized mouse embryo fibroblasts. This S-phase arrest is intact in fibroblasts lacking the cyclin kinase inhibitors p21(Cip1) and p27(Kip1), indicating that these molecules are not essential elements of the arrest pathway. Hypoxia-induced arrest is accompanied by dephosphorylation of pRb and inhibition of cyclin-dependent kinase 2, which results in part from inhibitory phosphorylation. Interestingly, cells lacking the retinoblastoma tumor suppressor protein also display arrest under hypoxia, suggesting that pRb is not an essential mediator of this response. Upon reoxygenation, DNA synthesis resumes by 3.5 h and reaches aerobic levels by 6 h. Cells lacking p21, however, resume DNA synthesis more rapidly upon reoxygenation than wild-type cells, suggesting that this inhibitor may play a role in preventing premature reentry into the cell cycle upon cessation of the hypoxic stress. While p27 null cells did not exhibit rapid reentry into the cell cycle, cells lacking both p21 and p27 entered S phase even more aggressively than those lacking p21 alone, revealing a possible secondary role for p27 in this response. Cdk2 activity is also restored more rapidly in the double-knockout cells when returned to normoxia. These studies reveal that restoration of DNA synthesis after hypoxic stress, but not the S phase arrest itself, is regulated by p21 and p27.  相似文献   

13.
p57(Kip2) and p21(Cip1/Waf1) are members of cyclin-dependent kinase (Cdk) inhibitors which play critical roles in the terminal differentiation of skeletal muscle and lung. We investigated mRNA levels of p57(Kip2) and p21(Cip1/Waf1) in skeletal muscle and lung of mice during maturation and aging using Northern hybridization. The mRNA levels of p57(Kip2) and p21(Cip1/Waf1) decreased in skeletal muscle and lung of mice during maturation and aging except that the level of p21(Cip1/Waf1) mRNA in skeletal muscle of mice showed an increase only during maturation. The decrease of the p57(Kip2) mRNA level involved neither a change of DNA methylation at the promoter region nor an alteration of the imprinting status in aged mice. The decreases of p57(Kip2) and p21(Cip1/Waf1) mRNA levels during aging suggest that the process of tissue-specific terminal differentiation may be gradually downregulated with senescence in tissues where p57(Kip2) and p21(Cip1/Waf1) play key roles in differentiation. The downregulation of p57(Kip2) and p21(Cip1/Waf1) during aging is contrary to the upregulation of Cdk inhibitors during cellular replicative senescence, indicating that aging in an organismal level is mediated by mechanisms different from replicative senescence of cultured cells.  相似文献   

14.
p27(Kip1) is an inducer of intestinal epithelial cell differentiation   总被引:2,自引:0,他引:2  
Constant renewal of the intestinal epitheliumis a highly coordinated process that has been subject to intenseinvestigation, but its regulatory mechanisms are still essentiallyunknown. In this study, we have demonstrated that forced expression ofthe cyclin-dependent kinase inhibitors (CKIs) p27Kip1 andp21Cip1/WAF1 in human intestinal epithelial cells led toexpression of differentiation markers at both the mRNA and proteinlevels. Cell differentiation was temporally dissociated from inhibitionof retinoblastoma protein phosphorylation and growth arrest, alreadyestablished 1 day after infection with recombinant adenoviruses.p27Kip1 proved significantly more efficient thanp21Cip1/WAF1 in induction of cell differentiation. Incontrast, forced expression of p16INK4a resulted in growtharrest without induction of differentiation markers. These resultsimplicate both p27Kip1 and p21Cip1/WAF1 in thedifferentiation-timing process, but p21Cip1/WAF1 may actindirectly by increasing p27Kip1 levels. These results alsosuggest that induction of intestinal epithelial cell differentiation byCKIs is not related to their effects on the cell cycle and may involveinteractions with cellular components other than cyclins andcyclin-dependent kinases.

  相似文献   

15.
Enhanced intracellular iron levels are essential for proliferation of mammalian cells. If cells have entered S phase when iron is limiting, an adequate supply of deoxynucleotides cannot be maintained and the cells arrest with incompletely replicated DNA. In contrast, proliferating cells that are not in S phase, but have low iron pools, arrest in late G1. In this report the mechanism of iron-dependent G1 arrest in normal fibroblasts was investigated. Cells were synchronized in G0 by contact inhibition and serum deprivation. Addition of serum caused the cells to re-enter the cell cycle and enter S phase. However, if the cells were also treated with the iron chelator deferoxamine, S phase entry was blocked. This corresponded to elevated levels of the cyclin dependent kinase inhibitor p27Kip1 and inhibition of CDK2 activity. Expression of other cell cycle regulatory proteins was not affected, including the induction of cyclins D1 and E. When the quiescent serum starved cells were supplemented with a readily usable form of iron in the absence of serum or any other growth factors, a significant population of the cells entered S phase. This was associated with downregulation of p27Kip1 and increased CDK2 activity. Using an IPTG-responsive construct to artificially raise p27Kip1 levels blocked the ability of iron supplementation to promote S phase entry. Thus it appears that p27Kip1 is a mediator of G1 arrest in iron depleted Swiss 3T3 fibroblasts. We propose that this is part of an iron-sensitive checkpoint that functions to ensure that cells have sufficient iron pools to support DNA synthesis prior to entry into S phase.  相似文献   

16.
17.
DNA tumour viruses have evolved a number of mechanisms by which they deregulate normal cellular growth control. We have recently described the properties of a cyclin encoded by human herpesvirus 8 (also known as Kaposi's sarcoma-associated herpesvirus) which is able to resist the actions of p16(Ink4a), p21(Cip1) and p27(Kip1) cdk inhibitors. Here we investigate the mechanism involved in the subversion of a G1 blockade imposed by overexpression of p27(Kip1). We demonstrate that binding of K cyclin to cdk6 expands the substrate repertoire of this cdk to include a number of substrates phosphorylated by cyclin-cdk2 complexes but not cyclin D1-cdk6. Included amongst these substrates is p27(Kip1) which is phosphorylated on Thr187. Expression of K cyclin in mammalian cells leads to p27(Kip1) downregulation, this being consistent with previous studies indicating that phosphorylation of p27(Kip1) on Thr187 triggers its downregulation. K cyclin expression is not able to prevent a G1 arrest imposed by p27(Kip1) in which Thr187 is mutated to non-phosphorylatable Ala. These results imply that K cyclin is able to bypass a p27(Kip1)-imposed G1 arrest by facilitating phosphorylation and downregulation of p27(Kip1) to enable activation of endogenous cyclin-cdk2 complexes. The extension of the substrate repertoire of cdk6 by K cyclin is likely to contribute to the deregulation of cellular growth by this herpesvirus-encoded cyclin.  相似文献   

18.
19.
T lymphocyte growth is regulated by the cyclin-dependent kinase inhibitor p27(Kip1). Mice deficient in p27(Kip1) have increased proliferative responses to multiple cytokines, including IL-2, IL-4, and IL-12, but not to anti-CD3. In the absence of p27(Kip1), T cells proliferate faster than control cells, as evidenced by increased [(3)H]thymidine uptake, increased cell growth and division, and an increased number of cells in S phase. Importantly, this regulation is specific for p27(Kip1) in T cells, because hyperproliferation of T cells from mice deficient in p21(Cip1/Waf1) was not observed. In vivo, there is an expansion of activated/memory CD4(+) cells in p27(Kip1)-deficient mice before and after immunization. Furthermore, Ag-stimulated spleen cells from immunized p27(Kip1)-deficient mice demonstrated increased proliferative responses to IL-2 and increased secretion of IFN-gamma. Although IL-4 stimulated proliferative responses are diminished in Stat6-deficient T cells, activated T cells from mice doubly deficient in both p27(Kip1) and Stat6 recover normal proliferative responses to IL-4. Together, these data firmly support a role for p27(Kip1) as a negative regulator of cytokine-stimulated T cell growth.  相似文献   

20.
Pentagalloylglucose, which is found in many medicinal plants, can arrest the cell cycle at G(1) phase through down-regulation of cyclin-dependent kinases 2 and 4 and up-regulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1/WAF1) in human breast cancer cells. Pentagalloylglucose also induces apoptosis in human leukemic cells. However, the mechanisms by which pentagalloylglucose induces these effects is unclear. We now show that pentagalloylglucose inhibits the activities of purified 20 and 26 S proteasomes in vitro, the 26 S proteasome in Jurkat T cell lysates, and chymotrypsin-like activity of the 26 S proteasome in intact Jurkat T cells. The turnover of p27(Kip1) and p21(Cip1/WAF1), which is necessary for cell cycle progression mediated by proteasome degradation, was disrupted by treatment of human Jurkat T cells with pentagalloylglucose. This was shown by cycloheximide treatment and in vivo pulse-chase labeling experiments, and this effect correlated with the arrest of proliferation of Jurkat T cells at G(1). Inhibition of the proteasome by pentagalloylglucose and by the proteasome inhibitor MG132 caused accumulation of ubiquitin-tagged proteins in Jurkat T cells. The addition of pentagalloylglucose to Jurkat T cells enhanced the stability of the proteasome substrate Bax and increased cytochrome c release and apoptosis. Our findings suggest a mechanism for the effect of pentagalloylglucose on the cell cycle in human leukemic cells: that pentagalloylglucose down-regulates proteasome-mediated pathways because it is a proteasome inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号