首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keratinocyte growth factor (KGF; also known as FGF‐7) is a well‐characterized paracrine growth factor for tissue growth and regeneration. However, its role in adipose tissue, which is known to undergo tremendous expansion in obesity, is virtually unknown. Given that we previously identified KGF as one of the up‐regulated growth factors in adipose tissue of an early‐life programmed rat model of visceral obesity, the present study was undertaken to examine the hypothesis that KGF promotes adipogenesis. Using 3T3‐L1 and rat primary preadipocytes as in vitro model systems, we demonstrated that (1) KGF stimulated preadipocyte proliferation in a concentration‐dependent manner with a maximal effect at 2.5 ng/ml (~2‐fold increase); (2) KGF mRNA was highly expressed in rat adipocytes and preadipocytes as well as 3T3‐L1 cells; (3) treatment of preadipocytes with a neutralizing antibody against KGF and siRNA‐mediated knockdown of KGF led to a 50% reduction in their proliferative capacity; (4) KGF activated the protein kinase Akt, and the PI3 kinase inhibitor LY294002 blocked KGF stimulation of preadipocyte proliferation; and (5) KGF did not promote differentiation of preadipocytes to mature adipocytes. Together, these results reveal adipocytes and their precursor cells as novel sites of KGF production. Importantly, they also demonstrate that KGF promotes preadipocyte proliferation by an autocrine mechanism that involves activation of the PI3K/Akt signaling pathway. Aberrant KGF expression may have consequences not only for normal adipose tissue growth but also for the pathogenesis of obesity. J. Cell. Biochem. 109: 737–746, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor beta (TGF-beta) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-beta. Cripto bound TGF-beta and reduced the association of TGF-beta with its type I receptor, TbetaRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-beta signaling in multiple cell types and diminished the cytostatic effects of TGF-beta in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-beta signaling, indicating that endogenous Cripto plays a role in restraining TGF-beta responses.  相似文献   

3.
Vascular endothelial growth factor-C (VEGF-C) has a well-defined action on neoplastic lymphangiogenesis and angiogenesis through VEGF receptor-3 (VEGFR-3) and VEGFR-2, respectively, which are generally expressed in endothelial cells. The function of the VEGF-C/receptors pathway in tumor cell types is largely unknown. In this study, we examined the expression and role of VEGF-C/receptors in gallbladder cancer (GBC) cells. We examined the expression of VEGF-C in 50 surgical specimens from gallbladder cancer and three human gallbladder cancer cell lines. Both siRNA and neutralizing antibody to deplete the expression of VEGF-C were used to characterize the biological effect of VEGF-C in GBC NOZ cells. Furthermore, we examined the expression of its receptors, VEGFR-3 and VEGFR-2, in three human GBC cell lines. Our results are as follows: The expression of VEGF-C in the invasive marginal portion was significantly higher than the expression in the central portions. All the three GBC cell lines expressed VEGF-C. Treatment of NOZ cells with VEGF-C siRNA or a neutralizing antibody suppressed cell proliferation and invasion. Moreover, all the three GBC cell lines expressed VEGFR3, but only the NOZ cells expressed VEGFR-2 mRNA. Treatment of NOZ cells with a VEGFR-3 neutralizing antibody suppressed cell invasion, but treatment of NOZ cells with a VEGFR-2 neutralizing antibody suppressed cell proliferation and invasion. In conclusion, GBC cells express both VEGF-C and its receptors. VEGF-C may have a role in the progressive growth and invasion of human GBC through an autocrine mechanism.  相似文献   

4.
The migratory behaviour of malignant gliomas relies on the interaction of integrins with extracellular matrix (ECM) components. Transforming growth factor-beta(1) (TGF-beta(1)) potently stimulates glioma cell motility whereas TGF-beta(2) is known for its immunosuppressive properties. Here, we show that both TGF-beta(1) and TGF-beta(2) promote migration of glioma cells. In parallel, TGF-beta(1) and TGF-beta(2) induce alpha(V) and beta(3) intergrin mRNA expression and enhance cell surface expression of alpha(V)beta(3) integrin. TGF-beta-mediated promotion of migration is abrogated by echistatin, a Arg-Gly-Asp (RGD) peptide antagonist of alpha(V)beta(3) integrin, and by a neutralizing anti-alpha(V)beta(3) integrin antibody. Taken together, we report a novel mechanism by which TGF-beta modulates cell ECM interactions and promotes glioma cell motility.  相似文献   

5.
Transforming growth factor beta 1 (TGF-beta 1) is a potent autocrine growth inhibitor of lymphocytes. In this study, the expression of TGF-beta 1 binding proteins was characterized on murine splenic T cells. With an affinity cross-linking method and by neutralizing antibodies to TGF-beta 1, [125I] TGF-beta 1 was found to bind to three cell surface-binding proteins (280-200 kD, 95-85 kD, 65 kD) that were differentially expressed on resting and mitogen-stimulated T cells. Freshly prepared (resting) T cells were found to constitutively express the 95-85-kD form of these binding proteins, whereas mitogenic stimulation by either concanavalin-A (Con-A), interleukin-1 (IL-1), interleukin-2 (IL-2), or 12-tetradecanoyl-phorbol-13-acetate (TPA) for 12-72 h induced the appearance of all forms of the TGF-beta 1 binding proteins (280-200 kD, 95-85 kD, and 65 kD). Furthermore, antibodies that neutralized the biologic action of TGF-beta 1 also blocked the binding of [125I] TGF-beta 1 to all three binding proteins, suggesting that these binding proteins are involved with signal transduction. These results suggest that the expression of the TGF-beta 1 receptor on T cells is regulated by T cell mitogenic signals and that a regulatory relationship may exist between T cell growth-promoting cytokines (IL-1 and IL-2) and the T cell growth inhibitor, TGF-beta 1.  相似文献   

6.
7.
In order to test the hypothesis that transforming growth factor beta (TGF-beta) acts by FS regulation on bovine granulosa cells in in vitro differentiation, we analyzed the effect of TGF-beta1 on follistatin mRNA expression in three differentiation states of bovine granulosa cells. We showed a positive regulation of FS mRNA after TGF-beta1 (1 ng/ml) treatment of freshly isolated granulosa cells from small-medium antral follicles (2-8 mm). This effect was abolished by the addition of exogenous follistatin (100 ng/ml), suggesting that this effect could be mediated by activin. Although these cells showed a similar effect on FS mRNA expression after treatment with activin-A, a soluble form of activin receptor type IIA was unable to inactivate the TGF-beta effect. When we tested the TGF-beta effect on FS mRNA in different granulosa cell states, TGF-beta1 regulation was associated with progesterone production only in freshly isolated cells. The amount of total activin-A produced by first passage cells (dedifferentiated cells), was ten times smaller than the one measured in a conditioned medium from freshly isolated cells (mature cells). The TGF-beta1-dependent FS mRNA expression persisted in first passage cells without changes with FS addition. On the other hand, the BGC-1 granulosa cell line (immature cells) produced large amounts of activin-A regulated by TGF-beta1 and an invariable steady state of FS mRNAs. In summary, our results showed that FS mRNA expression is regulated by TGF-beta1 independently of activin effects in differentiated granulosa cells.  相似文献   

8.
Transforming growth factor-beta 1 (TGF-beta 1) is angiogenic in vivo. In two-dimensional (2-D) culture systems microvascular endothelial cell proliferation is inhibited up to 80% by TGF-beta 1; however, in three-dimensional (3-D) collagen gels TGF-beta 1 is found to have no effect on proliferation while eliciting the formation of calcium and magnesium dependent tube-like structures mimicking angiogenesis. DNA analyses performed on 3-D cell cultures reveal no significant difference in the amount of DNA or cell number in control versus TGF-beta 1 treated cultures. In 2-D cultures TGF-beta 1 is known to increase cellular fibronectin accumulation; however, in 3-D cultures no difference is seen between control and TGF-beta 1 treated cells as established by ELISA testing for type IV collagen, fibronectin, and laminin. In 3-D cultures there is increased synthesis and secretion of type V collagen in both control and TGF-beta 1 treated cultures over 2-D cultures. Even though an equal amount of type V collagen is seen in both 3-D conditions, there is a reorganization of the protein with concentration along an organizing basal lamina in TGF-beta 1 treated cultures. EM morphological analyses on 3-D cultures illustrate quiescent, control cells lacking cell contacts. In contrast, TGF-beta 1 treated cells show increased pseudopod formation, cell-cell contact, and organized basal lamina-like material closely apposed to the "abluminal" plasma membranes. TGF-beta 1 treated cells also appear to form junctional complexes between adjoining cells. Immunofluorescence using specific antibodies to the tight junction protein ZO-1 results in staining at apparent cell-cell junctions in the 3-D cultures. Northern blots of freshly isolated microvascular endothelium, 2-D and 3-D cultures, using cDNA and cRNA probes specific for the ZO-1 tight junction protein, reveal the presence of the 7.8 kb mRNA. Western blots of rat epididymal fat pad endothelial cells (RFC) monolayer lysates probed with anti-ZO-1 label a 220 kd band which co-migrates with the bonafide ZO-1 protein. These data confirm and support the hypothesis that TGF-beta 1 is angiogenic in vitro, eliciting microvascular endothelial cells to form tube-like structures with apparent tight junctions and abluminal basal lamina deposition in three-dimensional cultures.  相似文献   

9.
Von Willebrand factor (vWF) is a constitutive and specific component of endothelial cell (EC) matrix. In this paper we show that, in vitro, vWF can induce EC adhesion and promote organization of microfilaments and adhesion plaques. In contrast, human vascular smooth muscle cells and MG63 osteosarcoma cells did not adhere and spread on vWF. Using antibodies to the beta chains of fibronectin (beta 1) and vitronectin (beta 3) receptors it was found that ECs adherent to vWF show clustering of both receptors. The beta 1 receptor antibodies are arranged along stress fibers at sites of extracellular matrix contact while the beta 3 receptor antibodies were sharply confined at adhesion plaques. ECs release and organize endogenous fibronectin early during adhesion to vWF. Upon blocking protein synthesis and secretion, ECs can equally adhere and spread on vWF but, while the beta 3 receptors are regularly organized, the beta 1 receptors remain diffuse. This suggests that the organization of the beta 1 receptors depend on the release of fibronectin and/or other matrix proteins operated by the same cell. Antibodies to the beta 3 receptors fully block EC adhesion to vWF and detach ECs seeded on this substratum. In contrast, antibodies to the beta 1 receptors are poorly active. Overall these results fit with an accessory role of beta 1 receptors and indicate a leading role for the beta 3 receptors in EC interaction with vWF. To identify the EC binding domain on vWF we used monoclonal antibodies produced against a peptide representing the residues Glu1737-Ser1750 of the mature vWF and thought to be important in mediating its binding to the platelet receptor glycoprotein IIb-IIIa. We found that the antibody that recognizes the residues 1,744-1,746, containing the Arg-Gly-Asp sequence, completely inhibit EC adhesion to vWF whereas a second antibody recognizing the adjacent residues 1,740-1,742 (Arg-Gly-Asp-free) is inactive. Both antibodies do not interfere with EC adhesion to vitronectin. This defines the molecular domain on vWF that is specifically recognized by ECs and reaffirms the direct role of the Arg-Gly-Asp sequence as the integrin receptor recognition site also in the vWF molecule.  相似文献   

10.
11.
Ionizing radiation (IR) induces proapoptotic gene expression programs that inhibit cell survival. These programs often involve RNA-binding proteins that associate with their mRNA targets to elicit changes in mRNA stability and/or translation. The RNA-binding protein IMP-3 is an oncofetal protein overexpressed in many human malignancies. IMP-3 abundance correlates with tumor aggressiveness and poor prognosis. As such, IMP-3 is proving to be a highly significant biomarker in surgical pathology. Among its many mRNA targets, IMP-3 binds to and promotes translation of insulin-like growth factor II (IGFII) mRNA. Our earlier studies showed that reducing IMP-3 abundance with siRNAs reduced proliferation of human K562 chronic myeloid leukemia cells because of reduced IGF-II biosynthesis. However, the role of IMP-3 in apoptosis is unknown. Here, we have used IR-induced apoptosis of K562 cells as a model to explore a role for IMP-3 in cell survival. Knockdown of IMP-3 with siRNA increased susceptibility of cells to IR-induced apoptosis and led to reduced IGF-II production. Gene reporter assays revealed that IMP-3 acts through the 5' UTR of IGFII mRNA during apoptosis to promote translation. Finally, culture of IR-treated cells with recombinant IGF-II partially reversed the effects of IMP-3 knockdown on IR-induced apoptosis. Together, these results indicate that IMP-3 acts in part through the IGF-II pathway to promote cell survival in response to IR. Thus, IMP-3 might serve as a new drug target to increase sensitivity of CML cells or other cancers to IR therapy.  相似文献   

12.
The mechanism underlying vasoproliferative retinopathies like retinopathy of prematurity (ROP) is hypoxia‐triggered neovascularisation. Nerve growth factor (NGF), a neurotrophin supporting survival and differentiation of neuronal cells may also regulate endothelial cell functions. Here we studied the role of NGF in pathological retinal angiogenesis in the course of the ROP mouse model. Topical application of NGF enhanced while intraocular injections of anti‐NGF neutralizing antibody reduced pathological retinal vascularization in mice subjected to the ROP model. The pro‐angiogenic effect of NGF in the retina was mediated by inhibition of retinal endothelial cell apoptosis. In vitro, NGF decreased the intrinsic (mitochondria‐dependent) apoptosis in hypoxia‐treated human retinal microvascular endothelial cells and preserved the mitochondrial membrane potential. The anti‐apoptotic effect of NGF was associated with increased BCL2 and reduced BAX, as well as with enhanced ERK and AKT phosphorylation, and was abolished by inhibition of the AKT pathway. Our findings reveal an anti‐apoptotic role of NGF in the hypoxic retinal endothelium, which is involved in promoting pathological retinal vascularization, thereby pointing to NGF as a potential target for proliferative retinopathies.  相似文献   

13.
Transforming growth factor type beta 1 (TGB-beta 1) belongs to a family of polypeptides with regulatory effects on growth and differentiation of a variety of cell types. TGB-beta 1 plays an important role in regulation of immune response by acting as a negative control signal for T cell proliferation through still unknown mechanisms. In this study we have analysed the effects of TGB-beta 1 on EL 4-6.1, a variant of the murine EL 4 thymoma, which can be induced by phorbol 12-myristate 13-acetate (PMA) and/or interleukin 1 (IL-1) to secrete interleukin 2 (IL-2) and express IL-2 receptors (IL-2R). Using this defined model system, we show that TGB-beta 1 simultaneously down-regulates IL-2 expression and up-regulates the number of both high and low affinity IL-2R. These changes correlate with changes at the mRNA level, suggesting an effect at the pre-translational level. The specificity of both TGF-beta 1 effects was demonstrated using a neutralizing antiserum to TGF-beta 1. Our data also suggest that TGF-beta 1 does not interfere with early activation signals of PMA and/or IL-1. This model might be useful for elucidating the complex role of TGF-beta 1 in the regulation of T cell responses.  相似文献   

14.
Heregulin-beta1 promotes the activation of p21-activated kinase 1 (Pak1) and the motility and invasiveness of breast cancer cells. In this study, we identified vascular endothelial growth factor (VEGF) as a gene product induced by heregulin-beta1. The stimulation by heregulin-beta1 of breast cancer epithelial cells induced the expression of the VEGF mRNA and protein and its promoter activity. Heregulin-beta1 also stimulated angiogenesis in a VEGF-dependent manner. Herceptin, an anti-HER2 antibody inhibited heregulin-beta1-mediated stimulation of both VEGF expression in epithelial cells and angiogenesis in endothelial cells. Because the activation of Pak1 and VEGF expression are positively regulated by heregulin-beta1, we hypothesized that Pak1 regulates VEGF expression, and hence explored the role of Pak1 in angiogenesis. We provide new evidence to implicate Pak1 signaling in VEGF expression. Overexpression of a kinase-dead K299R Pak1 leads to suppression of VEGF promoter activity, as well as VEGF mRNA expression and secretion of VEGF protein. Conversely, kinase-active T423E Pak1 promotes the expression and secretion of VEGF. Furthermore, expression of the heregulin-beta1 transgene, HRG, in harderian tumors in mice enhances the activation of Pak1 as well as expression of VEGF and angiogenic marker CD34 antigen. These results suggest that heregulin-beta1 regulates angiogenesis via up-regulation of VEGF expression and that Pak1 plays an important role in controlling VEGF expression and, consequently, VEGF secretion and function.  相似文献   

15.
Angiogenesis and lymphangiogenesis are regulated by members of the vascular endothelial growth factor (VEGF) family of cytokines, which mediate their effects via tyrosine kinase VEGF receptors -1, -2, and -3. We have used wild-type and mutant forms of VEGFs -A, -B, and -C, a pan-VEGFR tyrosine kinase inhibitor (SU5416) as well as neutralizing anti-VEGFR-2 antibodies, to determine which VEGF receptor(s) are required for bovine endothelial cell invasion and tube formation in vitro. This was compared to the ability of these cytokines to induce expression of members of the plasminogen activator (PA)-plasmin system. We found that cytokines which bind VEGFR-2 (human VEGF-A, human VFM23A, human VEGF-C(deltaNdeltaC), and rat VEGF-C(152)) induced invasion, tube formation, urokinase-type-PA, tissue-type-PA, and PA inhibitor-1, invasion and tube formation as well as signaling via the MAP kinase pathway were efficiently blocked by SU5416 and anti-VEGFR-2 antibodies. In contrast, cytokines and mutants which exclusively bind VEGFR-1 (human VFM17 and human VEGF-B) had no effect on invasion and tube formation or on the regulation of gene expression. We were unable to identify cytokines which selectively stimulate bovine VEGFR-3 in our system. Taken together, these findings point to the central role of VEGFR-2 in the angiogenic signaling pathways induced by VEGF-C(deltaNdeltaC) and VEGF-A.  相似文献   

16.
17.
18.
Destabilization of the tetrameric fold of TTR (transthyretin) is important for aggregation of the protein which culminates in amyloid fibril formation. Many TTR mutations interfere with tetramer stability, increasing the amyloidogenic potential of the protein. The vast majority of proposed TTR fibrillogenesis inhibitors are based on in vitro assays with isolated protein, limiting their future use in clinical assays. In the present study we investigated TTR fibrillogenesis inhibitors using a cellular system that produces TTR intermediates/aggregates in the medium. Plasmids carrying wild-type TTR, V30M or L55P cDNA were transfected into a rat Schwannoma cell line and TTR aggregates were investigated in the medium using a dot-blot filter assay followed by immunodetection. Results showed that, in 24 h, TTR L55P forms aggregates in the medium, whereas, up to 72 h, wild-type TTR and V30M do not. A series of 12 different compounds, described in the literature as in vitro TTR fibrillogenesis inhibitors, were tested for their ability to inhibit L55P aggregate formation; in this system, 2-[(3,5-dichlorophenyl) amino] benzoic acid, benzoxazole, 4-(3,5-difluorophenyl) benzoic acid and tri-iodophenol were the most effective inhibitors, as compared with the reference iododiflunisal, previously shown by ex vivo and in vitro procedures to stabilize TTR and inhibit fibrillogenesis. Among these drugs, 2-[(3,5-dichlorophenyl) amino] benzoic acid and tri-iodophenol stabilized TTR from heterozygotic carriers of V30M in the same ex vivo conditions as those used previously for iododiflunisal. The novel cellular-based test herein proposed for TTR fibrillogenesis inhibitor screens avoids not only lengthy and cumbersome large-scale protein isolation steps but also artefacts associated with most current in vitro first-line screening methods, such as those associated with acidic conditions and the absence of serum proteins.  相似文献   

19.
We investigated the effects of TGF-beta on a MCF-7 subline (MCF-7:RPh-4) which is resistant to phorbol diesters with respect to growth inhibition and estrogen receptor content modulation. This biological unresponsiveness of MCF-7:RPh-4 cells to phorbol esters seems to be unrelated to activation of protein kinase C. In the presence of 80 nM PMA (12-O-tetradecanoylphorbol-13-acetate), TGF-beta induced a dose-dependent inhibition of MCF-7:RPh-4 cell proliferation. MCF-7:RPh-4 cells grown in PMA-free medium for at least 28 days remained insensitive to PMA but lost sensitivity to TGF-beta. Under these conditions, addition of 80 nM PMA restored sensitivity to TGF-beta. In the presence of a fixed concentration of TGF-beta, the dose-dependent inhibition of proliferation and the decrease in estrogen receptor content induced by PMA were comparable to those observed in PMA-treated parental MCF-7 cells. These observations indicate that TGF-beta reverses PMA resistance in MCF-7:RPh-4 cells. In addition, TGF-beta does not modify the basal or PMA-stimulated phosphorylation of Mr 28,000 endogenous protein. These results suggest that TGF-beta interferes with the protein kinase C pathway independently of enzyme activation.  相似文献   

20.
beta1 integrin (encoded by Itgb1) is established as a regulator of angiogenesis based upon the phenotypes of complete knockouts of beta1 heterodimer partners or ligands and upon antibody inhibition studies in mice. Its direct function in endothelial cells (ECs) in vivo has not been determined because Itgb1(-/-) embryos die before vascular development. Excision of Itgb1 from ECs and a subset of hematopoietic cells, using Tie2-Cre, resulted in abnormal vascular development by embryonic day (e) 8.5 and lethality by e10.5. Tie1-Cre mediated a more restricted excision of Itgb1 from ECs and hematopoietic cells and resulted in embryonic lethal vascular defects by e11.5. Capillaries of the yolk sacs were disorganized, and the endothelium of major blood vessels and of the heart was frequently discontinuous in mutant embryos. We also found similar vascular morphogenesis defects characterized by EC disorganization in embryonic explants and isolated ECs. Itgb1-null ECs were deficient in adhesion and migration in a ligand-specific fashion, with impaired responses to laminin and collagens, but not to fibronectin. Deletion of Itgb1 reduced EC survival, but did not affect proliferation. Our findings demonstrate that beta1 integrin is essential for EC adhesion, migration and survival during angiogenesis, and further validate that therapies targeting beta1 integrins may effectively impair neovascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号