首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin-section and freeze-fracture studies on the rat ovarian interstitial cells revealed reductions in the size and the number of gap junctions after pituitary ablation. Small gap junctions, however, persist as long as 90 days after hypophysectomy even though regressive cytoplasmic changes are completed 75 d earlier. Administration of exogenous human chorionic gonadotrophin (HCG) results in the restoration of the normal interstitial cell morphology which is accompanied by amplification of junctional membrane. Within 24 h of hormone application, gap junction growth is characterized by the appearance of formation plaques. These studies suggest that the effect of hormone on interstitial cell gap junctions is to modulate the junctional surface area.  相似文献   

2.
To examine the mechanism(s) and pathways of gap junction formation and removal a novel and reversible inhibitor of protein secretion, ilimaquinone (IQ), was employed. IQ has been reported to cause the vesiculation of Golgi membranes, block protein transport at the cis-Golgi and depolymerize cytoplasmic microtubules. Connexin43 (Cx43) immunolabeling and dye microinjection experiments revealed that gap junction plaques were lost and intercellular communication was inhibited following IQ treatment for 1 hr in BICR-M1Rk rat mammary tumor cells and for 2 hr in normal rat kidney (NRK) cells. Gap junction plaques and intercellular communication recovered within 2 hr when IQ was removed. IQ, however, did not affect the distribution of zonula occludens-1, a protein associated with tight junctions. Western blot analysis revealed that the IQ-induced loss of gap junction plaques was accompanied by a limited reduction in the highly phosphorylated form of Cx43, previously shown to be correlated with gap junction plaques. The presence of IQ inhibited the formation of new gap junction plaques in BICR-M1Rk cells under conditions where preexisting gap junctions were downregulated by brefeldin A treatment. Treatment of BICR-M1Rk and NRK cells with other microtubule depolymerization agents did not inhibit plaque formation or promote rapid gap junction removal. These findings suggest that IQ disrupts intercellular communication by inhibiting the events that are involved in plaque formation and/or retention at the cell surface independent of its effects on microtubules. Our results also suggest that additional factors other than phosphorylation are necessary for Cx43 assembly into gap junction plaques. Received: 16 January 1996/Revised: 20 September 1996  相似文献   

3.
Cell migration is an essential process in organ development, differentiation, and wound healing, and it has been hypothesized that gap junctions play a pivotal role in these cell processes. However, the changes in gap junctions and the capacity for cell communication as cells migrate are unclear. To monitor gap junction plaques during cell migration, adrenocortical cells were transfected with cDNA encoding for the connexin 43-green fluorescent protein. Time-lapse imaging was used to analyze cell movements and concurrent gap junction plaque dynamics. Immunocytochemistry was used to analyze gap junction morphology and distribution. Migration was initiated by wounding the cell monolayer and diffusional coupling was demonstrated by monitoring Lucifer yellow dye transfer and fluorescence recovery after photobleaching (FRAP) in cells at the wound edge and in cells located some distance from the wound edge. Gap junction plaques were retained at sites of contact while cells migrated in a "sheet-like" formation, even when cells dramatically changed their spatial relationship to one another. Consistent with this finding, cells at the leading edge retained their capacity to communicate with contacting cells. When cells detached from one another, gap junction plaques were internalized just prior to cell process detachment. Although gap junction plaque internalization clearly was a method of gap junction removal during cell separation, cells retained gap junction plaques and continued to communicate dye while migrating.  相似文献   

4.
The smooth muscle cell is the predominant cell type of the arterial media. In the adult vascular system, smooth muscle cells are found primarily in the contractile phenotype, but following injury or during atherosclerotic plaque formation the secretory synthetic phenotype is expressed. Recently it has been shown that gap junction connexin43 messenger RNA levels are six times higher in cultured smooth muscle cells in the synthetic phenotype than in intact aorta. We have modulated rabbit aortic smooth muscle cells in culture between the synthetic phenotype and one resembling the contractile phenotype, and correlated gap junction expression with phenotype. A dual labelling technique with antibodies against smooth muscle myosin and a synthetic peptide constructed to match a portion of the connexin43 gap junction protein was used for these experiments. Gap junctions are numerous between synthetic phenotype cells but few are observed between contractile cells. Rat aortic smooth muscle cells were also cultured and the growth and structure of gap junctions followed in the synthetic phenotype by use of freeze-fracture electron microscopy and immunohistochemical techniques. Junctional plaques are similar in structure to those observed in cardiac muscle, their size and number increasing with time in culture. The increased numbers of gap junctions between synthetic phenotype smooth muscle cells may be important during vessel development, following injury, or in atherosclerotic plaque formation.  相似文献   

5.
In the adult rat hepatocyte, gap junction proteins consist of connexin 32 (Cx32) and connexin 26 (Cx26). Previously, we reported that both Cx32 and Cx26 were markedly induced and maintained in primary cultures of adult rat hepatocytes. The reappearing gap junctions were accompanied by increases in both the proteins and the mRNAs, and they were well maintained together with extensive gap junctional intercellular communication (GJIC) for more than 4 weeks. In the present study, we examined the cellular location of the gap junction proteins and the structures in the hepatocytes cultured in our system, using confocal laser microscopy and immunoelectron microscopy of cells processed for Cx32 and Cx26 immunocytochemistry and freeze-fracture analysis. In immunoelectron microscopy, the size of Cx32-immunoreactive gap junction structures on the plasma membrane increased with time of culture, and some of them were larger than those in liver sectionsin vivo.Freeze-fracture analysis also showed that the size of gap junction plaques increased and that the larger gap junction plaques were composed of densely packed particles. These results suggest that in this culture system, not only the synthesis of Cx proteins but also the size of the gap junction plaques was increased markedly. In the adluminal lateral membrane of the cells, Cx32-immunoreactive lines were observed and many small gap junction plaques were closely associated with a more developed tight junction network. In the basal region of the cells, small Cx32- and Cx26-immunoreactive dots were observed in the cytoplasm and several annular structures labeled with the antibody to Cx32 were observed in the cytoplasm. These results indicated the formation and degradation of gap junctions in the cultured hepatocytes.  相似文献   

6.
Summary Homocellular gap junctions between granulosa cells and between theca interna cells, and heterocellular gap junctions between granulosa cells and oocytes persist in rat ovarian follicles for as long as 90 days following hypophysectomy. Gonadotrophic and/or steroid hormones are therefore not required for the maintenance of gap junctions between these cells during early follicular growth. However, replacement therapy with estrogen and human chorionic gonadotrophin results in amplification of gap junctions in granulosa and theca interna cells respectively. Within 24 h following hormonal stimulation, growth of gap junctions is characterized by the appearance of formation plaques as observed in freeze-fracture replicas and by the association of microfilamentous material located subadjacent to gap junction membrane observable in thin-sectioned cells.  相似文献   

7.
The C-terminus (CT) of rCx46 consists of 186 residues (H230-I416). Recent studies showed that rCx4628.2, truncated after H243, altered the formation of functional hemichannels when expressed in Xenopus oocytes, while rCx4637.7, truncated after A333 formed gap junction hemichannels similarly to rCx46wt. To analyze the role of the CT up to A333 in functional expression with cell imaging and dye-transfer techniques, different mutants were generated by C-terminal truncation between H243-A333, labeled with EGFP and expressed in HeLa cells. These rCx46 variants were characterized according to their compartmentalization in organelles, their presence in microscopic detectable vesicles and their ability to form gap junction plaques. rCx46 truncated after A311 (rCx4635.3) was compartmentalized, was found in vesicles and formed functional gap junction plaques similarly to rCx46wt. With a truncation after P284 (rCx4632.6), the protein was not compartmentalized and the amount of vesicles containing the protein were reduced; however, functional gap junction plaque formation was not affected as compared to rCx4635.3. rCx4628.2 did not form functional gap junction plaques; it was not found in vesicles or in cellular compartments. Live-cell imaging and detection of annular junctions for rCx4632.6 and rCx4635.3 revealed that the truncation after P284 reduced the frequency of vesicle budding from gap junction plaques and the formation of annular junctions. These results suggest that the C-terminal region of rCx46 up to A311 (rCx4635.3) is necessary for its correct compartmentalization and internalization in the form of annular junctions, while the H230-P284 C-terminal region (rCx4632.6) is sufficient for the formation of dye coupled gap junction channels.  相似文献   

8.
THE STRUCTURAL ORGANIZATION OF THE SEPTATE AND GAP JUNCTIONS OF HYDRA   总被引:10,自引:8,他引:2  
The septate junctions and gap junctions of Hydra were studied utilizing the extracellular tracers lanthanum hydroxide and ruthenium red. Analysis of the septate junction from four perspectives has shown that each septum consists of a single row of hexagons sharing common sides of 50–60 A. Each hexagon is folded into chair configuration. Two sets of projections emanate from the corners of the hexagons. One set (A projections) attaches the hexagons to the cell membranes at 80–100-A intervals, while the other set (V projections) joins some adjacent septa to each other. The septate junctions generally contain a few large interseptal spaces and a few septa which do not extend the full length of the junction. Basal to the septate junctions the cells in each layer are joined by numerous gap junctions. Gap junctions also join the muscular processes in each layer as well as those which connect the layers across the mesoglea. The gap junctions of Hydra are composed of rounded plaques 0.15–0.5 µ in diameter which contain 85-A hexagonally packed subunits. Each plaque is delimited from the surrounding intercellular space by a single 40-A band. Large numbers of these plaques are tightly packed, often lying about 20 A apart. This en plaque configuration of the gap junctions of Hydra contrasts with their sparser, more widely separated distribution in many vertebrate tissues. These studies conclude that the septate junction may possess some barrier properties and that both junctions are important in intercellular adhesion. On a morphological basis, the gap junction appears to be more suitable for intercellular coupling than the septate junction.  相似文献   

9.
During the life cycle of a membrane protein its molecular structure may change and for aggregated proteins this process may be observed on the supramolecular level. Here we demonstrate that this is the case for gap junction channels which maintain cell-cell communication. Freshly synthesized connexins are integrated as hexamers (connexons) into the plasma membrane where they form plaques after pairing with connexons of an attached cell. We inhibited protein trafficking by applying the fungal metabolite brefeldin A (BFA), quantified cell-cell coupling by calcein transfer and fluorescence-activated flow cytometry, and examined the degradation and formation of gap junction plaques by indirect immunofluorescence and immunogold labeling. Under control conditions 50% of the detected plaques were ubiquitylated and less than 10% showed a two-dimensional crystalline packing. One hour after BFA reversal about 60% of the plaques were crystalline and ubiquitylation dropped to 14%. Label for ubiquitin was predominantly found on non-crystalline plaques. We, therefore, conclude that newly formed gap junction plaques are of crystalline morphology which changes to a pleomorphic structure when individual channels are modified during their aging process. This dynamic in plaque morphology correlates with channel inactivation and plaque ubiquitylation.  相似文献   

10.
There is strong evidence that thyroid hormones through triiodothyronine (T3) regulate Sertoli cell proliferation and differentiation in the neonatal testis. However, the mechanism(s) by which they are able to control Sertoli cell proliferation is unclear. In the present study in vivo approaches (PTU-induced neonatal hypothyroidism known to affect Sertoli cell proliferation) associated with in vitro experiments on a Sertoli cell line were developed to investigate this question. We demonstrated that the inhibitory effect of T3 on Sertoli cell growth, analyzed by evaluating DNA-incorporated [3H] thymidine, was associated with a time and dose-dependent increase in the levels of Cx43, a constitutive protein of gap junctions, known to participate in the control of cell proliferation and the most predominant Cx in the testis. These Cx43 changes were associated with increased gap junction communication measured by gap FRAP. Consistent with these results two specific inhibitors of gap junction coupling, AGA and oleamide, were able to significantly reverse the T3 inhibitory effect on Sertoli cell proliferation. The present data also revealed a nongenomic effect of T3 on Cx43 Sertoli cells that was evidenced by a rapid up-regulation of gap junction plaque number as identified in Cx43-GFP transfected cells exposed to the hormone. This process appears mediated through actin cytoskeleton since incubation of the cells with cytochalasin D totally reversed the T3 stimulatory effect on Cx43-GFP gap junction plaques. Based on these data, we propose a working hypothesis in which Cx43 could be an intermediate target for T3 inhibition of neonatal Sertoli cell proliferation.  相似文献   

11.
Summary The wing discs of the temperature-sensitiveDrosophila mutantl(3)c43 hs1 become hyperplastic when larvae are reared at the restrictive temperature of 25° C or above (Martin et al. 1977). We have previously shown that reductions in gap junctions are correlated with the hyperplasia (Ryerse and Nagel 1984a). We report here that reductions in gap junction surface density, number and percent of the lateral plasma membrane area precede the onset of tissue hyperplasia as defined by the gross appearance of tissue overgrowth in the wing pouch and an increase in cell number. Gap junction reductions begin soon after temperature upshift and become significantly different from non-shifted controls by 16 h. Direct cell counts indicate that there is no difference in the total number of cells in experimental vs control discs until after 16 h when the 28° C discs begin to grow rapidly with a cell doubling time of about 6 h as compared with about 13 h for the 20°C controls. The finding that gap junction reductions precede the onset of tissue hyperplasia is consistent with the idea that gap junctions play a regulatory role in growth control and pattern formation and strengthens our hypothesis (Ryerse and Nagel 1984b) that a minimum number and a specific distribution of gap junctions are required for normal development.  相似文献   

12.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gap junctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

13.
《The Journal of cell biology》1988,106(5):1667-1678
Gap junctions between crayfish lateral axons were studied by combining anatomical and electrophysiological measurements to determine structural changes associated during uncoupling by axoplasmic acidification. In basal conditions, the junctional resistance, Rj, was approximately 60-80 k omega and the synapses appeared as two adhering membranes; 18-20-nm overall thickness, containing transverse densities (channels) spanning both membranes and the narrow extracellular gap (4- 6 nm). In freeze-fracture replicas, the synapses contained greater than 3 X 10(3) gap junction plaques having a total of approximately 3.5 X 10(5) intramembrane particles. "Single" gap junction particles represented approximately 10% of the total number of gap junction particles present in the synapse. Therefore, in basal conditions, most of the gap junction particles were organized in plaques. Moreover, correlations of the total number of gap junction particles with Rj suggested that most of the junctional particles in plaques corresponded to conducting channels. Upon acidification of the axoplasm to pH 6.7- 6.8, the junctional resistance increased to approximately 300 k omega and action potentials failed to propagate across the septum. Morphological measurements showed that the total number of gap junction particles in plaques decreased approximately 11-fold to 3.1 X 10(4) whereas the number of single particles dispersed in the axolemmae increased significantly. Thin sections of these synapses showed that the width of the extracellular gap increased from 4-6 nm in basal conditions to 10-20 nm under conditions where axoplasmic pH was 6.7- 6.8. These observations suggest that single gap junction particles dispersed in the synapse most likely represent hemi-channels produced by the dissasembly of channels previously arranged in plaques.  相似文献   

14.
In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.  相似文献   

15.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

16.
The distribution and fate of two junctional complexes, zonula adhaerens and desmosomes, after dissociation of cell-cell contacts is described in MDBK cells. Junctions were split between adjacent cells by treatment with EGTA and proteins associated with the plaques of zonulae adhaerentes and desmosomes were localized by immunological methods. Splitting of these junctions is accompanied by the dislocation of desmosomal plaque protein from the cell periphery and its distribution in punctate arrays over the whole cytoplasm. By contrast, vinculin associated with zonulae adhaerentes is still seen at early times (0.5-1 h) in a conspicuous belt-like structure which, however, is displaced from the plasma membrane. Strong vinculin staining is maintained on leading edges of free cell surfaces. Electron microscopy of EGTA-treated cells exposed to colloidal gold particles reveals the disappearance of junctional structures from the cell periphery and the concomitant appearance of a distinct class of gold particle-containing vesicles which are coated by dense plaques. These vesicle plaques react with antibodies to desmosomal plaque proteins and are associated with filaments of the cytokeratin type. In the same cells, extended dense aggregates are seen which are most probably the membrane-detached vinculin-rich material from the zonula adhaerens . The experiments show that, upon release from their junction-mediated connections with adjacent cells, major proteins associated with the cytoplasmic side of the junctions remain, for several hours, clustered within plaques displaced from the cell surface. While plaque material of adhaerens junctions containing vinculin is recovered in large belt-like aggregates, desmosomal plaque protein remains attached to membrane structures and appears on distinct vesicles endocytotically formed from half-desmosomal equivalents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.

Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.

  相似文献   

18.
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.  相似文献   

19.
X-ray diffraction patterns have been recorded from partially oriented specimens of gap junctions isolated from mouse liver and suspended in sucrose solutions of different concentration and thus of different electron density. Analysis of these diffraction patterns has shown that sucrose is excluded from the 6-fold rotation axis of the junction lattice for a length of about 100 Å. This indicates that the aqueous channel of the junctions is in the closed, high resistance state in these preparations. Mapping of the sucrose-accessible space in the junction indicates that the cross-sectional area of the channel entrance on the cytoplasmic side of the membrane could be up to five times larger than the area of the transmembrane channel. Sucrose does not penetrate more than 20 Å into the membrane along the channel. Apparently the aqueous channel, 8 to 10 Å in radius for most of its length, is narrowed or blocked by a small feature about 50 Å from the center of the gap. Very close interactions exist between the gap junction protein and the lipid polar head groups on the cytoplasmic surface of the membrane. In this region, the protein intercalates between the polar head groups. These results suggest that the gap junction protein may have a functional two-domain structure. One domain, with a molecular weight of about 15,000, spans one bilayer and half of the gap and is contained largely within a radius of 25 Å from the 6-fold axis. The second domain is smaller and occupies the cytoplasmic surface of the gap junction membrane. Trypsin digestion removes about 4000 Mrmr from the cytoplasmic surface domain of the junction protein. Most of the material susceptible to trypsin digestion is located more than 28 å from the 6-fold axis.  相似文献   

20.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号