首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study we characterize a novel RhoGAP protein (RC-GAP72) that interacts with actin stress fibers, focal adhesions, and cell-cell adherens junctions via its 185-amino acid C-terminal region. Overexpression of RC-GAP72 in fibroblasts induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. RC-GAP72 mutant truncated downstream of the GTPase-activating protein (GAP) domain retains the ability to stimulate membrane protrusions but fails to affect stress fiber integrity or induce cell retraction. A mutant protein consisting of the C terminus of RC-GAP72 and lacking the GAP domain does not exert any visible effect on cellular morphology. Inactivation of the GAP domain by a point mutation does not abolish the effect of RC-GAP72 on actin stress fibers but moderates its capability to induce membrane protrusions. Our data imply that the cytoskeletal localization of RC-GAP72 and its interaction with GTPases are essential for its effect on the integrity of actin stress fibers, whereas the induction of lamellipodia and filopodia depends on the activity of the GAP domain irrespective of binding to the actin cytoskeleton. We propose that RC-GAP72 affects cellular morphology by targeting activated Cdc42 and Rac1 GTPases to specific subcellular sites, triggering local morphological changes. The overall physiological functions of RC-GAP72 are presently unknown, yet our data suggest that RC-GAP72 plays a role in regulating cell morphology and cytoskeletal organization.  相似文献   

2.
Focal adhesions (FAs) located at the ends of actin/myosin-containing contractile stress fibers form tight connections between fibroblasts and their underlying extracellular matrix. We show here that mature FAs and their derivative fibronectin fibril-aligned fibrillar adhesions (FbAs) serve as docking sites for vimentin intermediate filaments (IFs) in a plectin isoform 1f (P1f)-dependent manner. Time-lapse video microscopy revealed that FA-associated P1f captures mobile vimentin filament precursors, which then serve as seeds for de novo IF network formation via end-to-end fusion with other mobile precursors. As a consequence of IF association, the turnover of FAs is reduced. P1f-mediated IF network formation at FbAs creates a resilient cage-like core structure that encases and positions the nucleus while being stably connected to the exterior of the cell. We show that the formation of this structure affects cell shape with consequences for cell polarization.  相似文献   

3.
4.
Initial integrin-mediated cell-matrix adhesions (focal complexes) appear underneath the lamellipodia, in the regions of the "fast" centripetal flow driven by actin polymerization. Once formed, these adhesions convert the flow behind them into a "slow", myosin II-driven mode. Some focal complexes then turn into elongated focal adhesions (FAs) associated with contractile actomyosin bundles (stress fibers). Myosin II inhibition does not suppress formation of focal complexes but blocks their conversion into mature FAs and further FA growth. Application of external pulling force promotes FA growth even under conditions when myosin II activity is blocked. Thus, individual FAs behave as mechanosensors responding to the application of force by directional assembly. We proposed a thermodynamic model for the mechanosensitivity of FAs, taking into account that an elastic molecular aggregate subject to pulling forces tends to grow in the direction of force application by incorporating additional subunits. This simple model can explain a variety of processes typical of FA behavior. Assembly of FAs is triggered by the small G-protein Rho via activation of two major targets, Rho-associated kinase (ROCK) and the formin homology protein, Dia1. ROCK controls creation of myosin II-driven forces, while Dia1 is involved in the response of FAs to these forces. Expression of the active form of Dia1, allows the external force-induced assembly of mature FAs, even in conditions when Rho is inhibited. Conversely, downregulation of Dia1 by siRNA prevents FA maturation even if Rho is activated. Dia1 and other formins cap barbed (fast growing) ends of actin filaments, allowing insertion of the new actin monomers. We suggested a novel mechanism of such "leaky" capping based on an assumption of elasticity of the formin/barbed end complex. Our model predicts that formin-mediated actin polymerization should be greatly enhanced by application of external pulling force. Thus, the formin-actin complex might represent an elementary mechanosensing device responding to force by enhancement of actin assembly. In addition to its role in actin polymerization, Dia1 seems to be involved in formation of links between actin filaments and microtubules affecting microtubule dynamics. Alpha-tubulin deacetylase HDAC6 cooperates with Dia1 in formation of such links. Since microtubules are known to promote FA disassembly, the Dia1-mediated effect on microtubule dynamics may possibly play a role in the negative feedback loop controlling size and turnover of FAs.  相似文献   

5.
Fibroblasts, when plated on the extracellular matrix protein fibronectin (FN), rapidly spread and form an organized actin cytoskeleton. This process is known to involve both the central alpha5beta1 integrin-binding and the C-terminal heparin-binding regions of FN. We found that within the heparin-binding region, the information necessary for inducing organization of stress fibers and focal contacts was located in a 29-amino acid segment of FN type III module 13 (III13). We did not find a cytoskeleton-organizing role for repeat III14, which had previously been implicated in this process. Within III13, the same five basic amino acids known to be most important for heparin binding were also necessary for actin organization. A substrate of III13 alone was only weakly adhesive but strongly induced formation of filopodia and lamellipodia. Stress fiber formation required a combination of III13 and III7-11 (which contains the integrin alpha5beta1 recognition site), either as a single fusion protein or as separate polypeptides, and the relative amounts of the two binding sites appeared to determine whether stress fibers or filopodia and lamellipodia were the predominant actin structures formed. We propose that a balance of signals from III13 and from integrins regulates the type of actin structures assembled by the cell.  相似文献   

6.
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.  相似文献   

7.
Expression of alpha-smooth muscle actin (alpha-SMA) renders fibroblasts highly contractile and hallmarks myofibroblast differentiation. We identify alpha-SMA as a mechanosensitive protein that is recruited to stress fibers under high tension. Generation of this threshold tension requires the anchoring of stress fibers at sites of 8-30-microm-long "supermature" focal adhesions (suFAs), which exert a stress approximately fourfold higher (approximately 12 nN/microm2) on micropatterned deformable substrates than 2-6-microm-long classical FAs. Inhibition of suFA formation by growing myofibroblasts on substrates with a compliance of < or = 11 kPa and on rigid micropatterns of 6-microm-long classical FA islets confines alpha-SMA to the cytosol. Reincorporation of alpha-SMA into stress fibers is established by stretching 6-microm-long classical FAs to 8.1-microm-long suFA islets on extendable membranes; the same stretch producing 5.4-microm-long classical FAs from initially 4-microm-long islets is without effect. We propose that the different molecular composition and higher phosphorylation of FAs on supermature islets, compared with FAs on classical islets, accounts for higher stress resistance.  相似文献   

8.
Wound healing in Swiss 3T3 cultures was investigated with video-enhanced contrast (VEC) microscopy. The formation of protrusions at the leading edge of cells along wound was investigated in detail during the spreading stage, which usually lasted from 1 to 4 hr postwounding. Lamellipodia exhibited a continuous rearward, or centripetal, transport of a variety of cellular constituents at rates of approximately 0.26 microns/sec from the leading edge. The lamellipodia were also the sites of lateral migration as well as extension and retraction of actin microspikes. Actin fibers oriented transversely to the direction of movement were also observed to transport centripetally at similar rates. These fibers may in part give rise to large actin fibers forming at the interface between the base of the lamellipodia and the lamellae. Beads 0.5 microns in diameter attached to the dorsal surfaces of lamellipodia also transported centripetally at rates of approximately 0.21 microns/sec. Thus there is an apparent correlation between transport of a variety of structures within lamellipodia and with surface movements of lamellipodia.  相似文献   

9.
Cells respond to fluid shear stress through dynamic processes involving changes in actomyosin and other cytoskeletal stresses, remodeling of cell adhesions, and cytoskeleton reorganization. In this study we simultaneously measured focal adhesion dynamics and cytoskeletal stress and reorganization in MDCK cells under fluid shear stress. The measurements used co-expression of fluorescently labeled paxillin and force sensitive FRET probes of α-actinin. A shear stress of 0.74 dyn/cm2 for 3 hours caused redistribution of cytoskeletal tension and significant focal adhesion remodeling. The fate of focal adhesions is determined by the stress state and stability of the linked actin stress fibers. In the interior of the cell, the mature focal adhesions disassembled within 35-40 min under flow and stress fibers disintegrated. Near the cell periphery, the focal adhesions anchoring the stress fibers perpendicular to the cell periphery disassembled, while focal adhesions associated with peripheral fibers sustained. The diminishing focal adhesions are coupled with local cytoskeletal stress release and actin stress fiber disassembly whereas sustaining peripheral focal adhesions are coupled with an increase in stress and enhancement of actin bundles. The results show that flow induced formation of peripheral actin bundles provides a favorable environment for focal adhesion remodeling along the cell periphery. Under such condition, new FAs were observed along the cell edge under flow. Our results suggest that the remodeling of FAs in epithelial cells under flow is orchestrated by actin cytoskeletal stress redistribution and structural reorganization.  相似文献   

10.
Focal adhesions (FAs) are essential structures for cell adhesion, migration, and morphogenesis. Integrin-linked kinase (ILK), which is capable of interacting with the cytoplasmic domain of beta1 integrin, seems to be a key component of FAs, but its exact role in cell-substrate interaction remains to be clarified. Here, we identified a novel ILK-binding protein, affixin, that consists of two tandem calponin homology domains. In CHOcells, affixin and ILK colocalize at FAs and at the tip of the leading edge, whereas in skeletal muscle cells they colocalize at the sarcolemma where cells attach to the basal lamina, showing a striped pattern corresponding to cytoplasmic Z-band striation. When CHO cells are replated on fibronectin, affixin and ILK but not FA kinase and vinculin concentrate at the cell surface in blebs during the early stages of cell spreading, which will grow into membrane ruffles on lamellipodia. Overexpression of the COOH-terminal region of affixin, which is phosphorylated by ILK in vitro, blocks cell spreading at the initial stage, presumably by interfering with the formation of FAs and stress fibers. The coexpression of ILK enhances this effect. These results provide evidence suggesting that affixin is involved in integrin-ILK signaling required for the establishment of cell-substrate adhesion.  相似文献   

11.
Rac1 is an intracellular signal transducer regulating a variety of cell functions. Previous studies by overexpression of dominant-negative or constitutively active mutants of Rac1 in clonal cell lines have established that Rac1 plays a key role in actin lamellipodia induction, cell-matrix adhesion, and cell anoikis. In the present studies, we have examined the cellular behaviors of Rac1 gene-targeted primary mouse embryonic fibroblasts (MEFs) after Cre recombinase-mediated deletion of Rac1 gene. Rac1-null MEFs became contracted and elongated in morphology and were defective in lamellipodia formation, cell spreading, cell-fibronectin adhesion, and focal contact formation in response to platelet-derived growth factor or serum. Unexpectedly, deletion of Rac1 also abolished actin stress fibers in the cells without detectable alteration of endogenous RhoA activity. Although the expression and/or activation status of focal adhesion complex components such as Src, FAK, and vinculin were not affected by Rac1 deletion, the number and size of adhesion plaques were significantly reduced, and the molecular complex between Src, FAK, and vinculin was dissembled in Rac1-null cells. Overexpression of an active RhoA mutant or ROK failed to rescue the stress fiber and adhesion plaque defects of the Rac1-null cells. Although Rac1 deletion caused a significant reduction in phospho-PAK1, -AKT, and -ERK under serum stimulation, reconstitution of active PAK1, but not AKT or MEK1, was able to rescue the actin cytoskeleton and adhesion phenotypes of the Rac1-deficient cells. Furthermore, Rac1 deletion led to a marked increase in spontaneous apoptosis that could be rescued by active PAK1, AKT, or MEK1 expression. Our results obtained from gene-targeted primary MEFs indicate that Rac1 is essential not only for lamellipodia induction but also for the RhoA-regulated actin stress fiber and focal adhesion complex formation and that Rac1 is involved in cell survival regulation through anoikis-dependent as well as -independent mechanisms.  相似文献   

12.
Cells respond to fluid shear stress through dynamic processes involving changes in actomyosin and other cytoskeletal stresses, remodeling of cell adhesions, and cytoskeleton reorganization. In this study we simultaneously measured focal adhesion dynamics and cytoskeletal stress and reorganization in MDCK cells under fluid shear stress. The measurements used co-expression of fluorescently labeled paxillin and force sensitive FRET probes of α-actinin. A shear stress of 0.74 dyn/cm2 for 3 hours caused redistribution of cytoskeletal tension and significant focal adhesion remodeling. The fate of focal adhesions is determined by the stress state and stability of the linked actin stress fibers. In the interior of the cell, the mature focal adhesions disassembled within 35-40 min under flow and stress fibers disintegrated. Near the cell periphery, the focal adhesions anchoring the stress fibers perpendicular to the cell periphery disassembled, while focal adhesions associated with peripheral fibers sustained. The diminishing focal adhesions are coupled with local cytoskeletal stress release and actin stress fiber disassembly whereas sustaining peripheral focal adhesions are coupled with an increase in stress and enhancement of actin bundles. The results show that flow induced formation of peripheral actin bundles provides a favorable environment for focal adhesion remodeling along the cell periphery. Under such condition, new FAs were observed along the cell edge under flow. Our results suggest that the remodeling of FAs in epithelial cells under flow is orchestrated by actin cytoskeletal stress redistribution and structural reorganization.  相似文献   

13.
We have previously shown that polyamine depletion decreased migration, Rac activation, and protein serine threonine phosphatase 2A activity. We have also shown that polyamine depletion increased cortical F-actin and decreased lamellipodia and stress fibers. In this study, we used staurosporine (STS), a potent, cell-permeable, and broad-spectrum serine/threonine kinase inhibitor, and studied migration. STS concentrations above 100 nM induced apoptosis. However, in polyamine-depleted cells, a lower concentration of STS (5 nM) increased attachment, spreading, Rac1 activation, and, subsequently, migration without causing apoptosis. STS-induced migration was completely prevented by a Rac1 inhibitor (NSC-23766) and dominant negative Rac1. These results imply that STS restores migration in polyamine-depleted cells through Rac1. The most important finding in this study was that polyamine depletion increased the association of phosphorylated myosin regulatory light chain (pThr(18)/Ser(19)-MRLC) at the cell periphery, which colocalized with thick cortical F-actin. Localization of pThr(18)- and pSer(19)-MRLC was found with stress fibers and nuclei, respectively. STS decreased the phosphorylation of cellular and peripheral pThr(18)-MRLC without any effect on nuclear pSer(19)-MRLC, dissolved thick cortical F-actin, and increased lamellipodia and stress fiber formation in polyamine-depleted cells. In control and polyamine-depleted cells, focal adhesion kinase (FAK) colocalized with stress fibers and the actin cortex, respectively. STS reorganized FAK, paxillin, and the cytoskeleton. These results suggest that polyamine depletion prevents the dephosphorylation of MRLC and thereby prevents the dynamic reorganization of the actin cytoskeleton and decreases lamellipodia formation resulting in the inhibition of migration.  相似文献   

14.
Migration of cells is one of the most essential prerequisites to form higher organisms and depends on a strongly coordinated sequence of processes. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. While substrate sensing was ascribed to filopodia, all other processes were believed to depend mainly on lamellipodia of migrating cells. In this work we show for motile keratinocytes that all processes from substrate sensing to force generation strongly depend on filopodial focal complexes as well as on filopodial actin bundles. In a coordinated step by step process filopodial focal complexes have to be tightly adhered to the substrate and to filopodial actin bundles to enlarge upon lamellipodial contact forming classical focal adhesions. Lamellipodial actin filaments attached to those focal adhesions originate from filopodia. Upon cell progression, the incorporation of filopodial actin bundles into the lamellipodium goes along with a complete change in actin cross-linker composition from filopodial fascin to lamellipodial α-actinin. α-Actinin in turn is replaced by myosin II and becomes incorporated directly behind the leading edge. Myosin II activity makes this class of actin bundles with their attached FAs the major source of force generation and transmission at the cell front. Furthermore, connection of FAs to force generating actin bundles leads to their stabilization and further enlargement. Consequently, adhesion sites formed independently of filopodia are not connected to detectable actin bundles, transmit weak forces to the substrate and disassemble within a few minutes without having been increased in size.  相似文献   

15.
Control of actin polymerization in live and permeabilized fibroblasts   总被引:37,自引:26,他引:11       下载免费PDF全文
We have investigated the spatial control of actin polymerization in fibroblasts using rhodamine-labeled muscle actin in; (a) microinjection experiments to follow actin dynamics in intact cells, and (b) incubation with permeabilized cells to study incorporation sites. Rhodamine-actin was microinjected into NIH-3T3 cells which were then fixed and stained with fluorescein-phalloidin to visualize total actin filaments. The incorporation of newly polymerized actin was assayed using rhodamine/fluorescein ratio-imaging. The results indicated initial incorporation of the injected actin near the tip and subsequent transport towards the base of lamellipodia at rates greater than 4.5 microns/min. Furthermore, both fluorescein- and rhodamine-intensity profiles across lamellipodia revealed a decreasing density of actin filaments from tip to base. From this observation and the presence of centripetal flux of polymerized actin we infer that the actin cytoskeleton partially disassembles before it reaches the base of the lamellipodium. In permeabilized cells we found that, in agreement with the injection studies, rhodamine-actin incorporated predominantly in a narrow strip of less than 1-microns wide, located at the tip of lamellipodia. The critical concentration for the rhodamine-actin incorporation (0.15 microM) and its inhibition by CapZ, a barbed-end capping protein, indicated that the nucleation sites for actin polymerization most likely consist of free barbed ends of actin filaments. Because any potential monomer-sequestering system is bypassed by addition of exogenous rhodamine-actin to the permeabilized cells, these observations indicate that the localization of actin incorporation in intact cells is determined, at least in part, by the presence of specific elongation and/or nucleation sites at the tips of lamellipodia and not solely by localized desequestration of subunits. We propose that the availability of the incorporation sites at the tips of lamellipodia is because of capping activities which preferentially inhibit barbed-end incorporation elsewhere in the cell, but leave barbed ends at the tips of lamellipodia free to add subunits.  相似文献   

16.
Cell migration is regulated by the action of many signaling pathways that are activated in specific regions of migrating cells. Extracellular regulated kinase 1/2 (ERK) signaling can modulate the migration of cells by controlling the turnover of focal adhesions and the dynamics of actin polymerization. Focal adhesion turnover is necessary for cell migration, and the formation of strong actin stress fibers and mature focal adhesions puts the brakes on cell migration. We used F9 wild-type and vinculin null (vin-/-) parietal endoderm (PE) outgrowth to study the role of the ERK signaling pathway in cell migration. Upon plating of F9 embryoid bodies (EBs) onto laminin-coated dishes, PE cells migrate away from the EBs, providing an in vitro model for studying directed migration of this embryonic cell type. Our results suggest that the ERK pathway regulates PE cell migration by affecting the formation of focal adhesions and lamellipodia through the action of myosin light chain kinase (MLCK).  相似文献   

17.
Cell migration involves dynamic regulation of the actin cytoskeleton, which exhibits rapid actin polymerization at the leading edge of migrating cells. This process relies on regulated recruitment of actin nucleators and actin-binding proteins to the leading edge to polymerize new actin filaments. Many of these proteins have been identified, including the actin-related protein (Arp) 2/3 complex, which has emerged as the core player in the initiation of actin polymerization. However, the functional coordination of these proteins is unclear. Previously, we have demonstrated that the 14-kDa phosphohistidine phosphatase (PHP14) is involved in cell migration regulation and affects actin cytoskeleton reorganization. Here, we show that PHP14 may regulate actin remodeling directly and play an important role in dynamic regulation of the actin cytoskeleton. We observed a colocalization of PHP14 with Arp3 and F-actin at the leading edge of migrating cells. Moreover, PHP14 was recruited to the actin remodeling sites in parallel with Arp3 during lamellipodia formation. Furthermore, PHP14 knockdown impaired Arp3 localization at the leading edge of lamellipodia, as well as lamellipodia formation. Most importantly, we found that PHP14 was a novel F-actin-binding protein, displaying an Arp2/3-dependent localization to the leading edge. Collectively, our results indicated a crucial role for PHP14 in the dynamic regulation of the actin cytoskeleton and cell migration.  相似文献   

18.
The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.  相似文献   

19.
Actin polymerization is accompanied by the formation of protein complexes that link extracellular signals to sites of actin assembly such as membrane ruffles and focal adhesions. One candidate recently implicated in these processes is the LIM domain protein zyxin, which can bind both Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the actin filament cross-linking protein alpha-actinin. To characterize the localization and dynamics of zyxin in detail, we generated both monoclonal antibodies and a green fluorescent protein (GFP)-fusion construct. The antibodies colocalized with ectopically expressed GFP-VASP at focal adhesions and along stress fibers, but failed to label lamellipodial and filopodial tips, which also recruit Ena/VASP proteins. Likewise, neither microinjected, fluorescently labeled zyxin antibodies nor ectopically expressed GFP-zyxin were recruited to these latter sites in live cells, whereas both probes incorporated into focal adhesions and stress fibers. Comparing the dynamics of zyxin with that of the focal adhesion protein vinculin revealed that both proteins incorporated simultaneously into newly formed adhesions. However, during spontaneous or induced focal adhesion disassembly, zyxin delocalization preceded that of either vinculin or paxillin. Together, these data identify zyxin as an early target for signals leading to adhesion disassembly, but exclude its role in recruiting Ena/VASP proteins to the tips of lamellipodia and filopodia.  相似文献   

20.
Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca2+, and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca2+ via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号