首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.  相似文献   

2.
Extracellular electron transfer (EET) is a microbial metabolism that enables efficient electron transfer between microbial cells and extracellular solid materials. Microorganisms harbouring EET abilities have received considerable attention for their various biotechnological applications, including bioleaching and bioelectrochemical systems. On the other hand, recent research revealed that microbial EET potentially induces corrosion of iron structures. It has been well known that corrosion of iron occurring under anoxic conditions is mostly caused by microbial activities, which is termed as microbiologically influenced corrosion (MIC). Among diverse MIC mechanisms, microbial EET activity that enhances corrosion via direct uptake of electrons from metallic iron, specifically termed as electrical MIC (EMIC), has been regarded as one of the major causative factors. The EMIC‐inducing microorganisms initially identified were certain sulfate‐reducing bacteria and methanogenic archaea isolated from marine environments. Subsequently, abilities to induce EMIC were also demonstrated in diverse anaerobic microorganisms in freshwater environments and oil fields, including acetogenic bacteria and nitrate‐reducing bacteria. Abilities of EET and EMIC are now regarded as microbial traits more widespread among diverse microbial clades than was thought previously. In this review, basic understandings of microbial EET and recent progresses in the EMIC research are introduced.  相似文献   

3.
For the preservation of monuments and sites of cultural heritage, microbiological methods based on defined standards are needed to evaluate the problems associated with biodeterioration. In this study Microbial Environmental Monitoring (MAM from the Italian acronym Monitoraggio Ambientale Microbico) was applied to air and surface monitoring of art works before and during restoration. Microbial monitoring of the refectory in the monastery of St. Anna (Foligno, Italy) was performed on frescos from 1400. The results obtained with MAM were consistent, reproducible, and beneficial in the evaluation of the efficacy of restoration. Microbial monitoring of solid surfaces using membrane filters was not destructive and allowed the study of microbial fall-out on the surface of art works. The application of MAM proved to be a valuable means not only for monitoring but also for a better understanding of microbial pollution and its dynamics on the surface of art works. The constant application of MAM could be a valuable tool in the preservation of cultural heritage through strict collaboration with microbiologists, restorers, and authorities.  相似文献   

4.
The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.  相似文献   

5.

The aim of this work was to carry out a comparative study of microbial adhesion on dental alloys and glass ionomers that release fluoride. The action of NaF on the early stages of biofilm development and on the corrosion of the metallic dental materials was analysed. Open circuit potential measurements and potentiostatic electrochemical techniques with different perturbation programs as well as SEM observations, and optical and epifluorescence microscopy were employed. A notable effect of topography and the nature of the substratum on bacterial distribution was observed. In addition, changes in the density and thickness of microbial colonies were noticed when fluoride was present. The results show that the antimicrobial effect of fluoride was significant against planktonic but not against sessile microorganisms. Fluoride released by glass ionomers did not impede bacterial adhesion to the surface. With respect to corrosion, fluoride did not alter significantly the passivity of the dental metallic biomaterials assayed, except for Cu‐Al alloy. Titanium dissolution could occur at high fluoride concentrations (8gl‐1) during oxide layer formation. Consequently, bacterial adherence was influenced by the nature and topography of the substratum and by the presence of fluoride which could also affect the electrochemical behaviour of some metallic substrata.  相似文献   

6.
AIMS: The identification of culturable microbial communities on wooden art objects and from indoor air, and the analysis of their biodegradative properties. METHODS AND RESULTS: Common and newly-developed agar media were used for the isolation of fungal and bacterial microflora. The identification was carried out by traditional methods and by the sequencing of 16S or 18S rDNA PCR products. Different plate assays were employed to screen the lignolytic and cellulolytic activities of the isolated microflora. Interesting bacteria were isolated from art objects even though the fungi were the principal contaminants of art works. Various fungal and bacterial species exhibited their lignolytic and cellulolytic activity by the decolorization of Remazol Brilliant Blue R, Phenol Red, Azure B and Ostazin Brilliant Red H-3B. CONCLUSIONS: The microbial communities on wooden art objects exposed in an indoor environment were identified. The study showed the biodegradative power of many microorganisms, and new data were added to this field barely investigated. SIGNIFICANCE AND IMPACT OF THE STUDY: By the development of new culture media and the evaluation of different biodegradative plate assays, a strategy for the analysis of microflora in wooden art objects was established. Several aspects of the study could be also exploited for biotechnology applications.  相似文献   

7.
In the context of a geological disposal of radioactive waste in clayey formations, the consequences of microbial activity are of concern regarding the corrosion of metallic components. The purpose of the present work was to characterize the microbial diversity that may have impacted corrosion processes at the interface between re-compacted argillite and steel coupons after 10 years of interaction inside the Toarcian argillite layer in Tournemire (France) under in situ conditions. Several types of steel coupons were introduced in 1999 in two boreholes (so-called CR6 and CR8) drilled in the geological formation and filled with re-compacted argillite. CR6 borehole was drilled horizontally from a century-old railway tunnel and coupons were placed in the undisturbed argillite. CR8 borehole was drilled vertically under the tunnel, in conditions influenced by the draining of the Cernon fault water. CR6 and CR8 boreholes were overcored 10 years later and steel coupons as well as re-compacted argillite samples were analyzed separately. The characterization of their microbial diversity was carried out using culture media and molecular methods using 16S rRNA genes cloning. Data resulting from both approaches were complementary. Isolates and clone sequences were affiliated to only 3 bacterial phyla: Firmicutes, Actinobacteria and Proteobacteria. The biodiversities differed depending on the steel type and the borehole considered, indicating the influence of both iron-clay interactions and in situ environmental conditions. This analysis has highlighted the presence of sulphate-reducing bacteria, iron-reducing bacteria and isolates capable to develop at high temperatures. These microorganisms can grow at the interfaces between materials in a very short period of time compared with planned durations of disposal. Thus, these results should be considered to assess the consequences of microbial activities on the evolution of the metallic components like overpacks.  相似文献   

8.
A microbial biosensor was developed for monitoring microbiologically influenced corrosion (MIC) of metallic materials in industrial systems. The Pseudomonas sp. isolated from corroded metal surface was immobilized on acetylcellulose membrane and its respiratory activity was estimated by measuring oxygen consumption. The microbial biosensor was used for the measurement of sulfuric acid in a batch culture medium contaminated by microorganisms. A linear relationship between the microbial sensor response and the concentration of sulfuric acid was observed. The response time of biosensor was 5 min and was dependent on the immobilized cell loading of Pseudomonas sp., pH, temperature and corrosive environments. The microbial biosensor response was stable, reproducible and specific for sensing of sulfur oxidizing bacterial activity.  相似文献   

9.
Claudia Sorlini 《Aerobiologia》1993,9(2-3):109-115
Summary In this review, sources of microbial contamination of air, factors affecting airborne spores survival, conditions that determine their composition and sampling methods are considered. The relation between airborne microorganisms and microorganisms colonizing surfaces of art works is also analyzed. Finally some advanced methods to detect and identify microorganisms responsible for alteration are suggested.  相似文献   

10.
A microbial biosensor was developed for monitoring microbiologically influenced corrosion (MIC) of metallic materials in industrial systems. The Pseudomonas sp. isolated from corroded metal surface was immobilized on acetylcellulose membrane and its respiratory activity was estimated by measuring oxygen consumption. The microbial biosensor was used for the measurement of sulfuric acid in a batch culture medium contaminated by microorganisms. A linear relationship between the microbial sensor response and the concentration of sulfuric acid was observed. The response time of biosensor was 5 min and was dependent on the immobilized cell loading of Pseudomonas sp., pH, temperature and corrosive environments. The microbial biosensor response was stable, reproducible and specific for sensing of sulfur oxidizing bacterial activity.  相似文献   

11.
Understanding the corrosion of carbon steel materials of low and intermediate level radioactive waste under repository conditions is crucial to ensure the safe storage of radioactive contaminated materials. The waste will be in contact with the concrete of repository silos and storage containers, and eventually with groundwater. In this study, the corrosion of carbon steel under repository conditions as well as the microbial community forming biofilm on the carbon steel samples, consisting of bacteria, archaea, and fungi, was studied over a period of three years in a groundwater environment with and without inserted concrete. The number of biofilm forming bacteria and archaea was 1,000-fold lower, with corrosion rates 620-times lower in the presence of concrete compared to the natural groundwater environment. However, localized corrosion was detected in the concrete–groundwater environment indicating the presence of local microenvironments where the conditions for pitting corrosion were favorable.  相似文献   

12.
A theoretical model is presented, which attempts to account for the evaluation of complex stimuli in terms of their constituent elements that are relevant to the intent of the assessment. The subjective evaluation of a compound stimulus is postulated to be a function of the number, weight and integrity of critical components, or sub-qualities, and their interactions. The model has application to the evaluation of any stimulus complex including works of "art". For illustrative purpose, it will here be applied to the analysis of pictorial works of art.  相似文献   

13.
Proteinaceous substances such as collagen, casein and albumin have been widely used as binding media in a variety of works of art. Damages of these 'sensitive' materials, mainly caused of the influence of the environment, are responsible for the overall decay of works of art, and their identification is essential to understand ancient technologies, determine the extent of deterioration and help in future restoration and preservation processes. The most commonly used techniques for the identification of proteinaceous binding media are staining techniques, chromatography, spectrometry and immunological methods, although for the latter no systematic studies have been carried out until now. Aiming at contributing to the development of a reliable and reproducible immunoassay for the evaluation of the collagen-based decay of works of art, sequential polypeptides (Pro-X-Gly)n where X represents amino acid residues Val, Lys, Glu and (Hyp-Val-Gly)n were prepared as models of collagen fragments derived from artificially and naturally aged animal collagens. Conformational studies of the polypeptides by CD revealed the occurrence of polyproline II-like structures comparable with those of collagen. Polypeptides and collagen I were administered to animals, and the induced antibodies were used for the immunochemical detection and differentiation of collagen and collagen fragments. The combined application of (i) anti-collagen antibodies, which strongly interact with native collagen, but poorly recognized by artificially aged collagen and (ii) anti-polypeptide antibodies, which do not associate with native collagen, but are strongly recognized by collagen fragments in naturally or artificially aged collagen, is a valuable tool in determining the extent of decay in works of art.  相似文献   

14.
Acidithiobacillus ferrooxidans cells can oxidize iron and sulfur and are key members of the microbial biomining communities that are exploited in the large-scale bioleaching of metal sulfide ores. Some minerals are recalcitrant to bioleaching due to the presence of other inhibitory materials in the ore bodies. Additives are intentionally included in processed metals to reduce environmental impacts and microbially influenced corrosion. We have previously reported a new aerobic corrosion mechanism where A. ferrooxidans cells combined with pyrite and chloride can oxidize low-grade stainless steel (SS304) with a thiosulfate-mediated mechanism. Here we explore process conditions and genetic engineering of the cells that enable corrosion of a higher grade steel (SS316). The addition of elemental sulfur and an increase in the cell loading resulted in a 74% increase in the corrosion of SS316 as compared to the initial sulfur- and cell-free control experiments containing only pyrite. The overexpression of the endogenous rus gene, which is involved in the cellular iron oxidation pathway, led to a further 85% increase in the corrosion of the steel in addition to the improvements made by changes to the process conditions. Thus, the modification of the culturing conditions and the use of rus-overexpressing cells led to a more than threefold increase in the corrosion of SS316 stainless steel, such that 15% of the metal coupons was dissolved in just 2 weeks. This study demonstrates how the engineering of cells and the optimization of their cultivation conditions can be used to discover conditions that lead to the corrosion of a complex metal target.  相似文献   

15.
The unpredictability of microbial growth and subsequent localized corrosion of steel can cause significant cost for the oil and gas industry, due to production downtime, repair, and replacement. Despite a long tradition of academic research and industrial experience, microbial corrosion is not yet fully understood and thus not effectively controlled. In particular, biomarkers suitable for diagnosing microbial corrosion which abstain from the detection of the classic signatures of sulfate-reducing bacteria are urgently required. In this study, a natural microbial community was enriched anaerobically with carbon steel coupons and in the presence of a variety of physical and chemical conditions. With the characterization of the microbiome and of its functional properties inferred through predictive metagenomics, a series of proteins were identified as biomarkers in the water phase that could be correlated directly to corrosion. This study provides an opportunity for the further development of a protein-based biomarker approach for effective and reliable microbial corrosion detection and monitoring in the field.  相似文献   

16.
In the current study, ferritic stainless grades AISI 439 and AISI 444 were investigated as possible construction materials for machinery and equipment in the cane-sugar industry. Their performance in corrosive cane-sugar juice environment was compared with the presently used low carbon steel AISI 1010 and austenitic stainless steel AISI 304. The Tafel plot electrochemical technique was used to evaluate general corrosion performance. Microbiologically influenced corrosion (MIC) behaviour in sugarcane juice environment was studied. Four microbial colonies were isolated from the biofilms on the metal coupon surfaces on the basis of their different morphology. These were characterized as Brevibacillus parabrevis, Bacillus azotoformans, Paenibacillus lautus and Micrococcus sp. The results of SEM micrographs showed that AISI 439 and AISI 304 grades had suffered maximum localized corrosion. MIC investigations revealed that AISI 444 steel had the best corrosion resistance among the tested materials. However from the Tafel plots it was evident that AISI 1010 had the least corrosion resistance and AISI 439 the best corrosion resistance.  相似文献   

17.
In general, microorganisms such as chemolithotrophic and chemo‐organotrophic bacteria, cyanohacteria, algae, fungi, and lichens living on and in stone material may be of importance in biodeterioration. These groups contribute substantially to the deterioration of mineral materials such as natural stone, concrete, ceramics, and glass. The attack on mineral materials may be either strongly or mildly aggressive or both. A strongly aggressive attack is caused by biogenic mineral or organic acids. A mildly aggressive attack results from hydrophilic slimes such as heteropolysaccharides and/or proteins (biofilm) and their ability to accumulate water and salts. Attack by exoenzymes seems to be unimportant.

In recent years it has become possible to test the resistance of mineral materials to microbial attack by means of a biotest. Three simulation apparatuses were constructed; each allowed the incubation of test materials under microbiologically optimized conditions. Biodeterioration involving biogenic sulfuric acid corrosion, which under natural conditions needs eight times as long, was detectable within a few months. The results differed from those of purely chemical and/or physical tests of materials. Physical/chemical test methods are not sufficient to determine the resistance of materials to biological attack, because they do not include the interactions between microorganisms and their substrate, the mineral material. In the case of biogenic sulfuric acid corrosion, simulation experiments demonstrated differences in resistance of various concrete types, which ranged from I to 20% weight loss of test blocks within I year. With chemical testing only negligible differences in weight loss were noted. This was also the case with biogenic nitric acid corrosion. Thus, biotests assist in the selection of appropriate materials from many different ones.  相似文献   

18.
海洋环境的复杂多变性使海洋腐蚀成为一个日益严重的全球性问题。海洋腐蚀在造成巨大经济损失的同时,还带来了严重的环境污染以及人员安全问题,使其成为海洋经济发展中必须要解决的关键问题。据统计海洋环境中20%的腐蚀由微生物引起,腐蚀微生物(microbiologically influenced corrosion,MIC)以生物膜的形式存在于金属表面,其主要包括细菌、古菌、真菌及藻类等。基于对以往研究的综述,本文总结了这4类海洋微生物的研究进展,阐述了海洋腐蚀环境中腐蚀微生物的种类、群落组成影响因素及其作用机理等内容;同时,文中概述了微生物对金属材料促进腐蚀或抑制腐蚀的影响因素及其作用机制,并归纳了当前海洋环境中微生物腐蚀的防治方法;最后,本研究对海洋环境下微生物腐蚀研究及防治的发展趋势进行了论述,以期为腐蚀机制的研究与防腐工作的实施提供参考。  相似文献   

19.
Biofilms formed in pipes are known to contribute to waterborne diseases, accelerate corrosion and cause aesthetic taste and odour issues within the potable water supply network. This paper describes a pilot study, undertaken to assess the potential of using metabolomics to monitor bacterial activity in biofilms of an urban water network. Using samples from a water mains flushing programme, it was found that a profile of intracellular and extracellular metabolites associated with microbial activity could be obtained by analysing samples using gas chromatography mass spectrometry. Chemometric analysis of the chromatograms in conjunction with data from the mass spectrometer showed that it is possible to differentiate between biofilms from different pipe materials and planktonic bacteria. This research demonstrates that metabolomics has the potential for investigating biofilms and other microbial activity within water networks, and could provide a means for enhancing monitoring programmes, understanding the source of water quality complaints, and optimising water network management strategies.  相似文献   

20.
This paper is a summary of work carried out at the ICMM and deals with the effect of biofilm growth on the marine corrosion of stainless steels and other active-passive alloys. There is evidence regarding the important role played by aerobic bacterial settlement, both on the onset and the propagation of localized corrosion on such alloys and on the enhancement of galvanic corrosion of less noble materials coupled with them. These effects are the consequence of the oxygen reduction depolarization induced by biofilm growth. Hypotheses on the mechanisms by which the presence of the biofilm causes oxygen reduction depolarization, and prevention systems against the microbial induced corrosion, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号