首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After partial equilibration of the lung with a N2O gas mixture absorption of N2O by the pulmonary circulation results in a flow of gas into the lungs during breath holding. A bolus of 133Xe introduced at the mouth at the beginning of the breath hold is carried in by the gas flow and distributed according to regional perfusion. In three subjects, breath holding at FRC, apex-to-base distribution of a 133Xe bolud delivered by N2O absorption (Xecar) was similar to that of a bolus injected intravenously (Xeiv). Near RV however, much less of Xecar penetrated into dependent zones than expected from the distribution of Xeiv. In fact, distribution of Xecar did not differ from that of a slowly inhaled bolus. Correction for Compton scatter in the chest wall, measured in one subject, accounted only in part for the radioactivity recorded over dependent lung regions. The findings indicate that near RV some but not all of the dependent airways must be closed. Furthermore, the distribution of airway closure completely accounts for the distribution of a bolus inhaled from RV.  相似文献   

2.
We studied the effect of body position in humans on the relationship between exhaled vital capacity (VC) and both helium (He) and nitrogen (N2) concentrations after delivery of an He bolus at residual volume (RV) followed by 100% oxygen to total lung capacity. Phase IV, defined as the % VC at the first sharp and permanent increase in N2 and He, occurred at a mean of 15.7% VC while seated, 60.0% VC in right lateral and 59.6% VC in left lateral positions. He bolus delivery above RV but well below 60% VC resulted in the disappearance of phase IV. Lung pressure-volume (PV) curves had inflections at the volume of phase IV in the seated position: but the inflections were well below phase IV in lateral positions. Phase IV increased to higher volumes at higher mouth pressures. The relationship between phase IV and mouth pressure fell near the respiratory system relaxation PV curves. The findings suggest the higher phase IV in lateral positions is due to sequence of emptying without airway closure and is influenced by active expiration.  相似文献   

3.
Using 133Xe measured the regional distribution of FRC and of boluses administered at FRC in seated subjects during relaxation, lateral compression of the lower rib cage, and contraction of the inspiratory muscles so that mouth pressure was 50 cmH2O subatmospheric. Lateral compression increased apex-to-base differences of volume and bolus distribution, suggesting an increase of the apex-to-base gradient of pleural surface pressure. Changes in rib cage shape were measured with magnetometers and were qualitatively similar to those associated with increases in apex-to-base difference of pleural surface pressure in animals. Inspiratory effort decreased apex-to-base difference in volume and induced a similar trend in bolus distribution. Though changes in the rib cage shape were directionally similar, they were much smaller than those associated with decreased pleural surface pressure gradients in animals, and the changes in regional volume we observed were more likely due to forces generated by diaphragmatic contraction. These results were compatible with the apex-to-base gradient of pleural pressure being strongly influenced by shape adaptation between lung and chest wall.  相似文献   

4.
This study assessed the effects of increased gravity in the head-to-foot direction (+G(z)) and anti-G suit (AGS) pressurization on functional residual capacity (FRC), the volume of trapped gas (V(TG)), and ventilation distribution by using inert- gas washout. Normalized phase III slope (Sn(III)) analysis was used to determine the effects on inter- and intraregional ventilation inhomogeneity. Twelve men performed multiple-breath washouts of SF(6) and He in a human centrifuge at +1 to +3 G(z) wearing an AGS pressurized to 0, 6, or 12 kPa. Hypergravity produced moderately increased FRC, V(TG), and overall and inter- and intraregional inhomogeneities. In normogravity, AGS pressurization resulted in reduced FRC and increased V(TG), overall, and inter- and intraregional inhomogeneities. Inflation of the AGS to 12 kPa at +3 G(z) reduced FRC markedly and caused marked gas trapping and intraregional inhomogeneity, whereas interregional inhomogeneity decreased. In conclusion, increased +G(z) impairs ventilation distribution not only between widely separated lung regions, but also within small lung units. Pressurizing an AGS in hypergravity causes extensive gas trapping accompanied by reduced interregional inhomogeneity and, apparently, results in greater intraregional inhomogeneity.  相似文献   

5.
The lung volume at which airway closure begins during expiration (closing volume, CV) can be measured 1) with a radioactive bolus inspired at residual volume (RV) and 2) with the single-breath N2 elimination test. In previous studies in dogs, we observed that N2 CV was systematically larger than 133Xe bolus CV (Xe CV) [N2 CV %vital capacity (VC) = 35 +/- 2.3 (SE) vs. Xe CV %VC = 24 +/- 2.2, P less than 0.01]. Because the regional RV in the dog is evenly distributed throughout the lung and all airways closed at RV, N2 CV is related to the regional distribution of the tracheal N2; differences between N2 and Xe CV could then be related to the size of the inhaled dead space. Simultaneous measurements of Xe and N2 CV were performed at various sites of Xe bolus injection while the regional distribution of the bolus was measured. Injections at the level of the carina increased Xe CV to a value (30 +/- 1.4%VC) near simultaneous N2 CV (32 +/- 1.5%VC) and increased the unevenness of regional distribution of the Xe bolus. The difference between N2 and Xe CV is then the result of the size of the inspired tracheal dead space. Moreover, comparisons between different values of Xe CV require injections of the boluses at the same distance from the carina.  相似文献   

6.
The effects of increased gravity in the head-to-foot direction (+G(z)) and pressurization of an anti-G suit (AGS) on total and intraregional intra-acinar ventilation inhomogeneity were explored in 10 healthy male subjects. They performed vital capacity (VC) single-breath washin/washouts of SF(6) and He in +1, +2, or +3 G(z) in a human centrifuge, with an AGS pressurized to 0, 6, or 12 kPa. The phase III slopes for SF(6) and He over 25-75% of the expired VC were used as markers of total ventilation inhomogeneity, and the (SF(6) -- He) slopes were used as indicators of intraregional intra-acinar inhomogeneity. SF(6) and He phase III slopes increased proportionally with increasing gravity, but the (SF(6) -- He) slopes remained unchanged. AGS pressurization did not change SF(6) or He slopes significantly but resulted in increased (SF(6) -- He) slope differences at 12 kPa. In conclusion, hypergravity increases overall but not intraregional intra-acinar inhomogeneity during VC breaths. AGS pressurization provokes increased intraregional intra-acinar ventilation inhomogeneity, presumably reflecting the consequences of basilar pulmonary vessel engorgement in combination with compression of the basilar lung regions.  相似文献   

7.
Infarction of the lung is uncommon even when both the pulmonary and the bronchial blood supplies are interrupted. We studied the possibility that a tidal reverse pulmonary venous flow is driven by the alternating distension and compression of alveolar and extra-alveolar vessels with the lung volume changes of breathing and also that a pulsatile reverse flow is caused by left atrial pressure transients. We infused SF6, a relatively insoluble inert gas, into the left atrium of anesthetized goats in which we had interrupted the left pulmonary artery and the bronchial circulation. SF6 was measured in the left lung exhalate as a reflection of the reverse pulmonary venous flow. No SF6 was exhaled when the pulmonary veins were occluded. SF6 was exhaled in increasing amounts as left atrial pressure, tidal volume, and ventilatory rates rose during mechanical ventilation. SF6 was not excreted when we increased left atrial pressure transients by causing mitral insufficiency in the absence of lung volume changes (continuous flow ventilation). Markers injected into the left atrial blood reached the alveolar capillaries. We conclude that reverse pulmonary venous flow is driven by tidal ventilation but not by left atrial pressure transients. It reaches the alveoli and could nourish the alveolar tissues when there is no inflow of arterial blood.  相似文献   

8.
The significance of convective and diffusive gas transport in the respiratory system was assessed from the response of combined inert gas and particle boluses inhaled into the conducting airways. Particles, considered as "nondiffusing gas," served as tracers for convection and two inert gases with widely different diffusive characteristics (He and SF6) as tracers for convection and diffusion. Six-milliliter boluses labeled with monodisperse di-2-ethylhexyl sebacate droplets of 0.86-microns aerodynamic diameter, 2% He, and 2% SF6 were inspired by three anesthetized mechanically ventilated beagle dogs to volumetric lung depths up to 170 ml. Mixing between inspired and residual air caused dispersion of the inspired bolus, which was quantified in terms of the bolus half-width. Dispersion of particles increased with increasing lung depth to which the boluses were inhaled. The increase followed a power law with exponents less than 0.5 (mean 0.39), indicating that the effect of convective mixing per unit volume was reduced with depth. Within the pulmonary dead space, the behavior of the inert gases He and SF6 was similar to that of the particles, suggesting that gas transport was almost solely due to convection. Beyond the dead space, dispersion of He and SF6 increased more rapidly than dispersion of particles, indicating that diffusion became significant. The gas and particle bolus technique offers a suitable approach to differential analysis of gas transport in intrapulmonary airways of lungs.  相似文献   

9.
We performed single-breath washout (SBW) tests in which He and sulfur hexafluoride (SF6) were inspired throughout the vital capacity inspirations or were inhaled as discrete boluses at different points in the inspiration. Tests were performed in normal gravity (1 G) and in up to 27 s of microgravity (microG) during parabolic flight. The phase III slope of the SBW could be accurately reconstructed from individual bolus tests when allowance for airways closure was made. Bolus tests showed that most of the SBW phase III slope results from events during inspiration at lung volumes below closing capacity and near total lung capacity, as does the SF6-He phase III slope difference. Similarly, the difference between 1 G and microG in phase III slopes for both gases was entirely accounted for by gravity-dependent events at high and low lung volumes. Phase IV height was always larger for SF6 than for He, suggesting at least some airway closure in close proximity to airways that remain open at residual volume. These results help explain previous studies in microG, which show large changes in gas mixing in vital capacity maneuvers but only small effects in tidal volume breaths.  相似文献   

10.
Vital capacity single-breath washouts using 90% O2-5% He-5% SF6 as a test gas mixture were performed with subjects sitting on a stool (upright) or recumbent on a stretcher (prone, supine, lateral left, lateral right, with or without rotation at end of inhalation). On the basis of the combinations of supine and prone maneuvers, gravity-dependent contributions to N2 phase III slope and N2 phase IV height in the supine posture were estimated at 18% and 68%, respectively. Whereas both He and SF6 slope decreased from supine to prone, the SF6-He slope difference actually increased (P = 0.015). N2 phase III slopes, phase IV heights, and cardiogenic oscillations were smallest in the prone posture, and we observed similarities between the modifications of He and SF6 slopes from upright to prone and from upright to short-term microgravity. These results suggest that phase III slope is partially due to emptying patterns of small units with different ventilation-to-volume ratios, corresponding to acini or groups of acini. Of all body postures under study, the prone position most reduces the inhomogeneities of ventilation during a vital capacity maneuver at both inter- and intraregional levels.  相似文献   

11.
The predictions of a single-path trumpet-bell numerical model of steady-state CO2 and infused He and sulfur hexafluoride (SF6) washout were compared with experimental measurements on healthy human volunteers. The mathematical model used was a numerical solution of the classic airway convention-diffusion equation with the addition of a distributed source term at the alveolar end. In the human studies, a static sampling technique was used to measure the exhaled concentrations and phase III slopes of CO2, He, and SF6 during the intravenous infusion of saline saturated with a mixture of the two inert gases. We found good agreement between the experimentally determined normalized slopes (phase III slope divided by mixed expired concentration) and the numerically determined normalized slopes in the model with no free parameters other than the physiological ones of upper airway dead space, tidal volume, breathing frequency, and breathing pattern (sinusoidal). We conclude 1) that the single-path (Weibel) trumpet-bell anatomic model used in conjunction with the airway convection-diffusion equation with a distributed source term is adequate to describe the steady-state lung washout of CO2 and infused He and SF6 in normal lungs and 2) that the interfacial area separating the tidal volume fron from the functional residual capacity gas, through which gas diffusion into the moving tidal volume occurs, exerts a major effect on the normalized slopes of phase III.  相似文献   

12.
The gravity dependence of phases III (IIIa and IIIb), IV, and V of simultaneously performed He-bolus and N2-resident gas single-breath washout curves was studied in different body positions by the technique of 180 degrees body inversion between inspiration and expiration. Phase IIIa was mainly determined by nongravitational factors. Phase IIIb was influenced by gravitational, as well as nongravitational, factors. The former were more important with the bolus method in both lateral decubitus positions and the latter with the N2 method in the prone and supine positions. Phases IV and V were mainly gravity dependent. The difference in gravity dependence between the He and N2 methods appeared to be correlated with the vertical interregional concentration gradients of both gases; indeed the vertical gradient was larger for the 133Xe bolus inhaled at residual volume (which is comparable to the He-bolus distribution) than for the 133Xe residual volume-to-total lung capacity ratio (which is comparable to the N2-resident gas distribution). The greater gravity dependence in the lateral decubitus positions than in the supine or prone postures was related to the larger vertical interregional concentration difference as well as to the more pronounced sequential ventilation in the former positions. Finally the negligible effect of gravity on phase IIIa, its moderate effect on phase IIIb, and its predominant effect on phases IV and V were in agreement with the increased sequential filling and emptying due to gravity near residual volume.  相似文献   

13.
Twelve stable adult asthmatics slowly inhaled boluses of He at 20, 40, or 60% vital capacity (VC); these volumes were achieved either by expiring from total lung capacity (TLC) or by inspiring from residual volume (RV). Inspirations were continued to TLC and then were followed by slow expirations to RV while expired He was measured as a function of expired volume. At 20% VC slopes of alveolar plateaus (phase III) were positive, at 40% VC they were flat, and at 60% VC they were negative; at 20 and 60% VC the slopes were steeper than those in normals. When boluses were administered at 40 and 60% VC, He washout curves were independent of lung volume history. However at 20% VC the slope of phase III was significantly less positive when boluses were given after inspiration from RV than after expiration from TLC. In eight subjects, who were given inhaled beta-agonists, slopes of all He washouts decreased and became independent of volume history at 20% VC. We conclude that in asthmatics at low lung volumes the airways that determine ventilation distribution behave as though they have less hysteresis than the lung parenchyma probably due to increased airway tone.  相似文献   

14.
Exhaled acetone is measured to estimate exposure or monitor diabetes and congestive heart failure. Interpreting this measurement depends critically on where acetone exchanges in the lung. Health professionals assume exhaled acetone originates from alveolar gas exchange, but experimental data and theoretical predictions suggest that acetone comes predominantly from airway gas exchange. We measured endogenous acetone in the exhaled breath to evaluate acetone exchange in the lung. The acetone concentration in the exhalate of healthy human subjects was measured dynamically with a quadrupole mass spectrometer and was plotted against exhaled volume. Each subject performed a series of breathing maneuvers in which the steady exhaled flow rate was the only variable. Acetone phase III had a positive slope (0.054+/-0.016 liter-1) that was statistically independent of flow rate. Exhaled acetone concentration was normalized by acetone concentration in the alveolar air, as estimated by isothermal rebreathing. Acetone concentration in the rebreathed breath ranged from 0.8 to 2.0 parts per million. Normalized end-exhaled acetone concentration was dependent on flow and was 0.79+/-0.04 and 0.85+/-0.04 for the slow and fast exhalation rates, respectively. A mathematical model of airway and alveolar gas exchange was used to evaluate acetone transport in the lung. By doubling the connective tissue (epithelium+mucosal tissue) thickness, this model predicted accurately (R2=0.94+/-0.05) the experimentally measured expirograms and demonstrated that most acetone exchange occurred in the airways of the lung. Therefore, assays using exhaled acetone measurements need to be reevaluated because they may underestimate blood levels.  相似文献   

15.
Pulmonary gas exchange was measured in seven resting supine subjects breathing air or a dense gas mixture containing 21% O2 in sulfur hexafluoride (SF6). The mean value of the alveolar-arterial oxygen difference (AaDO2) decreased from 12.4 on air to 7.0 on SF6 (P less than 0.01), and increased again to 13.4 when air breathing resumed (P less than 0.01). No differences occurred between gas mixtures for O2 consumption, respiratory quotient, minute ventilation, breathing frequency, heart rate, or blood pressure, and the improved oxygen transfer could not be attributed to changes in cardiac output or mixed venous oxygen content in the one subject in which they were measured. These results are best explained by an altered distribution of ventilation during dense gas breathing, so that the ventilation-perfusion ratio (VA/Q) variance was reduced. Of several considered mechanisms, we favor one in which SF6 promotes cardiogenic gas mixing between peripheral parallel units having different alveolar gas concentrations. This mechanism allows for observed increases in arterial carbon dioxide tension and dead space-to-tidal volume ratio during dense gas breathing, and suggests that intraregional VA/Q variance accounts for at least one-half of the resting AaDO2 in healthy supine young men.  相似文献   

16.
Airway lengthening after pneumonectomy (PNX) may increase diffusive resistance to gas mixing (1/D(G)); the effect is accentuated by increasing acinar gas density but is difficult to detect from lung CO-diffusing capacity (Dl(CO)). Because lung NO-diffusing capacity (Dl(NO)) is three- to fivefold that of Dl(CO), whereas 1/D(G) for NO and CO are similar, we hypothesized that a density-dependent fractional reduction would be greater for Dl(NO) than for Dl(CO). We measured Dl(NO) and Dl(CO) at two tidal volumes (Vt) and with three background gases [helium (He), nitrogen (N(2)), and sulfur hexafluoride (SF(6))] in immature dogs 3 and 9 mo after right PNX (5 and 11 mo of age). At maturity (11 mo), background gas density had no effect on Dl(NO), Dl(CO), or Dl(NO)-to-Dl(CO) ratio in sham controls. In PNX animals, Dl(NO) declined 25-50% in SF(6) relative to He and N(2), and Dl(NO)/Dl(CO) declined approximately 50% in SF(6) relative to He at a Vt of 15 ml/kg, consistent with a significant 1/D(G). At 5 mo of age, Dl(NO)/Dl(CO) declined 25-45% in SF(6) relative to He and N(2) in both groups, but Dl(CO) increased paradoxically in SF(6) relative to N(2) or He by 20-60%. Findings suggest that SF(6), besides increasing 1/D(G), may redistribute ventilation and/or enhance acinar penetration of the convective front.  相似文献   

17.
Allen et al. (J. Clin. Invest. 76: 620-629, 1985) reported that regional phasic lung distension during high-frequency oscillations (HFO) is substantially and systemically heterogeneous when both frequency (f) and tidal volume (VT) are large. They hypothesized that this phenomenon was attributable to central airway geometry and preferential axial flow induced therein by the momentum flux of the inspiratory gas stream. According to that hypothesis, the observed distribution of phasic lung distension would depend on the ratio VT/VD* (where VD* is an index of anatomic dead space), independent of gas density (rho), when f is scaled in proportion to lung resonant frequency, fo. To test this hypothesis, we used the methods of Allen et al. (ibid.) to study six excised dog lungs during HFO (f = 2-32 Hz; VT = 5-80 ml) using gases of different densities. Alveolar pressure excursions (PA) were measured as rho spanned a 12-fold range using He, air, and SF6. The apex-to-base and right-to-left ratios of PA were used as indexes of regional heterogeneity of phasic lung distension. For each gas at low f, distension of the lung base was favored slightly independent of VT, but at higher f distension of the lung apex was favored when VT was small, whereas distension of the lung base was favored when VT was large. In addition, we observed substantial right-to-left differences in apical lobes during oscillation at high f not seen before.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
After single-lung transplantation (SLT) for emphysema, heterogeneity of ventilation distribution in the graft can be assessed by measuring the slope of the alveolar plateau, computed from a single-breath test, performed in lateral decubitus with this lung in the nondependent position. We tested the validity of this technique in patients with SLT for interstitial lung diseases (ILD). Twelve patients with SLT for ILD, 12 nontransplanted patients with ILD, and 10 healthy control subjects performed single-breath washouts in right and left lateral decubitus; nitrogen slope (S(N(2))) and the difference between SF(6) and He slopes (S(SF(6))-S(He)) were measured between 75 and 100% of expired volume. In 10 transplant recipients, the volume of each lung was measured in both postures by computerized tomography. Slopes were unaffected by posture in normal control subjects and patients with ILD. On the other hand, S(N(2)) and S(SF(6))-S(He) in transplant recipients were smaller with the graft in the nondependent than in the dependent position (0.366 +/- 0.445 vs. 1.035 +/- 0.498 for S(N(2)); 0.094 +/- 0.201 vs. 0.218 +/- 0.277 for S(SF(6))-S(He)). Values of S(N(2)) and S(SF(6))-S(He) obtained in the former position were similar to those obtained in normal controls, while values obtained in the latter position were similar to those obtained in nontransplanted patients with ILD. Computerized tomography studies with the graft in the nondependent position indicated that this lung contributed 82% of the volume expired below functional residual capacity. We conclude that, in patients with SLT for ILD, the slope of the alveolar plateau obtained with the graft in the nondependent position reflects heterogeneity of ventilation distribution in this lung.  相似文献   

19.
During forced vital capacity maneuvers in subjects with expiratory flow limitation, lung volume decreases during expiration both by air flowing out of the lung (i.e., exhaled volume) and by compression of gas within the thorax. As a result, a flow-volume loop generated by using exhaled volume is not representative of the actual flow-volume relationship. We present a novel method to take into account the effects of gas compression on flow and volume in the first second of a forced expiratory maneuver (FEV(1)). In addition to oral and esophageal pressures, we measured flow and volume simultaneously using a volume-displacement plethysmograph and a pneumotachograph in normal subjects and patients with expiratory flow limitation. Expiratory flow vs. plethysmograph volume signals was used to generate a flow-volume loop. Specialized software was developed to estimate FEV(1) corrected for gas compression (NFEV(1)). We measured reproducibility of NFEV(1) in repeated maneuvers within the same session and over a 6-mo interval in patients with chronic obstructive pulmonary disease. Our results demonstrate that NFEV(1) significantly correlated with FEV(1), peak expiratory flow, lung expiratory resistance, and total lung capacity. During intrasession, maneuvers with the highest and lowest FEV(1) showed significant statistical difference in mean FEV(1) (P < 0.005), whereas NFEV(1) from the same maneuvers were not significantly different from each other (P > 0.05). Furthermore, variability of NFEV(1) measurements over 6 mo was <5%. We concluded that our method reliably measures the effect of gas compression on expiratory flow.  相似文献   

20.
It has been shown that measurements of the diffusing capacity of the lung for CO made during a slow exhalation [DLCO(exhaled)] yield information about the distribution of the diffusing capacity in the lung that is not available from the commonly measured single-breath diffusing capacity [DLCO(SB)]. Current techniques of measuring DLCO(exhaled) require the use of a rapid-responding (less than 240 ms, 10-90%) CO meter to measure the CO concentration in the exhaled gas continuously during exhalation. DLCO(exhaled) is then calculated using two sample points in the CO signal. Because DLCO(exhaled) calculations are highly affected by small amounts of noise in the CO signal, filtering techniques have been used to reduce noise. However, these techniques reduce the response time of the system and may introduce other errors into the signal. We have developed an alternate technique in which DLCO(exhaled) can be calculated using the concentration of CO in large discrete samples of the exhaled gas, thus eliminating the requirement of a rapid response time in the CO analyzer. We show theoretically that this method is as accurate as other DLCO(exhaled) methods but is less affected by noise. These findings are verified in comparisons of the discrete-sample method of calculating DLCO(exhaled) to point-sample methods in normal subjects, patients with emphysema, and patients with asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号