首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extracellular keratinase production by the feather-degrading Amazonian isolate Bacillus sp. P45 was evaluated with various growth substrates. Higher enzyme production occurred with feather meal (FM) in comparison to casein, gelatin, and cheese whey, suggesting the specificity of this strain for the utilization of keratinous substrates. Supplementation of FM medium with carbohydrates reduced enzyme production, probably due to catabolite repression. Increased keratinase yield was achieved when NH4Cl was added to FM medium. The effects of FM and NH4Cl concentrations on enzyme production were investigated using a 22 central composite design. Feather meal was the most significant parameter, while NH4Cl concentrations resulted in slight differences in enzyme yield. In the range studied, optimal concentrations of FM and NH4Cl were 43-50 g l−1 and 1.8-8.6 g l−1, respectively, resulting in an effective low-cost medium for the production of keratinolytic protease. Crude keratinase showed maximum activity at 50 °C and pH 7.0, and was strongly inhibited by EDTA, indicating the importance of metal ions for activity/stability. The crude keratinase from mesophilic Bacillus sp. P45 could potentially be used in the bioconversion of recalcitrant keratinous wastes through an environmentally friendly and energy-saving process, producing protein hydrolysates with commercial value for utilization as animal feed and fertilizers.  相似文献   

2.
Feather keratin hydrolysis by a Vibrio sp. strain kr2   总被引:1,自引:0,他引:1  
The aim of the study was to characterize feather-degrading bacteria isolated from poultry industry waste. A Vibrio sp. strain kr2 producing a high keratinolytic activity when cultured on native feather-containing broth was isolated. The bacterium grew with an optimum at pH 6.0 and 30 degrees C, where maximum featherdegrading activity was also observed. Keratinase production was similar at both 25 and 30 degrees C, while the maximum concentration of soluble protein was reached at 30 degrees C. Reduction of disulphide bridges was also observed, increasing with cultivation time. The keratinase of strain kr2 was active on azokeratin, azocasein, benzoyl-arginine-p-nitroanilide and Ala-Ala-p-nitroanilide as substrates. The amino acid composition of the feather hydrolysate was determined, presenting similarities with that reported for feather lysate, feather meal and raw feathers. A novel feather-degrading bacterium was isolated and characterized, showing high keratinolytic activity. Complete feather degradation was achieved during cultivation. Strain kr2 shows potential for use for biotechnological processes involving keratin hydrolysis.  相似文献   

3.
The Chryseobacterium sp. kr6 strain has been described as a highly keratinolytic bacterium showing effective feather-degrading and de-hairing activities. A keratinase Q1 enzyme was purified from Chryseobacterium sp. kr6 culture by Phenyl Sepharose and Superose 12HR chromatography. This enzyme showed a specific activity of 967U/mg for keratin azure. Electrophoresis under denaturing conditions showed a monomeric protein with approximately 64kDa. The enzyme showed pH and temperature optima of 8.5 and 50 degrees C, respectively. The inhibitory effect of EDTA, EGTA and 1,10-phenanthroline characterized Q1 enzyme as a Zn-metalloprotease. Its activity was increased by three-fold in the presence of Ca(2+). ESI-MS/MS analysis of peptides generated from a tryptic digestion revealed sequence homology which may characterize the Q1 keratinase as a member of the M14 metalloprotease family, with a consensus glycosylation region similar to proteins from Chryseobacerium meningosepticum.  相似文献   

4.
Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support (qm) and dissociation constant (Kd) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at 65 degrees C. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.  相似文献   

5.
The effects of nutritional conditions on growth and protease production by the feather-degrading Chryseobacterium sp. kr6 were investigated. Higher growth was observed on feather-containing or tryptone (TR) medium when compared to casein (CA) or glucose-nitrogen (GN) base medium. Protease production occurred during growth on feather-containing and TR media, whereas no protease activity was detected on CA or GN medium, indicating that protease production is not constitutive, depending on the presence of specific complex nitrogen sources. Supplementation of whole feathers (WF) medium with glucose (WFG) or NH(4)Cl (WFN) did not result in major differences in growth and protease production, whereas soluble protein was lower in supplemented media. Glucose consumption and growth were higher on WFG than on GN medium, suggesting that the absence of a specific complex nitrogen source limited bacterial growth. On WF medium, this strain grew closely attached to the feather structures, initially on the barbules and subsequently on the feather rachis. It was observed, through zymogram analysis, that strain kr6 produced diverse proteolytic enzymes in response to different growth substrates. These results were confirmed by the differential behaviors of crude proteases towards protease inhibitors.  相似文献   

6.
A novel feather-degrading microorganism was isolated from poultry waste, producing a high keratinolytic activity when cultured on broth containing native feather. Complete feather degradation was achieved during cultivation. The bacterium presents potential use for biotechnological processes involving keratin hydrolysis. Chryseobacterium sp. strain kr6 was identified based on morphological and biochemical tests and 16S rRNA sequencing. The bacterium presented optimum growth at pH 8.0 and 30 degrees C; under these conditions, maximum feather-degrading activity was also achieved. Maximum keratinase production was reached at 25 degrees C, while concentration of soluble protein was similar at both 25 and 30 degrees C. Reduction of disulfide bridges was also observed, increasing with cultivation time. The keratinase of strain kr6 was active on azokeratin and azocasein as substrates, and presented optimum pH and temperature of 7.5 and 55 degrees C, respectively. The keratinase activity was inhibited by 1,10-phenanthroline, EDTA, Hg(2+), and Cu(2+) and stimulated by Ca(2+).  相似文献   

7.
Abstract

An extracellular keratinolytic protease produced by Bacillus sp. P45 was purified and characterized. The keratinase had a molecular weight of approximately 26 kDa and was active over wide pH and temperature ranges, with optimal activity at 55°C and pH 8.0. However, this enzyme displayed low thermostability, being completely inactivated after 10 min at 50°C. Keratinase activity increased with Ca2+, Mg2+, Triton X-100, ethanol and DMSO, was stable in the presence of the reducing agent 2-mercaptoethanol, and was inactivated by SDS. PMSF (phenylmethylsulfonyl fluoride) completely inactivated and EDTA strongly inhibited the enzyme, indicating that the keratinase is a serine protease depending on metal ions for optimal activity and/or stability. Accordingly, analysis of tryptic peptides revealed sequence homologies which characterize the keratinase as a subtilisin-like serine protease. The purified enzyme was able to hydrolyze azokeratin and keratin azure. Casein was hydrolyzed at higher rates than keratinous substrates, and 2-mercaptoethanol tended to enhance keratin hydrolysis. With synthetic substrates, the keratinase showed a preference for aromatic and hydrophobic residues at the P1 position of tetrapeptides; the enzyme was not active, or the activity was drastically diminished, towards shorter peptides. Keratinase from Bacillus sp. P45 might potentially be employed in the production of protein hydrolysates at moderate temperatures, being suitable for the bioconversion of protein-rich wastes through an environmentally friendly process requiring low energy inputs.  相似文献   

8.
In the psychrophilic bacterium Vibrio sp. strain ANT-300, the temperature-related characteristics of protein synthesis in cells grown at 0 degrees C differed from those of cells grown at 13 degrees C. Cells grown at 0 degrees C and 13 degrees C transported amino acids at the same rates, dependent on the temperature at which rates were measured. The rates of protein synthesis in extracts of cells grown at 0 degrees C and at 13 degrees C differed, as a result of the changes in the properties of the soluble fraction involved in protein synthesis. Concurrently, levels of more than 24 polypeptides in the soluble fraction changed considerably. These results suggest that the difference in temperature dependence of protein synthesis in cells grown at various temperatures may be brought about by specific changes in the levels of a small number of polypeptides (less than 15% of the total number of proteins detected by silver-staining) in response to a change in temperature.  相似文献   

9.
A new bacterial strain, isolated from groundwater contaminated with explosives, was characterized as a pink-pigmented facultative methylotroph, affiliated to the genus Methylobacterium. The bacterial isolate designated as strain GW2 was found capable of producing the homopolymer poly-3-hydroxybutyrate (PHB) from various carbon sources such as methanol, ethanol, and succinate. Methanol acted as the best substrate for the production of PHB reaching 40 % w/w dry biomass. PHB accumulation was observed to be a growth-associated process, so that there was no need for two-step fermentation. Optimal growth occurred at 0.5 % (v/v) methanol concentration, and growth was strongly inhibited at concentration above 2 % (v/v). Methylobacterium sp. strain GW2 was also able to accumulate the copolyester poly-3-hydroxybutyrate-poly-3-hydroxyvalerate (PHB/HV) when valeric acid was supplied as an auxiliary carbon source to methanol. After 66 h, a copolymer content of 30 % (w/w) was achieved with a PHB to PHV ratio of 1:2. Biopolymers produced by strain GW2 had an average molecular weight ranging from 229,350 to 233,050 Da for homopolymer PHB and from 362,430 to 411,300 Da for the copolymer PHB/HV.  相似文献   

10.
The marine photosynthetic bacterium, Rhodovulum sp. PS88, produces RNA not only in cells but also as an extracellular polymeric substance during aerobic continuous cultivation in the dark. At a dilution rate of 0.32–0.5 h–1, the maximum RNA production was 460 mg RNA l–1 broth (200 mg RNA g–1 suspended solids) which is a value about 2–3 times more than that of yeast cells.  相似文献   

11.
Several thermophilic anaerobic bacteria with keratinolytic activity growing at temperatures between 50 degrees C and 90 degrees C were isolated from samples collected on the island of S?o Miguel in the Azores (Portugal). On the basis of morphological, physiological, and 16S rDNA studies, the isolate 2KXI was identified as a new species of the genus Thermoanaerobacter, designated Thermoanaerobacter keratinophilus. This strain, which grows optimally at 70 degrees C, pH 7.0, and 0.5% NaCl, is the first member of the genus Thermoanaerobacter that has been described for its ability to degrade native keratin. Around 70% of native wool was solubilized after 10 days of incubation under anaerobic conditions. The strain was shown to possess intracellular and extracellular proteases optimally active at 60 degrees C, pH 7.0, and 85 degrees C, pH 8.0, respectively. Keratin hydrolysis was demonstrated in vitro using a sodium dodecyl sulfate gel containing feather meal. The extracellular protease responsible for breaking down keratin fibers was purified to homogeneity in only one step by applying hydroxyapatite column chromatography. The enzyme belongs to the serine-type proteases and has a molecular mass of 135 kDa.  相似文献   

12.
13.
Zhou  S.N.  Yang  C.Y.  Lu  Y.J.  Huang  L.  Cai  C.H.  Lin  Y.C. 《World journal of microbiology & biotechnology》1999,15(6):745-746
A chitinase was separated from the culture broth of Vibrio sp. 11211 isolated from sediment from the South China Sea. The chitinase was purified 18.3-fold with 33% recovery by ammonium sulphate precipitation and chromatography. The subunit molecular weight of the enzyme was estimated by SDS-PAGE to be about 30kDa. The enzyme showed optimum pH at 6.5 and optimum temperature at 50°C, and was stable in the pH range of 4 to 9 and at the temperature below 40°C.  相似文献   

14.
Jiang P  Li J  Han F  Duan G  Lu X  Gu Y  Yu W 《PloS one》2011,6(4):e18514
Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition about the functions of bacterial exopolysaccharides.  相似文献   

15.
It was shown that under definite conditions there was competition between natural variants of sea bacteria belonging to V. fischeri. Natural variants of V. fischeri, strain 6 differed in their resistance to streptomycin and had different growth rates under conditions of limited aeration. Morphologically all the variants were identical. V. fischeri P-0, V. fischeri P-1 and V. fischeri P-2 were studied. The study revealed that V. fischeri P-0 produced a non-dialysing thermostable trypsin-sensitive substance inhibiting the growth of V. fischeri P-1 and V. fischeri P-2. The maximum activity of the antibacterial substance was observed when V. fischeri P-0 was grown in a liquid medium with peptone and yeast extract without agitation at 26 degrees C. The inhibiting substance was also active against V. fischeri BKM B995 and V. fischeri P-7 isolated as a result of V. fischeri P-0 exposure to ethidium bromide. The substance had no effect on the following bacterial species: Aeromonas liquefaciens 301, Achromobacter liquefaciens, Pseudomonas putida 15, Pseudomonas fluorescence 7, Escherichia coli AH-32 and Staphylococcus aureus.  相似文献   

16.
17.
A high level of a trans-unsaturated fatty acid was found in the phospholipids of a psychrophilic bacterium, Vibrio sp. strain ABE-1. This fatty acid was identified as 9-trans-hexadecenoic acid (C16:19t) by gas-liquid chromatography and infrared absorption spectrometry. C16:1(9)t accounted for less than 1% of the total fatty acids in cells grown at 5 degrees C and reached 12% of the total at 20 degrees C. We suggest that the increase in the level of the trans-unsaturated fatty acid is related to the high growth rate of this bacterium at elevated temperatures. Possible biological roles of the trans-unsaturated fatty acid in the adaptation of the microorganism to the ambient temperature are discussed.  相似文献   

18.
Two novel strains C4III282T and C4III291 were isolated from seawater collected a site off the Taketomi coral reef. Phylogenetic analysis based on the 16S rRNA sequences revealed that the two strains belong to the genus Vibrio. MLSA using eight protein-coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) showed that C4III282T and C4III291 are closely related to the members of the Ponticus clade, namely Vibrio panuliri JCM 19500T, Vibrio ponticus DSM 16217T, and “Vibrio rhodolitus” G98. ANI and in silico DDH values with members of the Ponticus clade were 77.6-78.7% and 22.2-23.1, respectively. The name Vibrio taketomensis sp. nov. is proposed with C4III282T (CAIM 1928T = DSM 106943T = JCM 33434T) as the type strain.  相似文献   

19.
Extracellular nuclease produced by a marine Vibrio sp., strain No. 2, was purified by salting out with ammonium sulfate and by chromatography on a DEAE-cellulose column and twice on a Sephadex G-200 column. The nuclease was eluted as a single peak in which the deoxyribonuclease (DNase) activity and ribonuclease (RNase) activity appeared together. Polyacrylamide disc gel electrophoresis showed a single band of stained protein which had both DNase and RNase activity. The molecular weight of the enzyme was estimated to be 100 000 daltons. When using partially purified enzyme from the DEAE-cellulose column, the optimum pH for activity was 8.0, and the enzyme was activated strongly by 0.05 M Mg2+ ions and stabilized by 0.01 M Ca2+ ion. These concentrations of Mg2+ and Ca2+ ions are similar to those of the two cations in seawater. Indeed, the enzyme revealed high activity and strong stability when kept in seawater. The presence of particulate matter, such as cellulose powder, chitin powder. Hyflosupercel, Kaolin, and marine mud increased the stability of the enzyme. When the hydrostatic pressure was increased from 1 to 1000 atmospheres, the decrements of the enzyme activity were more pronounced at 30 and 40 degrees C than at 25 or 50 degrees C. The enzyme activity was restored after decompression to 1 atm at 30 degrees C.  相似文献   

20.
The type I human interferon (IFN) family consists of a group of cytokines with a multiplicity of biological activities, including antiviral, antitumor, and immunomodulatory effects. However, because the half-life of IFN is short, its clinical application is limited. Increasing the yield and biological activity of IFN while extending its half-life is currently the focus of IFN research. Two novel long-acting recombinant human IFN-α2b (rhIFN-α2b) proteins were designed in which the carboxyl-terminal peptide (CTP) of the human chorionic gonadotropin β su bunit and N-linked glycosylation sequences were linked to rhIFN-α2b. They were designated IFN-1CTPON (fused at the C-terminus of rhIFN-α2b) and IFN-2CTPON (fused at both the C-terminus and N-terminus of rhIFN-α2b). Monoclonal CHO cell strains stably and efficiently expressing the IFNs were successfully selected with methotrexate (MTX), and the highest expression levels were 1468 mg/l and 1196 mg/l for IFN-1CTPON and IFN-2CTPON, respectively. The proteins were purified with affinity chromatography and molecular sieve chromatography. IFN-1CTPON and IFN-2CTPON showed antiviral and antiproliferative activities in vitro. Notably, the half-life of IFN-1CTPON and IFN-2CTPON in vivo were three-fold and two-fold longer than that of commercially available rhIFN-α2b. CHO cell strains stably expressing long-acting rhIFN-α2b were screened. The purified IFN-CTPON protein has biological activity and an extended half-life, and therefore potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号