首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details. 1. In homologous and heterologous translation systems th newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant. 2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120 000 and 500 000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200 000-400 000. 3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20-30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largley resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a preprequisite for translocation into proteinase resistant position. 4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding. These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form as precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein.  相似文献   

2.
Synthesis and transport of mitochondrial proteins were followed in a cell-free homogenate of Neurospora crassa in which mitochondrial translation was inhibited. Proteins synthesized on cytoplasmic ribosomes are transferred into the mitochondrial fraction. The relative amounts of proteins which are transferred in vitro are comparable to those transferred in whole cells. Cycloheximide and puromycin inhibit the synthesis of mitochondrial proteins but not their transfer into mitochondria. The transfer of immunoprecipitable mitochondrial proteins was demonstrated for matrix proteins, carboxyatractyloside-binding protein and cytochrome c. Import of proteins into mitochondria exhibits a degree of specificity. The transport mechanism differentiates between newly synthesized proteins and preexistent mitochondrial proteins, at least in the case of matrix proteins. In the cell-free homogenate membrane-bound ribosomes are more active in the synthesis of mitochondrial proteins than are free ribosomes. The finished translation products appear to be released from the membrane-bound ribosomes into the cytosol rather than into the membrane vesicles. The results suggest that the transport of cytoplasmically synthesized mitochondrial proteins is essentially independent of cytoplasmic translation; that cytoplasmically synthesized mitochondrial proteins exist in an extramitochondrial pool prior to import; that the site of this pool is the cytosol for at least some of the mitochondrial proteins; and that the precursors in the extramitochondrial pool differ in structure or conformation from the functional proteins in the mitochondria.  相似文献   

3.
The conidia of Neurospora crassa entered logarithmic growth after a 1-h lag period at 30 degrees C. Although [14C]leucine is incorporated quickly early in growth, cellular protein data indicated that no net protein synthesis occurred until after 2 h of growth. Neurospora is known to produce ethanol during germination even though respiratory enzymes are present. Also, Neurospora mitochondria isolated from cells less than 3-h old are uncoupled. Since oxygen uptake increased during germination, was largely cyanide-sensitive, and reached a maximum at 3 h, it is hypothesized that during early germination the uncoupled electron transport chain merely functions to dispose of reducing equivalents generated by substrate level ATP production. The rate of protein synthesis in vitro by mitochondria isolated from 0-8-h-old cells increased as did cell age. Mitochondrial protein synthesis in vivo, assayed in the presence of 100 mug cycloheximide/ml, increased from low levels in the cinidia to peak levels at 3-4 h of age and then slowly decreased. The rate of mitochondrial protein synthesis in vivo was linear for at least 90 min in 0-4-h-old cells, but declined after 15 min of incorporation in 6 and 8-h-old cells. The products of mitochondrial protein synthesis in vivo were analyzed with dodecylsulfate gel electrophoresis and autoradiography. Early in germination 80% of the synthesis was of two small proteins (molecular weights 7200 and 9000). At 8 h 85% of the radioactivity was in 10 larger proteins (12 200 to 80 000). Within the high-molecular-weight class, proteins of between 12 000 and 21 500 molecular weight were preferentially lavelled early in germination, whereas after 8 h of growth proteins of 27 500 to 80 000 molecular weight were preferentially labelled. It is hypothesized that the 7200 and 9000-molecular-weight products of mitochondrial protein synthesis combine with other proteins to form the larger proteins found later in growth. The availability of these other proteins in cells of different ages could affect the rate of mitochondrial protein synthesis in vivo.  相似文献   

4.
The purpose of this study was to investigate the contribution of mitochondrial and cytoplasmic protein synthesis to the biogenesis of cytochrome oxidase (ferrocytochrome c:oxygen oxidoreductase EC 1.9.3.1) and rutamycin-sensitive adenosine triphosphatase (ATP phosphohydrolase EC 3.6.1.3) in cultured oocytes of the toad, Xenopus laevis. X. laevis cytochrome oxidase was purified over 23-fold with respect to specific activity and over 29-fold with respect to specific heme a content from oocyte submitochondrial particles. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate separated the enzyme into six subunits with molecular weights of 44,000, 33,000, 23,000, 17,000, 12,000 and 9,500. the synthesis of the three larger subunits is sensitive to chloramphenicol (an inhibitor of mitochondrial protein synthesis), indicating that these subunits are made on mitochondrial ribosomes; the synthesis of the three smaller subunits is sensitive to cycloheximide (an inhibitor of cytoplasmic protein synthesis) and therefore occurs on cytoplasmic ribosomes. X. laevis rutamycin-sensitive ATPase, purified over 19-fold from oocyte submitochondrial pparticles, consists of 10 subunits with molecular weights of 56,000, 53,000, 41,000, 32,000, 29,000, 24,000, 21,000, 17,500 (2), and 11,500 on sodium dodecyl sulfate-polyacrylamide gels. The 29,000, 21,000, and one of the 17,500-dalton polypeptides are synthesized in the presence of cycloheximide and are, therefore, products of mitochondrial protein synthesis; the synthesis of the remaining seven subunits occurs in the presence of chloramphenicol, indicating that these subunits are made on cytoplasmic ribosomes. The synthesis of protein by mitochondria in cultured oocytes appears to be dependent upon cytoplasmic protein synthesis. In the presence of cycloheximide, the mitoribosomal synthesis of the subunits of cytochrome oxidase and rutamycin-sensitive ATPase is detectable only after a prior inhibition of mitochondrial protein synthesis by chloramphenicol. Oocyte mitochondrial ribosomes synthesize at least nine polypeptides after chloramphenicol treatment, three of which are components of neither cytochrome oxidase nor rutamycin-sensitive ATPase.  相似文献   

5.
Products of mitochondrial protein synthesis were specifically labeled with 3H-leucine in the presence of cycloheximide at the end of the exponential phase of yeast aerobic growth on glucose. The mitochondria isolated from these cells lost 37-40% of the label from the protein fraction during 60 min incubation at 35 degrees, which was accompanied by the accumulation of 3H-leucine in TCA-soluble fraction. This process was suppressed by phenyl-methyl sulfonyl fluoride and p-chloromercuriphenyl sulfonate, the inhibitors of proteases, and could thus be considered as the proteolysis of the products of mitochondrial protein synthesis. The proteolysis was ATP dependent and was stimulated by puromycine which is known to induce the removal of incomplete polypeptides from mitochondrial ribosomes. A body of indirect evidence allows a suggestion to be made that the observed proteolysis can hardly be due to the action of cytoplasmic proteinases.  相似文献   

6.
The precursor proteins to the subunits of ubiquinol:cytochrome c reductase (cytochrome bc1 complex) of Neurospora crassa were synthesized in a reticulocyte lysate. These precursors were immunoprecipitated with antibodies prepared against the individual subunits and compared to the mature subunits immunoprecipitated or isolated from mitochondria. Most subunits were synthesized as precursors with larger apparent molecular weights (subunits I, 51,500 versus 50,000; subunit II, 47,500 versus 45,000; subunit IV (cytochrome c1), 38,000 versus 31,000; subunit V (Fe-S protein), 28,000 versus 25,000; subunit VII, 12,000 versus 11,500; subunit VIII, 11,600 versus 11,200). Subunit VI (14,000) was synthesized with the same apparent molecular weight. The post-translational transfer of subunits I, IV, V, and VII was studied in an in vitro system employing reticulocyte lysate and isolated mitochondria. The transfer and proteolytic processing of these precursors was found to be dependent on the mitochondrial membrane potential. In the transfer of cytochrome c1, the proteolytic processing appears to take place in two separate steps via an intermediate both in vivo and in vitro. In vivo, the intermediate form accumulated when cells were kept at 8 degrees C and was chased into mature cytochrome c1 at 25 degrees C. Both processing steps were energy-dependent.  相似文献   

7.
Lipoamide dehydrogenase (LADase) was purified to homogeneity from rat liver mitochondria, and the intracellular distribution and biosynthesis of the LADase were investigated with antibody prepared against the purified enzyme. 1) LADase activity was mostly found in mitochondria; the activity in cytosol was about one-tenth of that in mitochondria. 2) LADase in the crude mitochondrial and cytosolic extracts and the purified LADase were immunologically identical as judged from the Ouchterlony double diffusion test. These LADases were indistinguishable from each other on immunochemical titration; i.e., the amount of LADase precipitated by a fixed amount of the anti-LADase antibody was the same for all the preparations. However, cytosolic LADase activity was inhibited by the antibody more strongly than mitochondrial LADase activity. 3) Two min after intravenous injection of [35S]methionine, more radioactivity was incorporated into cytosolic LADase than into the mitochondrial enzyme in the liver. This result suggests that localization of LADase in the cytosolic fraction is not an artifact due to leakage from mitochondria during homogenization of rat liver. 4) LADase was synthesized predominantly on free ribosomes, which indicates that LADase is synthesized on cytoplasmic ribosomes and translocated into mitochondria just as other mitochondrial proteins are. 5) After cell-free protein synthesis with post-mitochondrial supernatant, radioactivity immunoprecipitated with anti-LADase antibody was detected as a major peak with the same molecular weight as the purified LADase.  相似文献   

8.
Homogenates of rat brain cortex were fractionated by conventional methods of velocity sedimentation and separated into a microsomal and a washed mitochondrial fraction. By electron microscopy the mitochondrial fraction was shown to be rich in synaptosomes. The mitochondria-synaptosome fraction synthesized protein in vitro by a route that was partially inhibited by cycloheximide and partly by chloramphenicol. The relative effectiveness of the two inhibitors varied greatly with the medium used. In the mitochondria-synaptosome fraction active 80S cytoplasmic ribosomes and active 55S mitochondrial ribosomes were detected; these were also seen in the electron microscope. Mild osmotic shock of the mitochondria-synaptosome fraction followed by velocity sedimentation in sucrose-EDTA allowed isolation of a mitochondrial fraction free of synaptosomes. Protein synthesis in this fraction was entirely inhibited by chloramphenicol, but was completely resistant to cycloheximide both in a medium promoting oxidative phosphorylation and in ATP-generating medium. Ouabain had no inhibitory effect on protein synthesis in a purified mitochondrial preparation. It is concluded that brain-cortex mitochondria synthesize protein entirely on 55S mitochondrial ribosomes.  相似文献   

9.
Degradation of mitochondrial translation products in Saccharomyces cerevisiae mitochondria was studied by selectively labelling these entities in vivo in the presence of cycloheximide and following their fate in isolated mitochondria. One-third to one-half of the mitochondrial translation products are shown to be degraded, depending on the culture growth phase, with an approximate half-life of 35 min. This process is shown to be ATP-dependent, enhanced in the presence of puromycin and inhibited by chloramphenicol. Further, the proteolysis is suppressed by detergents and is insensitive to antisera against yeast proteinases A and B when measured in mitochondria or 'inside-out' submitochondrial particles. It is concluded that the breakdown of mitochondrial translation products is most probably due to the action of endogenous proteinase(s) associated with the mitochondrial inner membrane. This proteinase is inhibited by phenylmethanesulphonyl fluoride, leupeptin, antipain and chymostatin.  相似文献   

10.
The temperature-sensitive Chinese hamster ovary cell mutant tsH1, has been shown previously to contain a temperature-sensitive leucyl-tRNA synthetase. At the non-permissive temperature of 40 degrees C cytosolic protein synthesis is rapidly inhibited. The protein synthesis which continues at 40 degrees C appears to be mitochondrial, since: (a) whole-cell protein synthesis at the permissive temperature of 34 degrees C is not inhibied by tevenel, the sulfamoyl analogue of chloramphenicol and a specific inhibitor of mitochondrial protein synthesis; however, whole-cell protein synthesis at 40 degrees C is inhibited by tevenel, (b) Protein synthesis by isolated mitochondria from tsH1 cells is not significantly inhibited at 40 degrees C. (c) At 40 degrees C [14C]leucine is incorporated predominantly into the mitochondrial fraction of tsH1 cells. (d) The incorporation of [14C]leucine at 40 degrees C into mitochondrial proteins of tsH1 cells is inh-bited by tevenel but not by cycloheximide. These results suggest that the mitochondria of tsH1 cells contain a leucyl-tRNA synthetase which is different from the cytosolic enzyme. The inhibition of cytosolic, but not of mitochondrial protein synthesis in tsH1 cells at 40 degrees C allows the selective labelling of mitochondrial translation products in the absence of inhibitors. The mitochondrial translation products labelled in tsH1 cells at 40 degrees C and at 34 degrees C in the presence of cycloheximide have been compared by sodium dodecylsulphate-polyacrylamide gel electrophoresis. Both conditions of labelling give similar profiles. The mitochondrial translation products are resolved into two components, one with an apparent molecular weight range from 40,000 to 20,000 and a second with an apparent molecular weight range from 20,000 to 10,000.  相似文献   

11.
Two peptides, potentially representing antigenic determinants of a proposed gene product, were synthesized. The peptide sequences were deduced from the nucleotide sequence of the unidentified reading frame (URF)1 of the Neurospora crassa mitochondrial genome. Specific antisera to the synthetic peptides were produced. The antibodies recognized a single polypeptide species with an apparent relative molecular mass of about 30 000. The mitochondrial origin of this polypeptide was verified by in vivo labelling experiments in the presence of cycloheximide, as well as by in vitro translation using isolated mitochondria. The chemical identification of the protein was performed by partial radiosequencing of the N-terminal portion of the immunoprecipitated URF-1 product. The amount of URF-1 polypeptide present in N. crassa mitochondria is in the range of 1-2%. The protein is a constituent of the inner envelope of the organelle and probably part of a more complex membrane unit.  相似文献   

12.
The products of mitochondrial protein synthesis in established cell lines of various mammalian species were labelled with [35S]methionine and their number and apparent molecular weights determined by sodium dodecyl sulfate polyacrylamide slab gel electrophoresis and fluorography. Proteins synthesized by isolated rat liver mitochondria were labelled with [3H]valine and similarly characterized. Each species had a distinctive pattern of from 10 to 13 mitochondrially synthesized proteins with apparent molecular weights between 10,000 and 50,000. No differences were detected in the number or electrophoretic mobility of the mitochondrially synthesized proteins of SV-40-transformed and nontransformed WI-38 cells.  相似文献   

13.
Products of the mitochondrial protein-synthesizing system have been labeled in vivo in the presence of cycloheximide in microaerobic cells and in cells from glucose-limited and glucose-repressed aerobic continuous cultures of Saccharomyces cerevisiae. Lipophilic proteins were extracted from labeled mitochondrial membranes with aqueous methanol and neutral and acidic chloroform-methanol solvents. In glucose-limited aerobic and microaerobic cells, about half of the total mitochondrial products were soluble in organic solvents; in contrast, almost all of the labeled products were extracted from glucose-repressed mitochondria. Only trace amounts of labeled product were formed in mitochondrial membranes of a petite mutant. Lipophilic proteins were examined by polyacrylamide gel electrophoresis under dissociating conditions. Most of the label was associated with components of apparent molecular weights 12,000, 14,000 and 16,000. The relative proportions of these species in mitochondrial membranes are dependent on the concentrations of oxygen and glucose in which the cells are grown.  相似文献   

14.
W Ise  H Haiker    H Weiss 《The EMBO journal》1985,4(8):2075-2080
The rotenone sensitive NADH:ubiquinone was isolated from mitochondria of Neurospora crassa as a monodisperse preparation with the apparent mol. wt. in Triton solution of 0.9 X 10(6). The enzyme is composed of at least 22 subunits with apparent mol. wts. in SDS between 70 and 11 kd. Six of the subunits with the mol. wts. 70, 48, 37, 25, 22 and 18 kd were radioactively labelled in the enzyme isolated from cells which had incorporated [35S]methionine in the presence of cycloheximide. These subunits are synthesized in the mitochondria. Eleven subunits were radioactively labelled in the enzyme from cells which had incorporated [35S]methionine in the presence of chloramphenicol. These subunits are synthesized in the cytoplasm. The site of translation of the other subunits could not be established by the pulse-labelling technique. The assignment of the mitochondrially synthesized subunits to unidentified reading frames on the mitochondrial DNA is discussed.  相似文献   

15.
Treatment of Neurospora crassa with 0.1 microgram of cycloheximide per ml, a concentration which inhibited protein synthesis by about 70%, resulted in the greatly enhanced synthesis of at least three polypeptide bands with estimated molecular weights of 88,000, 30,000, and 28,000. A temperature shift from 25 to 37 degrees C resulted in the appearance of a single new polypeptide band of 70,000 daltons, the same size as the major heat shock-induced proteins observed in species of Drosophila and Dictyostelium. Synthesis of the cycloheximide-stimulated polypeptide bands was on cytoplasmic ribosomes rather than on mitochondrial ribosomes, as incorporation of isotope into the polypeptide bands was inhibited by 1.0 microgram of cycloheximide per ml but not by 1 mg of chloramphenicol per ml. In a mutant with cycloheximide-resistant ribosomes, 0.1 microgram of cycloheximide per ml failed to alter the pattern of protein synthesis from that of the controls. It is suggested that the new synthesis of the polypeptide bands reflects specific mechanisms of adaptation to different kinds of environmental stress, including inhibition of protein synthesis and temperature increases.  相似文献   

16.
ADP/ATP carrier protein was synthesized in heterologous cell-free systems programmed with Neurospora poly(A)-containing RNA and homologous cell-free systems from Neurospora. The apparent molecular weight of the product obtained in vitro was the same as that of the authentic mitochondrial protein. The primary translation product obtained in reticulocyte lysates starts with formylmethionine when formylated initiator methionyl-tRNA (fMet-tRNAfMet) was present. The product synthesized in vitro was released from the ribosomes into the postribosomal supernatant. The evidence presented indicates that the ADP/ATP carrier is synthesized as a polypeptide with the same molecular weight as the mature monomeric protein and does not carry an additional sequence.  相似文献   

17.
Biosynthesis of isocitrate lyase, a tetrameric enzyme of the glyoxysomal matrix, was studied in Neurospora crassa, in which the formation of glyoxysomes was induced by a substitution of sucrose medium by acetate medium. 1. Translation of Neurospora mRNA in reticulocyte lysates yields a product which has the same apparent molecular weight as the subunit of the functional enzyme. Using N-formyl[35S]methionyl-tRNAfMet as a label, the translation product shows the same apparent size which indicates that the amino terminus has no additional "signal'-type sequence. 2. Read-out systems employing free and membrane-bound polysomes show that only free ribosomes are active in the synthesis of isocitrate lyase. 3. Isocitrate lyase synthesized in reticulocyte lysate is released into the supernatant and is soluble in a monomeric form. It interacts with Triton X-100 to form mixed micells in contrast to the functional tetrameric form. 4. Transfer of isocitrate lyase synthesized in vitro into isolated glyoxysomes is suggested by results of experiments in which supernatants from reticulocyte lysates are incubated with a particle fraction isolated from acetate-grown cells. No transfer occurs when particles from non-induced cells are employed. Resistance to added proteinase is used as a criterion for transmembrane transfer. The data support a post-translational transfer mechanism for isocitrate lyase. They suggest that isocitrate lyase passes through a cytosolic precursor pool as a monomer and is transferred into glyoxysomes.  相似文献   

18.
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4 degrees C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane.  相似文献   

19.
The inhibitors of protein synthesis, chloramphenicol and cycloheximide, were added to cultures of yeast undergoing glucose derepression at different times during the growth cycle. Both inhibitors blocked the increase in activity of coenzyme QH2-cytochrome c reductase, suggesting that the formation of complex III of the respiratory chain requires products of both mitochondrial and cytoplasmic protein synthesis.The possibility that precursor proteins synthesized by either cytoplasmic or mitochondrial ribosomes may accumulate was investigated by the sequential addition of cycloheximide and chloramphenicol (or the reverse order) to cultures of yeast undergoing glucose derepression. When yeast cells were grown for 3 hr in medium containing cycloheximide and then transferred to medium containing chloramphenicol, the activity of cytochrome oxidase increased at the same rate as the control during the first hour in chloramphenicol. These results suggest that some accumulation of precursor proteins synthesized in the mitochondria had occurred when cytoplasmic protein synthesis was blocked during the growth phase in cycloheximide. In contrast, essentially no products of mitochondrial protein synthesis accumulated as precursors for either oligomycin-sensitive ATPase or complex III of the respiratory chain during growth of the cells in cycloheximide.When yeast were grown for 3 hr in medium containing chloramphenicol followed by 1 hr in cycloheximide, the activities of cytochrome oxidase and succinate-cytochrome c reductase increased at the same rate as the control, while the activities of oligomycin-sensitive ATPase and NADH or coenzyme QH2-cytochrome c reductase were nearly double that of the control. These data suggest that a significant accumulation of mitochondrial proteins synthesized in the cytoplasm had occurred when the yeast cells were grown in medium containing sufficient chloramphenicol to block mitochondrial protein synthesis. The possibility that proteins synthesized in the cytoplasm may act to control the synthesis of mitochondrial proteins for both oligomycin-sensitive ATPase and complex III of the respiratory chain is discussed.  相似文献   

20.
Biosynthesis of rat liver transhydrogenase in vivo and in vitro   总被引:1,自引:0,他引:1  
The biosynthesis of pyridine dinucleotide transhydrogenase, a homodimeric inner mitochondrial membrane redox-linked proton pump, has been studied in isolated rat hepatocytes. Newly synthesized transhydrogenase, having an apparent molecular weight identical to the enzyme of isolated liver mitochondria, was selectively immunoprecipitated from detergent extracts of isolated hepatocytes which were labeled with [35S]methionine. That the enzyme is a nuclear gene product is indicated since 1) synthesis was inhibited by cycloheximide, but not by chloramphenicol and 2) no synthesis could be demonstrated in hepatocyte ghosts which are competent only in mitochondrial translation. In addition to the mature form of the enzyme, a species about 2000 daltons larger was also immunoprecipitated from pulse-labeled cells. The half-life of the larger form during a subsequent chase at 37 degrees C was about 2 min, whereas the mature form was not degraded. The relationship between the two forms of the enzyme was established by in vitro studies. A protein approximately 2000 daltons larger than mature transhydrogenase was immunoisolated from a rabbit reticulocyte lysate system programmed with sucrose gradient fractionated rat liver mRNA. This protein was converted to a species having the same size as mature enzyme after incubation with either intact rat liver mitochondria or a soluble matrix fraction derived from mitoplasts. These studies indicate that transhydrogenase is synthesized in the cytoplasm as a higher molecular weight precursor which is post-translationally processed to the mature protein by a soluble matrix protease during or after membrane insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号