首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
2.
3.
4.
Aromatase cDNA clones were isolated from cDNA libraries of mouse hypothalamus, amygdala and ovary. Analysis of the nucleotide sequences of the 5′ regions of the obtained cDNAs suggested that the mouse aromatase gene is tissue-specifically regulated by alternative exons 1. There were obvious differences between the 5′ regions of the brain and ovary aromatase cDNAs, but no difference was found between the sequences of the hypothalamus and amygdala ones. We further isolated a mouse genomic DNA clone containing brain- and ovary-specific exons 1. The brain specific exons 1 and their promoters were highly homologous in the human and mouse aromatase genes. In contrast there were several differences in the sequences among the promoter regions of the ovary-specific exons 1 of the mouse, human and rat aromatase genes, significant homology between their sequences was also observed. The present results demonstrate that expression of the mouse aromatase gene is also tissue-specifically regulated through the use of alternative exons 1 and promoters, as reported for man.  相似文献   

5.
6.
The aromatase gene encodes the key enzyme for estrogen formation. Aromatase enzyme inhibitors eliminate total body estrogen production and are highly effective therapeutics for postmenopausal breast cancer. A distal promoter (I.4) regulates low levels of aromatase expression in tumor-free breast adipose tissue. Two proximal promoters (I.3/II) strikingly induce in vivo aromatase expression in breast fibroblasts surrounding malignant cells. Treatment of breast fibroblasts with medium conditioned with malignant breast epithelial cells (MCM) or a surrogate hormonal mixture (dibutyryl (Bt2)cAMP plus phorbol diacetate (PDA)) induces promoters I.3/II. The mechanism of promoter-selective expression, however, is not clear. Here we reported that sodium butyrate profoundly decreased MCM- or Bt2cAMP + PDA-induced promoter I.3/II-specific aromatase mRNA. MCM, Bt2cAMP + PDA, or sodium butyrate regulated aromatase mRNA or activity only via promoters I.3/II but not promoters I.1 or I.4 in breast, ovarian, placental, and hepatic cells. Mechanistically, recruitment of phosphorylated ATF-2 by a CRE (-211/-199, promoter I.3/II) conferred inductions by MCM or Bt2cAMP + PDA. Chromatin immunoprecipitation-PCR and immunoprecipitation-immunoblotting assays indicated that MCM or Bt2cAMP + PDA stabilized a complex composed of phosphorylated ATF-2, C/EBPbeta, and cAMP-response element-binding protein (CREB)-binding protein in the common regulatory region of promoters I.3/II. Overall, histone acetylation patterns of promoters I.3/II did not correlate with sodium butyrate-dependent silencing of promoters I.3/II. Sodium butyrate, however, consistently disrupted the activating complex composed of phosphorylated ATF-2, C/EBPbeta, and CREB-binding protein. This was mediated, in part, by decreased ATF-2 phosphorylation. Together, these findings represent a novel mechanism of sodium butyrate action and provide evidence that aromatase activity can be ablated in a signaling pathway- and cell-specific fashion.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Background  

Aromatase, the key enzyme in estrogen biosynthesis, is encoded by the Cyp19a1 gene. Thus far, 3 unique untranslated first exons associated with distinct promoters in the mouse Cyp19a1 gene have been described (brain, ovary, and testis-specific). It remains unknown whether aromatase is expressed in other mouse tissues via novel and tissue-specific promoters.  相似文献   

19.
20.
The proximal promoter of the rat aromatase CYP19 gene contains two functional domains that can confer hormone/cAMP inducibility in primary cultures of rat granulosa cells and constitutive expression in R2C Leydig cells. Region A contains a hexameric sequence that binds steroidogenic factor-1 (SF-1). Region B contains a CRE-like sequence that binds CREB and two other factors, X and Y. To determine if CRE binding factors X and Y had overlapping functions with CREB, and to determine if the CREB and SF-1 binding sites exhibited functional interactions in the context of the intact promoter, mutations within the CRE and hexameric SF-1 binding site were generated. Mutations within the CRE showed that CREB but not factors X and Y mediated cAMP-dependent activity of chimeric transgenes in primary granulosa cell cultures. Granulosa cells transfected with constructs that bound CREB but not SF-1 (or the converse) resulted in a loss of approximately 50% cAMP-dependent CAT activity. Transgenes that did not bind CREB or SF-1 exhibited no cAMP-dependent CAT activity. When these same constructs where transfected into R2C Leydig cells, mutation of either the CREB or SF-1 binding sites resulted in a greater than 90% loss of CAT activity. Western blot and immunocytochemistry analyses revealed that the amount of phosphorylated CREB increased in response to hormone/cAMP in granulosa cells and was high in R2C Leydig cells, coinciding with expression of the transgenes and endogenous aromatase mRNA in each cell type. Therefore, in both cell types the aromatase promoter is dependent upon a functional CRE and the presence of phosphoCREB. The CREB and SF-1 binding sites interact in an additive manner to mediate cAMP transactivation in granulosa cells, whereas they interact synergistically to confer high basal transactivation in R2C Leydig cells. Taken together, the results indicated that the molecular mechanisms or pathways that activate CREB, SF-1 or their interaction are different in granulosa cells and R2C cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号