首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Studies of major histocompatibility complex (MHC) diversity in non-model vertebrates typically focus on structure and sequence variation in the antigen-presenting loci: the highly variable and polymorphic class I and class IIB genes. Although these studies provide estimates of the number of genes and alleles/locus, they often overlook variation in functionally related and co-inherited genes important in the immune response. This study utilizes the sequence of the MHC B-locus derived from a commercial turkey to investigate MHC variation in wild birds. Sequences were obtained for nine interspersed MHC amplicons (non-class I/II) from each of 40 birds representing 3 subspecies of wild turkey (Meleagris gallopavo). Analysis of aligned sequences identified 238 single-nucleotide variants approximately one-third of which had minor allele frequencies >0.2 in the sampled birds. PHASE analysis identified 70 prospective MHC haplotypes in the wild turkeys, whereas a combined analysis with commercial birds identified almost 100 haplotypes in the species. Denaturing gradient gel electrophoresis (DGGE) of the class IIB loci was used to test the efficacy of single-nucleotide polymorphism (SNP) haplotyping to capture locus-wide variation. Diversity in SNP haplotypes and haplotype sharing among individuals was directly reflected in the DGGE patterns. Utilization of a reference haplotype to sequence interspersed regions of the MHC has significant advantages over other methods of surveying diversity while identifying high-frequency SNPs for genotyping. SNP haplotyping provides a means to identify both divergent haplotypes and homozygous individuals for assessment of immunological variation in wild and domestic populations.  相似文献   

3.
We have conducted an extensive phylogenetic analysis of polymorphic alleles from human and mouse major histocompatibility complex (MHC) class I and class II genes. The phylogenetic tree obtained for 212 complete human class I allele sequences (HLA-A, -B, and -C) has shown that all alleles from the same locus form a single cluster, which is highly supported by bootstrap values, except for one HLA-B allele (HLA-B*7301). Mouse MHC class I loci did not show locus-specific clusters of polymorphic alleles. This was considered to be because of either interlocus genetic exchange or the confusing designation of loci in different haplotypes at the present time. The locus specificity of polymorphic alleles was also observed in human and mouse MHC class II loci. It was therefore concluded that interlocus recombination or gene conversion is not very important for generating MHC diversity, with a possible exception of mouse class I loci. According to the phylogenetic trees of complete coding sequences, we classified human MHC class I (HLA-A, -B, and -C) and class II (DRB1) alleles into three to five major allelic lineages (groups), which were monophyletic with high bootstrap values. Most of these allelic groups remained unchanged even in phylogenetic trees based on individual exons, though this does not exclude the possibility of intralocus recombination involving short DNA segments. These results, together with the previous observation that MHC loci are subject to frequent duplication and deletion, as well as to balancing selection, indicate that MHC evolution in mammals is in agreement with the birth-and-death model of evolution, rather than with the model of concerted evolution.  相似文献   

4.
Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores.  相似文献   

5.
Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey (Meleagris gallopavo) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys (Meleagris gallopavo silvestris) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.  相似文献   

6.
The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation.  相似文献   

7.
8.
The genomic sequences of 15 horse major histocompatibility complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and nonclassical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal and two to three nonclassical sequences. Phylogenetic analysis was applied to these sequences, and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The nonclassical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine major histocompatibility complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci.  相似文献   

9.
10.
Rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) represent two salmonid genera separated for 15--20 million years. cDNA sequences were determined for the classical MHC class I heavy chain gene UBA and the MHC class II beta-chain gene DAB from 15 rainbow and 10 brown trout. Both genes are highly polymorphic in both species and diploid in expression. The MHC class I alleles comprise several highly divergent lineages that are represented in both species and predate genera separation. The class II alleles are less divergent, highly species specific, and probably arose after genera separation. The striking difference in salmonid MHC class I and class II evolution contrasts with the situation in primates, where lineages of class II alleles have been sustained over longer periods of time relative to class I lineages. The difference may arise because salmonid MHC class I and II genes are not linked, whereas in mammals they are closely linked. A prevalent mechanism for evolving new MHC class I alleles in salmonids is recombination in intron II that shuffles alpha 1 and alpha 2 domains into different combinations.  相似文献   

11.
灵长类主要组织相容性复合体Ⅰ类基因进化概述   总被引:3,自引:1,他引:2  
王雪霞  何小维 《遗传》2006,28(5):611-616
主要组织相容性复合体(MHC)是和免疫反应直接相关的基因群。MHC I类分子的多态性和病原体的多变性相对应,它是个体在重大传染疾病中存活下来的重要依据。在灵长类动物进化过程中,由于分化时间的差异和生存压力的不同,造成了各物种MHC I类基因不同的存在状态,使它们的MHC I 类基因在基因数量和基因功能上有所差异,同时还产生了物种特异性基因。本文描述了灵长类MHC I类基因的总体变化特征,并着重讨论了6个典型MHC I 类基因在各典型灵长类物种中的特点及关联性。  相似文献   

12.
The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II α and class II β loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II α and β genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIα gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.  相似文献   

13.
Sequence comparisons of 14 distinct MHC class I cDNA clones isolated from species representing the three major taxonomic lineages of Felidae (domestic cat lineage, ocelot lineage, and pantherine lineage) revealed that feline MHC class I alleles have highly mosaic structures with short polymorphic sequence motifs that are rearranged between alleles of individual MHC loci, between MHC class I genes within cat species, and between homologous MHC loci in different species. The pattern of sequence variation in felids supports the role of the following factors in production and maintenance of MHC variation: (1) gradual spontaneous mutation; (2) selective pressure to conserve certain residues but also to vary in hypervariable regions, notably residues that functionally participate in antigen recognition and presentation; and (3) recombination-mediated gene exchange between alleles and between related genes. The overall amount of genetic variation observed among MHC class I genes in the Felidae family is no greater than the amount of variation within any outbred cat species (i.e., domestic cat, ocelot). The occurrence of equivalent levels of polymorphism plus the simultaneous persistence of the same sequence motifs in divergent feline species suggest that most MHC class I nucleotide site polymorphism predated species divergences. Ancient polymorphisms have been transmitted through the speciation events and modern feline MHC class I alleles were derived by recombinational exchange of polymorphic sequence motifs. Moreover, some of these sequence motifs were found in other mammalian MHC class I genes, such as classical human HLA-B5, nonclassical human HLA-E class I genes, and bovine class I genes. These results raise the prospect of an ancient origin for some motifs, although the possibility of convergence in parallel mammalian radiations cannot be excluded. Correspondence to: N. Yuhki  相似文献   

14.
Six major histocompatibility complex (MHC) classical class I genes have been identified in cattle, and up to three of these are expressed in variable combinations on different haplotypes. The origin and functional significance of this genetic complexity is unknown. However, an improved assembly of the cattle genome, an expanded database of full-length cDNA sequences and high-resolution frequency data concerning expressed class I genes in an economically important cattle breed combine to provide a new opportunity to study the significance of cattle MHC class I diversity. Analysis of these new data supports assignment of alleles to six discrete genes and further shows that all these classical genes share a common ancestor with a single non-classical gene, NC1. While haplotype structure is variable, with thirteen gene configurations identified, there are nevertheless clear constraints relating to both the number and combination of genes. Haplotypes expressing two classical genes are most frequently observed, and the classical class I gene 2 is almost invariably present. The frequency data support the dominance of gene 2, showing that close to 100?% of individuals carry at least one copy. This indicates a hierarchy in the functional importance of particular genes and haplotype structures. Haplotype frequency in cattle populations is therefore likely to impact on differential disease susceptibilities. This knowledge will be important for development of informed breeding strategies aimed at increasing the ability of cattle to survive in the face of future unpredictable pathogen exposure.  相似文献   

15.
16.
Père David's deer (Elaphurus davidianus) is a highly inbred species that arose from 11 founders but now comprises a population of about 3,000 individuals, making it interesting to investigate the adaptive variation of this species from the major histocompatibility complex (MHC) perspective. In this study, we isolated Elda-MHC class I loci using magnetic bead-based cDNA hybridization, and examined the molecular variations of these loci using single-strand conformation polymorphism (SSCP) and sequence analysis. We obtained seven MHC class I genes, which we designated F1, F12, G2, I7, AF, I8, and C1. Our analyses of stop codons, phylogenetic trees, amino acid conservation, and G+C content revealed that F1, F12, G2, and I7 were classical genes, AF was a nonclassical gene, and I8 and C1 were pseudogenes. Our subsequent molecular examinations showed that the diversity pattern in the Père David's deer was unusual. Most mammals have more polymorphic classical class I loci vs. the nonclassical and neutral genes. In contrast, the Père David's deer was found to be monomorphic at classical genes F1, F12, G2, and I7, dimorphic at the nonclassical AF gene, dimorphic at pseudogene I8, and tetramorphic at pseudogene C1. The adverse polymorphism patterns of Elda-I genes might provide evidence for selection too faster deplete MHC variation than drift in the bottlenecked populations, while the postbottleneck tetramorphism of the C1 pseudogene appears to be evidence of strong historical balancing selection.  相似文献   

17.
DNA from 20 individuals from four wild colonies of naked mole-rats, Heterocephalus glaber , were analysed for restriction fragment length polymorphism of class I major histocompatibility complex genes and minisatellite DNA, both of which have been shown to be highly variable between individuals in other species. The minisatellite probe employed in this study revealed limited polymorphism in the DNA of naked mole-rats, both within and between neighbouring colonies. Of the two class I major histocompatibility complex probes, both showed a lack of polymorphism within colonies, while one revealed a single difference in the restriction fragment pattern between one colony and the other three. This probe also revealed a possible variation in copy number of genes in some individuals. The low numbers of bands on the restriction fragment pattern also indicated that the naked mole-rat MHC I, in contrast to that of other mammalian species, may contain relatively few genes homologous to the class I major histocompatibility complex of the mouse. The absence of variability in naked mole-rat DNA in these normally highly polymorphic loci suggests that there may be little or no genetic diversity either within or between closely neighbouring colonies of naked mole-rats in the wild. The lack of polymorphism in the MHC I questions its possible role in individual odour recognition in this species of rodent.  相似文献   

18.
Although major histocompatibility complex (MHC) class I molecules are, as a rule, highly polymorphic in mammalian species, those of the New World primate Saguinus oedipus (cotton-top tamarin) exhibit limited polymorphism. We have cloned and sequenced twelve MHC class I cDNAs from this species. Since cloned cotton-top tamarin cell lines express three to six MHC class I molecules, this species must have at least three functional MHC class I loci. There was, however, no evidence of locus-specific substitutions in the tamarin cDNAs. Unlike all other species studied, tamarin MHC class I cDNAs displayed limited nucleotide sequence variation. The sequence similarity between the two most divergent tamarin cDNAs was 95%. To ensure that the polymerase chain reaction (PCR) primers employed in these studies had amplified all of the tamarins' expressed MHC class I genes, we used another set of primers to amplify only exons 2 and 3 from RNA and DNA. PCR of genomic DNA resulted in the amplification of six distinct clones, of which only three were well expressed. Two of these nonexpressed genes were pseudogenes and the other was a nonclassical gene. Southern blot analysis demonstrated that the tamarin has 8–11 MHC class I genes, suggesting we had indeed cloned the majority of these genes. Cotton-top tamarins are, therefore, unique among mammalian species studied to date in that they express MHC class I molecules with limited nucleotide sequence variation.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M38403-15.  相似文献   

19.
The major histocompatibility complex (MHC) is a highly polymorphic genomic region that plays a central role in the immune system. Despite its functional consistency, the genomic structure of the MHC differs substantially among organisms. In birds, the MHC-B structures of Galliformes, including chickens, have been well characterized, but information about other avian MHCs remains sparse. The Japanese Crested Ibis (Nipponia nippon, Pelecaniformes) is an internationally conserved, critically threatened species. The current Japanese population of N. nippon originates from only five founders; thus, understanding the genetic diversity among these founders is critical for effective population management. Because of its high polymorphism and importance for disease resistance and other functions, the MHC has been an important focus in the conservation of endangered species. Here, we report the structure and polymorphism of the Japanese Crested Ibis MHC class II region. Screening of genomic libraries allowed the construction of three contigs representing different haplotypes of MHC class II regions. Characterization of genomic clones revealed that the MHC class II genomic structure of N. nippon was largely different from that of chicken. A pair of MHC-IIA and -IIB genes was arranged head-to-head between the COL11A2 and BRD2 genes. Gene order in N. nippon was more similar to that in humans than to that in chicken. The three haplotypes contained one to three copies of MHC-IIA/IIB gene pairs. Genotyping of the MHC class II region detected only three haplotypes among the five founders, suggesting that the genetic diversity of the current Japanese Crested Ibis population is extremely low. The structure of the MHC class II region presented here provides valuable insight for future studies on the evolution of the avian MHC and for conservation of the Japanese Crested Ibis.  相似文献   

20.
Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen‐mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high‐throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long‐term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号