首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human neuron-specific enolase (NSE) or isozyme gamma has been expressed with a C-terminal His-tag in Escherichia coli. The enzyme has been purified, crystallized and its crystal structure determined. In the crystals the enzyme forms the asymmetric complex NSE x Mg2 x SO4/NSE x Mg x Cl, where "/" separates the dimer subunits. The subunit that contains the sulfate (or phosphate) ion and two magnesium ions is in the closed conformation observed in enolase complexes with the substrate or its analogues; the other subunit is in the open conformation observed in enolase subunits without bound substrate or analogues. This indicates negative cooperativity for ligand binding between subunits. Electrostatic charge differences between isozymes alpha and gamma, -19 at physiological pH, are concentrated in the regions of the molecular surface that are negatively charged in alpha, i.e. surface areas negatively charged in alpha are more negatively charged in gamma, while areas that are neutral or positively charged tend to be charge-conserved.  相似文献   

2.
The cyclic GMP phosphodiesterase of retinal rods is composed of three distinct polypeptides: alpha (90 kDa), beta (86 kDa), and gamma (10 kDa). In this multimeric form, the enzyme is inhibited. Its activity is stimulated by the interaction with the GTP-bound form of the T alpha subunit of transducin and reversed upon the recombination of the inhibitory gamma subunit with the catalytic alpha beta subunit. We show here by a novel coimmunoprecipitation technique that the gamma subunit, but not the alpha beta subunit, forms a 1:1 complex with T alpha. The binding of gamma to T alpha is nucleotide-dependent and is facilitated by GTP gamma S or Gpp(NH)p. This study provides convincing evidence that the T alpha-GTP subunit of transducin stimulates phosphodiesterase activity by binding to gamma and physically carrying it away from alpha beta.  相似文献   

3.
An energy-transducing adenosine triphosphatase (ATPase, EC 3.6.1.3) that contains an extra polypeptide (delta) as well as three intrinsic subunits (alpha, beta, gamma) was purified from Micrococcus lysodeikticus membranes. The apparent subunit stoichiometry of this soluble ATPase complex is alpha 3 beta 3 gamma delta. The functional role of the subunits was studied by correlating subunit sensitivity to trypsin and effect of antibodies raised against holo-ATPase and its alpha, beta and gamma subunits with changes in ATPase activity and ATPase rebinding to membranes. A form of the ATPase with the subunit proportions 1.67(alpha):3.00(beta:0.17(gamma) was isolated after trypsin treatment of purified ATPase. This form has more than twice the specific activity of native enzyme. Other forms with less relative proportion of alpha subunits and absence of gamma subunit are not active. Of the antisera to subunits, only anti-(beta-subunit) serum shows a slight inhibitory effect on ATPase activity, but its combination with either anti-(alpha-subunit) or anti-(gamma-subunit) serum increases the effect. The results suggest that beta subunit is required for full ATPase activity, although a minor proportion of alpha and perhaps gamma subunit(s) is also required, probably to impart an active conformation to the protein. The additional polypeptide not hitherto described in Micrococcus lysodeikticus ATPase had a molecular weight of 20 000 and was found to be involved in ATPase binding to membranes. This 20 000-dalton component can be equated with the delta subunit of other energy-transducing ATPases and its association with the (alpha, beta, gamma) M. lysodeikticus ATPase complex appears to be dependent on bivalent cations. The present results do not preclude the possibility that the gamma subunit also plays a role in ATPase binding, in which, however, the major subunits do not seem to play a role.  相似文献   

4.
G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling beta2 adrenergic receptors causes rapid reversible translocation of the G protein gamma11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the beta1 subunit suggests that gamma11 translocates as a betagamma complex. Pertussis toxin ADP ribosylation of the alphai subunit type or substitution of the C terminal domain of alphao with the corresponding region of alphas inhibits gamma11 translocation demonstrating that alpha subunit interaction with a receptor and its activation are requirements for the translocation. The rate of gamma11 translocation is sensitive to the rate of activation of the G protein alpha subunit. alpha subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of gamma11 translocation compared to alpha subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of gamma11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of gamma11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and alpha subunit types in a live cell.  相似文献   

5.
M R Mazzoni  H E Hamm 《Biochemistry》1989,28(25):9873-9880
The guanyl nucleotide binding regulatory protein of retinal rod outer segments, called Gt, that couples the photon receptor rhodopsin with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, alpha t and beta gamma t. The effect of monoclonal antibody binding to the alpha t subunit of Gt on subunit association has been investigated in the present study. It was previously shown that this monoclonal antibody, mAb 4A, blocks interactions with rhodopsin and its epitope was located within the region Arg310-Phe350 at the COOH terminus of the alpha t subunit. In this paper, we show that mAb 4A disrupts the Gt complex. Gt migrates in 5-20% linear sucrose density gradients as a monomer, with a sedimentation coefficient of 4.1 +/- 0.07 S, while in the presence of mAb 4A, the alpha t and beta gamma t subunits show sedimentation coefficients of 7.7 +/- 0.2 and 3.7 +/- 0.1 S, respectively. The beta gamma t subunit migrates with the same sedimentation rate as pure beta gamma t. Nonimmune rabbit IgG does not modify the sedimentation behavior of Gt. The Fab fragment of mAb 4A also dissociates the Gt complex, as suggested by the change of the sedimentation rate of alpha t. This effect of mAb 4A on Gt subunit association was also confirmed by immunoprecipitation studies in the presence of detergent. In the presence of detergent, subunit association is not affected, but the formation of Gt oligomers and, therefore, the nonspecific precipitation of beta gamma t subunit are reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The functional interactions of the retinal G protein, transducin, with the cyclic GMP phosphodiesterase (PDE) have been examined using the different purified subunit components of transducin and the native and trypsin-treated forms of the effector enzyme. The limited trypsin treatment of the PDE removes the low molecular weight gamma subunit (Mr approximately 14,000) of the enzyme, yielding a catalytic moiety comprised of the two larger molecular subunits (alpha, Mr approximately 85,000-90,000; beta, Mr approximately 85,000-90,000), which is insensitive to the addition of either the pure alpha T.GTP gamma S species or the pure beta gamma T subunit complex. However, the addition of the pure alpha T.GDP species to the trypsin-treated PDE (tPDE) results in a significant (90-100%) inhibition of the enzyme activity. This inhibition can be reversed by excess beta gamma T, suggesting that the holotransducin molecule does not (functionally) interact with the tPDE. However, the inhibition by alpha T.GDP is not reversed by the alpha T.GTP gamma S complex, over a range of [alpha T.GTP gamma S] which elicits a marked stimulation of the native enzyme activity, suggesting that the activated alpha T species does not effectively bind to the tPDE. The alpha T.GDP complex also is capable of inhibiting the alpha T.GTP gamma S-stimulated cyclic GMP hydrolysis by the native PDE. This inhibition can be reversed by excess alpha T.GTP gamma S, as well as by beta gamma T, indicating that the binding site for the activated alpha T species is in close proximity and/or overlaps the binding site for the alpha T.GDP complex on the enzyme. Overall, these results are consistent with a scheme where (a) both the small and larger molecular weight subunits of PDE participate in alpha T-PDE interactions, (b) the activation of PDE by the alpha T.GTP gamma S (or alpha T.GTP) species does not result in the complete dissociation of the gamma subunit from the enzyme, and (c) the deactivation of this signal transduction system results from a direct interaction between the alpha T.GDP species and the catalytic moiety of the effector enzyme.  相似文献   

7.
J P Merlie  J Lindstrom 《Cell》1983,34(3):747-757
We have studied assembly of acetylcholine receptor in vivo using subunit-specific monoclonal antibodies and immunoprecipitation with alpha-bungarotoxin and antitoxin. We have identified three distinct forms of the alpha subunit. The newly synthesized alpha subunit species has a sedimentation coefficient of 5S and is recognized only by antibody specific for SDS-denatured alpha subunit. We have called this species alpha 61. The 5S alpha Tx species is not associated with beta subunits and is probably monomeric. alpha Tx is formed from alpha 61 with a half-time of 15 min and an efficiency of approximately equal to 30%. Formation of alpha Tx involves a conformational change, and we suggest that this conformation is dependent upon or stabilized by disulfide bond formation. The assembly of alpha Tx with beta subunits (and probably gamma and delta) into a 9S complex appears to be an efficient but slow process requiring more than 90 min. Unassembled alpha 61 subunits are degraded rapidly. However, subunit degradation is a result of failure to assemble, rather than its cause.  相似文献   

8.
Previous studies have suggested that protein kinase C (PKC) isoforms differentially influence the sensitivity of gamma-aminobutyric acid(A) (GABA(A) ) receptor responses in brain. Both PKCgamma and PKCepsilon knock-out mice exhibit altered ethanol potentiation of GABA(A) receptor mediated Cl(-) flux. Furthermore, chronic ethanol consumption alters GABA(A) receptor function and receptor subunit peptide expression by mechanisms that are not yet understood. The present study explored the possibility that PKC isoforms are directly associated with GABA(A) receptors, and this association is influenced by chronic ethanol exposure. GABA(A) receptors containing alpha1 or alpha4 subunits were immunoprecipitated from solubilized protein derived from the membrane fraction of rat cerebral cortex using selective antibodies. Immunoprecipitated receptors were screened by western blot analysis for the presence of PKCdelta, gamma and epsilon isoforms. We found pronounced labeling of PKCgamma but not PKCdelta or PKCepsilon in the alpha1 and alpha4 subunit immunoprecipitates. Immunoprecipitation with PKCgamma, but not with IgG antibody also yielded GABA(A) receptor alpha1 and alpha4 subunits in the immunoprecipitate. The association of PKCgamma with alpha1-containing receptors was decreased 44 +/- 11% after chronic ethanol consumption. In contrast, PKCgamma associated with alpha4-containing receptors was increased 32 +/- 7% after chronic ethanol consumption. These results suggest that PKCgamma may be involved in GABA(A) receptor adaptations following chronic ethanol consumption.  相似文献   

9.
Abstract Ultrasensitive enzyme immunoassay systems for the assay of rat brain enolase isozymes ( αα , αγ , and γγ forms) were prepared by use of β- d -galactosidase from Escherichia coli as label and the purified rabbit antibodies to αα and γγ enolases. The antibodies were purified from the immunoglobulin G (IgG) fractions of antisera by immunoaffinity chromatography with a column of the corresponding antigen-coupled Sepharose. Sandwich-type immunoassay systems with the galactosidase-labeled antibody Fab'fragments and the antibody F(abapos;)2-immobilized polystyrene beads could determine amounts as small as 1 amol (10−18 mol) of each isozyme. Purkinje cell bodies picked up from the bulk-separated fraction by means of a nylon loop were subjected to the assay at the level of single cells. In contrast to previous report, this neuron contained not only the γγ but also the αγ and αα enolases at a level of amol per cell body, although the concentration of γγ was the highest. Immunohistochemical experiments on the cerebellum with the peroxidase-labeled antirabbit IgG antibody and the unlabeled antibody method confirmed the above results, and indicated that both α and γ subunits of the enolase were stained intensely in axons.  相似文献   

10.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

11.
An antibody (AS/7) prepared against the carboxyl-terminal decapeptide of the alpha subunit of transducin (alpha T) has been used in various reconstitution studies aimed at characterizing the role of the carboxyl-terminal domain in the different functional activities of transducin. The peptide-specific antibody is a potent inhibitor of the rhodopsin-stimulated GTPase activity in phospholipid vesicle systems containing pure rhodopsin and pure holo-transducin, or rhodopsin and the purified alpha T and beta/gamma (beta gamma T) subunit components, with the highest levels of inhibition (80-95%) occurring under conditions where the molar ratio of holo-transducin (or alpha T) to AS/7 approximately equal to 1. The inhibition of the receptor-stimulated GTPase does not represent an interference in the interactions between the alpha T subunit and the beta gamma T complex, since essentially identical levels of inhibition are observed when AS/7 is preincubated with either free alpha T, holo-transducin, or alpha T in the presence of excess beta gamma T, prior to assay. The AS/7-induced inhibition also does not appear to reflect an alteration in the ability of alpha T to bind or hydrolyze GTP and, in fact, the incubation of alpha T with AS/7 results in a stimulation of the intrinsic GTPase activity for alpha T alone (i.e. in the absence of rhodopsin). Thus, we conclude that the inhibition of the rhodopsin-stimulated GTPase activity by AS/7 is due to the direct blocking (by the antibody) of rhodopsin-alpha T interactions. While AS/7 is capable of uncoupling rhodopsin-transducin interactions, it appears to promote the stimulation of the cyclic GMP phosphodiesterase (PDE) by an activated alpha T subunit. Specifically, when the pure alpha T-guanosine 5-O-(3-thiotriphosphate) (alpha TGTP gamma S) species is preincubated with AS/7 prior to its addition to an assay solution containing PDE, there is at least a 4-fold increase in the resultant cyclic GMP hydrolysis relative to the activities measured with alpha TGTP gamma S, alone, or with alpha TGTP gamma S preincubated with nonimmune (control) rabbit IgG. The AS/7-induced promotion is specific for the active form of alpha T; the inactive alpha TGDP species does not stimulate PDE activity either in the presence or absence of the antibody. The different effects by AS/7 on the various activities of the alpha T subunit highlight the existence of distinct functional domains on alpha T.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In comparison with the alpha subunit of G proteins, the role of the beta subunit in signaling is less well understood. During the regulation of effectors by the betagamma complex, it is known that the beta subunit contacts effectors directly, whereas the role of the beta subunit is undefined in receptor-G protein interaction. Among the five G protein beta subunits known, the beta(4) subunit type is the least studied. We compared the ability of betagamma complexes containing beta(4) and the well characterized beta(1) to stimulate three different effectors: phospholipase C-beta2, phospholipase C-beta3, and adenylyl cyclase type II. beta(4)gamma(2) and beta(1)gamma(2) activated all three of these effectors with equal efficacy. However, nucleotide exchange in a G protein constituting alpha(o)beta(4)gamma(2) was stimulated significantly more by the M2 muscarinic receptor compared with alpha(o)beta(1)gamma(2). Because alpha(o) forms heterotrimers with beta(4)gamma(2) and beta(1)gamma(2) equally well, these results show that the beta subunit type plays a direct role in the receptor activation of a G protein.  相似文献   

13.
In this study, we have examined the interactions of the beta gamma subunit complex of the retinal GTP-binding protein transducin (beta gamma T) with its alpha subunit (alpha T) using fluorescence spectroscopic approaches. The beta gamma T subunit complex was covalently labeled with 2-(4'-maleimidylanilino)napthalene-6-sulfonic acid (MIANS), an environmentally sensitive fluorescent cysteine reagent. The formation of the MIANS beta gamma T complexes (two to five MIANS adducts per beta gamma T) resulted in 2-3-fold enhancements in the MIANS fluorescence, and 20-25-nm blue shifts in the fluorescence emission maxima, relative to the emission for identical concentrations of MIANS-labeled MIANS complexes. The addition of alpha T.GDP to these MIANS beta gamma T complexes resulted in an additional enhancement in the MIANS fluorescence (typically ranging from 20 to 40%) and a 5-10-nm blue shift in the wavelength for maximum emission. These fluorescence changes were specifically elicited by the GDP-bound form of alpha T and were not observed upon the addition of purified alpha T.guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) complexes to the MIANS beta gamma T species. Conditions which resulted in the activation of the alpha T.GDP subunit (i.e. the addition of AlF4- or the addition of rhodopsin-containing vesicles and GTP gamma S) resulted in a reversal of the alpha T.GDP-induced enhancement of the MIANS beta gamma T fluorescence. Thus the MIANS beta gamma T fluorescence provided a spectroscopic monitor for transducin-subunit association and transducin-activation. Based on the results from studies using this spectroscopic read-out, it appears that the association of the alpha T.GDP species with the beta gamma T subunit complex to form the holotransducin molecule is rapid and does not limit the rate of the rhodopsin-stimulated activation of holotransducin. However, either the dissociation of the activated alpha T subunit from the beta gamma T complex, or a conformational change in beta gamma T which occurs as a result of the subunit dissociation event, appears to be slow relative to the G protein-subunit association event.  相似文献   

14.
In bullfrog (Rana catesbiana) rods the activity of cyclic GMP (cGMP) phosphodiesterase was stimulated 10 times by washing disc membranes with an isotonic, GTP-containing buffer. This stimulation was maintained following hydrolysis of GTP and after removal of guanine nucleotides. At least 60-70% of the inhibitory gamma subunit of cGMP phosphodiesterase (P gamma) was physically released from membranes by these washing procedures. When cGMP phosphodiesterase was activated by a hydrolysis-resistant GTP analogue, P gamma was found in the supernatant complexed with the transducin alpha subunit (T alpha) using three chromatography systems. When GTP was used to activate cGMP phosphodiesterase, P gamma was also found in the supernatant complexed with GDP.T alpha. This complex was also isolated using the same three chromatography systems, indicating that P gamma remained tightly bound to T alpha even after bound GTP was hydrolyzed. Interaction with the beta,gamma subunits of transducin, which remained associated with disc membranes, was required for the release of P gamma from the GDP.T alpha complex, which resulted in the deactivation of active cGMP phosphodiesterase. We conclude that during activation of cGMP phosphodiesterase, P gamma is complexed with T alpha (both GTP and GDP forms) in the supernatant and that, following GTP hydrolysis, beta,gamma subunits of transducin are necessary for the release of P gamma from the complex and the resulting inactivation of cGMP phosphodiesterase in frog photoreceptors.  相似文献   

15.
Distribution of three isoenzymes of brain enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11) (alpha alpha, alpha gamma and gamma gamma forms) in clonal cell lines of neuroblastoma (NS20Y and N18TG-2), glioma (C6BU-1), and hybrid cells NG108-15, NCB20, Nbr10A, Nbr20A, N4G-B-a and N4G-C-a) was examined with a sensitive enzyme immunoassay system, that uses a rabbit antibody to rat brain enolase alpha alpha or gamma gamma. All cell lines tested were found to possess the enolase which contains gamma subunit (a neuron-specific protein), although the alpha alpha enolase (non-neuronal enolase) was the dominant from in these cells. A clonal rat glioma (C6BU-1) cell contained about 40, 1 and 0.07 microgram/mg protein of alpha alpha, alpha gamma and gamma gamma enolases, respectively, at the confluent stage. Inclusion of 1 mM dibutyryl cyclic AMP or 10 micrometers prostaglandin E1 plus 1 mM theophylline in the culture medium of a hybrid cell (NG108-15, mouse neuroblastoma x rat glioma) resulted in a more than 2-fold increase in the concentrations of alpha gamma and gamma gamma in the cell within a few days, with little change in the alpha alpha enolase concentration. A similar increase in the concentration of gamma subunit by the nucleotide (but not by prostaglandin E1 plus theophylline) was also observed in the glioma cell (C6BU-1) line. The results suggest that the gamma subunit or the neuron-specific protein can be regulated in NG108-15 and C6BU-1 cells in a cyclic AMP-dependent fashion.  相似文献   

16.
Previously we reported that ATPase activity was recovered when the subunit alpha + beta + gamma or alpha + beta + delta of the F1-ATPase from the thermophilic bacterium PS3 were combined under appropriate conditions. Unlike that of holoenzyme (TF1) and the alpha + beta + gamma mixture, ATPase activity of the alpha + beta + delta mixture was heat labile and insensitive to azide inhibition (Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1977) J. Biol. Chem. 252, 3480-3485). Here, the properties of purified subunit complexes were compared in detail with those of native TF1. The subunit stoichiometries of the complexes were determined to be alpha 3 beta 3 gamma 1 and alpha 3 beta 3 delta 1. In general, the properties of the alpha 3 beta 3 gamma complex are very similar to those of TF1, whereas those of the alpha 3 beta 3 delta complex are significantly different. ATPase activity of the alpha 3 beta 3 delta complex is cold labile. The alpha 3 beta 3 delta complex showed a less stringent specificity for substrate and divalent cation than TF1 and the alpha 3 beta 3 gamma complex. Two Km values for ATP were exhibited by the alpha 3 beta 3 delta complex with the lower one being in the range of 0.1 microM. Equilibrium dialysis experiments revealed that the alpha 3 beta 3 delta complex cannot specifically bind ADP in the absence of Mg2+, while TF1 and the alpha 3 beta 3 gamma complex bind about 1 and 3 mol of ADP/mol of enzyme, respectively. ADP-dependent inactivation of the alpha 3 beta 3 delta complex by dicyclohexylcarbodiimide was not observed. The alpha 3 beta 3 gamma complex was readily formed when the gamma subunit was added to the alpha 3 beta 3 delta complex, suggesting that the alpha 3 beta 3 delta complex is not a "dead-end" complex. The cause of thermolability of the alpha 3 beta 3 delta complex appears to be the low stability of the complex itself at high temperature and not due to an unusually low thermostability of the delta subunit.  相似文献   

17.
S R Green  A Spalding  T Ashford  C G Proud  M F Tuite 《Gene》1991,108(2):253-258
A human eIF-2 alpha cDNA (encoding alpha-subunit of the eukaryotic initiation factor-2) was expressed under the control of the galactose-regulated GAL1, 10 promoter, in Saccharomyces cerevisiae, in order to study the possible interactions of human eIF-2 alpha with the yeast protein synthesis apparatus. Isoelectric focusing coupled with Western-blot analysis demonstrated that the human eIF-2 alpha subunit synthesized in yeast under a variety of growth conditions was detected as two bands which co-migrated with the phosphorylated and unphosphorylated forms of rabbit eIF-2 alpha, suggesting covalent modification in vivo. Cell fractionation studies further demonstrated that the synthesised human eIF-2 alpha protein, though present in the cytoplasm, was largely associated with the yeast ribosomes, but could be removed from these by washing with 0.3 M KCl. This possible association of the synthesised human subunit into a three-subunit (alpha, beta and gamma) eIF-2 complex was further examined by partial purification of the yeast eIF-2 complex and estimation of the molecular mass of this complex. Immunoreactive eIF-2 alpha was found in fractions with eIF-2 activity and the estimated molecular mass (130 kDa) corresponded to that predicted for the eIF-2 trimer. These analyses suggest that human eIF-2 alpha subunit synthesised in yeast can become involved with the yeast protein synthetic apparatus, though whether this is a functional incorporation requires further genetic studies.  相似文献   

18.
A mutant F(1)-ATPase alpha(3)beta(3)gamma subcomplex from the thermophilic Bacillus PS3 was constructed, in which 111 amino acid residues (Val(92) to Phe(202)) from the central region of the gamma subunit were replaced by the 148 amino acid residues of the homologous region from spinach chloroplast F(1)-ATPase gamma subunit, including the regulatory stretch, and were designated as alpha(3)beta(3)gamma((TCT)) (Thermophilic-Chloroplast-Thermophilic). By the insertion of this regulatory region into the gamma subunit of thermophilic F(1), we could confer the thiol modulation property to the thermophilic alpha(3)beta(3)gamma subcomplex. The overexpressed alpha(3)beta(3)gamma((TCT)) was easily purified in large scale, and the ATP hydrolyzing activity of the obtained complex was shown to increase up to 3-fold upon treatment with chloroplast thioredoxin-f and dithiothreitol. No loss of thermostability compared with the wild type subcomplex was found, and activation by dithiothreitol was functional at temperatures up to 80 degrees C. alpha(3)beta(3)gamma((TCT)) was inhibited by the epsilon subunit from chloroplast F(1)-ATPase but not by the one from the thermophilic F(1)-ATPase, indicating that the introduced amino acid residues from chloroplast F(1)-gamma subunit are important for functional interaction with the epsilon subunit.  相似文献   

19.
J W Erickson  R A Cerione 《Biochemistry》1991,30(29):7112-7118
Resonance energy-transfer approaches have been used to directly monitor the interactions of the GTP gamma S-bound alpha subunit of transducin (alpha T GTP gamma S) with the retinal cyclic GMP phosphodiesterase (PDE). The PDE was labeled with 5-(iodoacetamido) fluorescein (IAF-PDE) and served as the fluorescence donor in these experiments while the alpha T GTP gamma S was labeled with eosin-5-isothiocyanate (EITC-alpha T GTP gamma S) and served as the energy acceptor. The EITC-alpha T GTP gamma S species was able to quench a significant percentage of the IAF-PDE fluorescence (typically greater than or equal to 30%) due to resonance energy transfer between the IAF and EITC moieties. The quenching by the EITC-alpha T GTP gamma S species was dose-dependent, saturable (Kd = 21 nM), and specific for the GTP gamma S-bound form of the alpha T subunit. Limited trypsin treatment of the IAF-PDE, which selectively removes a fluorescein-labeled gamma subunit (gamma PDE), completely eliminates the quenching of the IAF fluorescence by the EITC-alpha T GTP gamma S complex. Although the EITC-alpha T GTP gamma S complex competes with the unlabeled alpha T GTP gamma S for a binding site on the IAF-PDE, as well as for a site on the native PDE, it is not able to stimulate PDE activity. Thus, the modification of a single EITC-reactive residue on the alpha T GTP gamma S complex prevents this subunit from eliciting a key activation event within the retinal effector enzyme.  相似文献   

20.
The purified receptor for the 1,4-dihydropyridine Ca2+ channel blockers from rabbit skeletal muscle contains protein components of 170,000 Da (alpha 1), 175,000 Da (alpha 2), 52,000 Da (beta), and 32,000 Da (gamma) when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Subunit-specific polyclonal antibodies have now been prepared and used to characterize the association of the 32,000-Da polypeptide (gamma subunit) with other subunits of the dihydropyridine receptor. Immunoblot analysis of fractions collected during purification of the dihydropyridine receptor shows that the 32,000-Da polypeptide copurified with alpha 1 and alpha 2 subunits at each step of the purification. In addition, monoclonal antibodies against the alpha 1 and beta subunits immunoprecipitate the digitonin-solubilized dihydropyridine receptor as a multisubunit complex which includes the 32,000-Da polypeptide. Polyclonal antibodies generated against both the nonreduced and reduced forms of the alpha 2 subunit and the gamma subunit have been used to show that the 32,000-Da polypeptide is not a proteolytic fragment of a larger component of the dihydropyridine receptor and not disulfide linked to the alpha 2 subunit. In addition, polyclonal antibodies against the rabbit skeletal muscle 32,000-Da polypeptide specifically react with similar proteins in skeletal muscle of other species including avian and amphibian species. Thus, our results demonstrate that the 32,000-Da polypeptide (gamma subunit) is an integral and distinct component of the dihydropyridine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号